Toward a Quantitative Model of Morphological Change

Charles Yang
Dept. of Linguistics, Psychology, and Computer Science
Yale University

Penn Linguistics
2-23-2006
Language Learning and Change

parallel to the transmission of genetic materials under forces of evolution

how can we extrapolate from the synchronic study of language learning and processing to the diachronic study of language change?

“the same mechanisms which operated to produce the large-scale changes of the past may be observed operating in the current changes taking place around us” (Labov 1973, p161)
Grammar Competition

- Evidence for competing parameters in child language: more on Saturday’s PLC (w. J. Legate)

- Evidence for competing parameters in historical change (Kroch 1989 and much subsequent work)
mutual incompatibility between two grammars can be quantified via corpus statistics: α and β are the \textbf{fitness} measures in grammar competition

A model of syntactic change follows, which may predict the direction of parameter change

application to the loss of V2 in Old French (and potentially other Western Romance languages) and more tentatively, that in Middle English (Yang 2000, \textit{Language Variation and Change})
Morphological Change

- a preliminary report

- Where syntax and morphology are different:
 - morphology is (much more) data/induction-driven than syntax: co-existing parameter values, yes, English children using Japanese past tense morpheme, no.

- Where syntax and morphology are the same:
 - historical processes are often attested in language learning
One Long Argument

- A model of morphological learning
- A model of morphological productivity
 - detour to morphological processing
- A model of morphological change
 - application to Old English weak verbs
- Conclusion and some implications
generalization and categorization, however unsystematic
Evidence for Rules

- Within a class, frequency predicts acquisition success almost perfect, while frequency-error correlation without class distinctions is only -0.37 (Marcus et al. 1992)
Words and Rules

frequency-error correlation -.32
(cf. -.37 for all verbs; Marcus et al. 1992)
Rules over Words

Percent correct vs. log(frequency) for various words.
Evidence for Rules

- Within a class, frequency predicts acquisition success
 - almost perfect, while frequency-error correlation without class distinctions is only -0.37 (Marcus et al. 1992)

- Control for verb frequency, bigger class--sum of token frequencies of all verbs--makes higher success rate
 - in some cases, “catch-caught” are better than “go-went”

- Morpho-phonologically productive rules make near perfect learning despite token frequency
 - vowel shortening verbs are almost error-free: shoot-shot, bite-bit, lose-lost, leave-left, say-said
Analogical leveling: words go from a more specific rule to a more general one (e.g., strive-strove)

over-regularization: hold-helded (quite robust, about 10% of all past tense uses)

Analogical extension: words go from a more general rule to a more specific one (e.g., werede (“weared”) - wore)

over-irregularization: bring-brang

exceedingly rare: 40 out of children’s 20,000 past tense uses (Xu & Pinker 1995), “bring-brang” is the only error with multiple instances

but more on this in German noun plural acquisition
Two Kinds of Rules

- Productive rules: can extend to novel tokens: target of extension/leveling

- Unproductive rules: **morpholexical** rules (Anderson 1974)
 - e.g., /-t & Rime->a/, as it applies to a fixed set of words (*bring*, *think*, *catch*, *seek*, *teach*, *buy*), and that’s it. The hold on words is brute force (repeated exposure in learning)

- Morphological “movement” is controlled by
 - Elsewhere Condition (go to the most specific rule): categorical
 - Frequency effect: stochastic

* This view is consistent with the interpretation of analogy by some linguists (Kiparsky 1974, Anderson 1988).

* We need a theory of morphological productivity
Background: rule learning

Mooney & Califf (1995)
Sussman & Yip (1997)
Molnar (2001), cf.
Mitchell (1978)

A→B/C_____D

replace conflicting features with *s (don’t care)

Only model that learns minority defaults (e.g.,
German plurals)

Feature space over which induction operates is
completely “up to you”
Imagine ...

- The child has only two words: sing-sang, ring-rang
- Perfectly good rule: **If** /ing/ **Then** /ang/
- Exceptions accumulate as vocabulary grows
 - bring, sting, swing, wing (maybe not in Texas...)
- **If** /ing/ **Then** /ang/ doesn’t work so well
- “add -d” would fare better as it doesn’t have too many exceptions:
 - how many is “too many”
- children are exceptionally good at this: morphological errors are almost all omission rather than substitution (Xu & Pinker 1995, Phillips 1995, Guasti 2002)
Terminologies

- **Default**: backup option, when all fails. Maximally general rule (*’s across the board)

- **Productive**: generalizable, “**IF** verb ends in vowel **THEN** add -n”
 - doesn’t have to be 100% reliable (can have exceptions)
 - defaults are productive, productive rules are not necessarily defaults

- When is a rule **productive**? When is it **morpholexical** (Anderson 1972)?
Online morphology

An evaluation measure based on the complexity of linguistic performance

there are other ways of doing this: ideally, one needs some empirical motivation for a particular approach

performance metric feeds back into the grammar

Processing of morphologically complex words (Caramazza 1997, Levelt 1999)

1. word search (e.g., “walk”)
2. rule search (e.g., “add -d”)
3. rule application (e.g., “walk”+”d”=”walked”)

Rule Search

- Take Elsewhere Condition seriously
- Rule for sibilants in noun plural formation (OK, it’s phonology ...)
 - If $W=\text{fish}$ then use the rule "no change"
 - If $W=\text{perch}$ then use the rule "no change"
 - If $W=\text{tooth}$ then use the rule "oo->ee"
 -
 - Epenthesis
Bin Search

- Forster (1976): words are organized into orthographic bins, and are listed in decreasing order by frequency.

- Non-words take longer to recognize as actual words must be rejected first.

- Reaction time is better predicted by rank within bins rather than frequency (Murray & Forster 2004).

- Straightforwardly captures frequency effects in lexical processing.
Rule-based Bin Search

\(R: \text{If } X \text{ Then } Y \)

\(\alpha: \# \text{ of words that } R \text{ applies to} \)

\(\beta: \# \text{ of exceptions that } R \text{ does not apply to but could} \)

\(N = \alpha + \beta \)

(R="add -d to verbs to make past tense", \(N=12,000, \beta =150 \))

- If \(W=W_1 \) Then ...
- Else If \(W=W_2 \) Then ...
- ...
- Else If \(W=W_\beta \) Then ...
- apply \(R \) (\(\alpha \) items)
- exception clauses ranked by frequency
Optimal Bin

- Ranking seems computationally taxing

- **Randomized algorithms**: near-optimal methods that are computationally trivial
 - **Move Front** (Knuth 1966), **Move Up** (Rivest 1976)

- Fair to assume the human lexicons are near optimal wrt frequency

- Frequency effect = order in which the list is accessed

- Could use tree-like structures (Sleator & Tarjan 1985) for Cohort effects (Marslen-Wilson 1987)
Predictions

- Exceptions exhibit frequency effect
 - This is strongly true (Prasada et al. 1990, Seidenberg 1992, Jaeger et al. 1996, Clahsen 1999)

- \(\alpha \)'s are slower than \(\beta' \) during rule search
 - exceptions are expensive: the obedient guys have to wait

- This is subtle: note that we do not predict an overall reaction delay as reported in Prasada et al. (1990) and Seidenberg (1992), among others
Inflection = Search + Application

- Inflection involves finding the rule and applying the rule, both take time

- Frequency of rules: sum of token frequency
 - Sereno & Jongman (1997): plural nouns (add -s) are faster than past verbs (add -d)--more evidence for “-s” than “-d”
 - also possible: there are few plural irregulars, so the regular nouns are arrived faster
 - Taft (2004): frequency effect can be factored into stem freq., affix freq and composition cost.

- Yang (2002): input frequency matched, different classes of irregular verbs have very different error rates in acquisition (“know-knew” vs. “teach-taught”, “went” vs. “shot”!)
Rule Search Predictions

- Must control both word frequency (for lexical lookup) as well as rule frequency (for rule application)

- English past tense: “add -d” makes up >40% of tokens, far more than any individual irregular class

 hence regulars are faster than irregulars

- Better test: German past participles (-t and -n are more evenly matched in token frequency)

 Clahsen et al. (2004): the production latency for regulars is longer than irregulars when word frequencies are matched

 only for high frequency verbs: that’s OK for us, as the children is making decisions on productivity on a small vocabulary consisting of mostly high frequency words
Shortcuts

- search needn’t be exhaustive: German is a case in point

- English nominals:
 - IF \textit{grow, warm, deep, ...} then “add th”
 - IF ending in \texttt{-able} then call \texttt{-ity} subroutine (this skips hundreds of potential entries for search and rejection)
 - Add \texttt{-ness}.

- Actual productivity studies must take into account the specific morpho-phono-syntactico-semantic properties that define morphological classes
To be or not to be

If R is productive:
- the α good words cannot be accessed until all β exceptions are accessed and rejected; let $T(\alpha, \beta)$ be the excepted time complexity of retrieving ($\alpha+\beta$) words with β exceptions

If R is morpholexical (i.e. unproductive):
- all $N=(\alpha+\beta)$ words are listed as exceptions—even for the α good guys that do follow R; let time complexity is $T(N,N)$

Conjecture: The learner will postulate R to be productive if $T(\alpha, \beta) < T(N, N)$
\[T(N, N) \]

Assume a Zipfian distribution of word frequencies

Rank * Frequency = Constant

\[T(N, N) = \sum_{i=1}^{N} f_i \times i \]

\[f_i = \frac{1}{iH_N} \]

\[H_N = \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{N} \]

\[T(N, N) = \frac{N}{H_N} \]
$T(\alpha, \beta)$

\[T(\alpha, \beta) = \mu T(\beta, \beta) + (1 - \mu) \beta, \text{ where } \mu = \frac{\beta}{\alpha + \beta} \]

solving for β in $T(\alpha, \beta) = T(N, N)$

\[\beta \approx \frac{N}{\ln N} \]

Joint work with Sam Gutmann (Northeastern)
Tolerance Principle

- Productive rules can tolerate few exceptions (sub-linear)

- English has 150 irregular verbs, so there needs more than 1000 verbs in all: the “add -d” rule is safe.

- Makes predictions about morphological productivity (room for individual variation)

- Makes predictions about morphological learning in relation to word frequencies

- Makes predictions about morphological change
Frequency and Learning

- U-shape learning curve

- most of English past tense probability mass (token) is irregular (60%; Grabowski & Mindt 1995), and these will be the earliest verbs: at this point, -ed rule will have a lot of exceptions and will be unproductive

- as more verbs are learned (types), -ed rule gets more support and will become productive

- U-shape learning may not be universal: it only shows up in exceptions are exceptionally high in token frequency and depends on the particular composition of a child’s vocabulary (in past tense, Adam clearly shows it, but other children are not so clear)

- No evidence for U-shape learning in plurals (Brown 1973, Falco & Yang 2005): irregular nouns are fewer and lower in frequency
Lopsided Advantage

Emergence of productivity: the first instance of overregularization (e.g., “hold-holder”)

At this point, the child must have considerably more regulars than irregulars according to TP

Marcus et al. (1992)

Adam: 136/218=62% regular, Sarah: 124/193=64% regular

somewhat lower than what TP predicts, possibly due to under-estimation of regulars, which are lower in frequency
Two Empirical Cases

- Briefly, acquisition of German plurals: fewer exceptions than meet the eye
- Old English weak verbs: the leveling of productive rules
German noun plurals

- Five classes: Kind-Kinder (children), Wind-Winde (wind), Ochs-Ochsen (oxen), Daumen-Daumen (thumbs), Auto-Autos (cars)

- Marcus et al. (1995), Clahsen (1999), Pinker (1999), etc.: only -s, numerical minority (7%) is the default

- All other four classes are memorized by rote

- “A quick glance at German shows that the four irregular classes of plurals show no systematic similarity whatever. The horrors of German are real: one must sort each irregular noun into its proper class, as in the traditional rule-based view” (Yang 2000)

- Wrong! (93%: too many exceptions for -s to be productive)
Feminine nouns

Many feminine nouns add -(e)n

Some exceptions (Umlaut): Axt (ax), Bank (bench), Braut (bride), Brust (breast), Faust (fist), ... Wand (wall), Wurst (sausage)

A few, all monosyllabic ones that add -e: Tann (wood), Trupp (troop), ...

\(\beta \approx 80, \ N=500: \) around 500 feminine nouns taking -(e)n can ensure a productive rule for a subclass of nouns

There are at least 9500 feminine nouns in German (CELEX), 3600 excluding compounds: there is a productive rule

If feminine Then add -(e)n, without some exceptions

This is what a group of German morphologists have argued (against the Pinker-Clahsen line): Dressler (1999), Wiese (1999), Wunderlich (1999).
Evidence for feminine rule

- Klampfer et al. (2002): German children use wrong irregular (not s) pattern 10% of time

- ≥0.2% in English children (Xu & Pinker 1995), and comparable to English over-regularization

- Elicitation (low frequency nouns) error rate 18.5%, 14.6% of which are -(e)n (Clahsen 1999)

- Penke & Krause (2002): aphasics and unimpaired subjects
 - both aphasics and unimpaired subjects show no frequency effect for -(n) feminine nouns
 - lack of frequency effects generally taken as evidence for regular rules (Clahsen 1999)
Stacked Bins

very few overuse involve –er (not much data on –∅)
Penke & Krause (2002): add –s class uniformly slower than other classes: bins are search serially as well
horrors of German still real: have to memorize genders!
Productivity and Change

- if a rule is productive (+), then it won’t lose members but could attract other words matching its structural description (extension: German -(e)n rule)

- if a rule is unproductive (-), then it could lose members to more include rules that match the structural descriptions of these words (leveling: English overregularization)

- productivity is determined by α and β

- productivity may change as a result of learning: in the next generation, α' and β' may well be different
α and β in perturbation

<table>
<thead>
<tr>
<th>social/linguistic factors</th>
<th>α’ ~ α</th>
<th>β’ ~ β</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>variation</td>
<td>></td>
<td>></td>
<td>conflicting membership doublets: dive-dived-dove</td>
</tr>
<tr>
<td>innovation</td>
<td><</td>
<td>></td>
<td>“Kosovians can move back in” (W.)</td>
</tr>
<tr>
<td>phonological reduction</td>
<td>></td>
<td><</td>
<td>Many cases (OE later)</td>
</tr>
<tr>
<td>under-learning</td>
<td><</td>
<td><</td>
<td>smaller vocabulary effects (Kroch 1978)</td>
</tr>
<tr>
<td>language/dialect contact</td>
<td>?</td>
<td>?</td>
<td>it depends ...</td>
</tr>
</tbody>
</table>

perturbation as a uniform framework to capture the effects on morphological change from diverse sources
Jekyll and Hyde

\[\hat{\beta} > \frac{\hat{\alpha} + \beta}{\ln(\hat{\alpha} + \beta)} \]

\[\hat{\beta} < \frac{\hat{\alpha} + \beta}{\ln(\hat{\alpha} + \beta)} \]

- \(A_+ \rightarrow A_+ \) (\(A \) stays in the productive state): \(B \) is subject to extension to \(A \), though \(A \) is not subject to leveling to \(\mathcal{R} \) as it’s protected by the Elsewhere Condition.
- \(A_- \rightarrow A_- \): \(A \) is subject to leveling to \(\mathcal{R} \), \(B \) is not subject to extension as there is no productive rule for it to go to.
- \(A_+ \rightarrow A_- \): \(A \) is subject to leveling as the productive rule disappears (i.e., \(A \) is now the exceptions to the rule \(\mathcal{R} \)).
- \(A_- \rightarrow A_+ \): \(A \): \(B \) is subject to extension to \(A \) (new sheriff in town), and \(A \) is no longer subject to leveling to \(\mathcal{R} \).
A Formal Model of Change

- initial α and β in the founder population
- for each generation of learners
 - obtain α' and β'
 - compute the productivity of A based on $(\alpha'+\beta')/\ln(\alpha'+\beta')$
 - carry out frequency-dependent extension/leveling for words with the procedure described in previous page*
- iterate

If the nature of the perturbation is clearly understood, it’s possible to derive formal results of productivity as a Markov process (random walk)
A simulation before reality
(E)OE Weak Verbs

Class III: various odd balls

Class II: present suffix i, rather heterogeneous and thus more “open” (recall the rule learning model)

Class I: present suffix j

Ia: heavy stems (long vowel or final consonant cluster), j deletes

Ib: light stem, stem-final consonant germinates, j also deletes

Ic: light stem ending in r, no j deletion, no germination

Fairly well-defined structural (phonological) descriptions of the Class I rules
(E)OE Weak Verbs

<table>
<thead>
<tr>
<th>Class Example</th>
<th>la dēman (judge)</th>
<th>lb fremman (do)</th>
<th>lc nerjan (save)</th>
<th>ll lufijian (love)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lst.sing</td>
<td>dēm+e</td>
<td>fremm+e</td>
<td>nerj+e</td>
<td>lufij+e</td>
</tr>
<tr>
<td>2nd.sing</td>
<td>dēm+st</td>
<td>frem+est</td>
<td>ner+st</td>
<td>luf+ast</td>
</tr>
<tr>
<td>Plural</td>
<td>dēm+ath</td>
<td>fremm+ath</td>
<td>nerj+ath</td>
<td>lufij+ath</td>
</tr>
<tr>
<td>lst.sing</td>
<td>dēm+de</td>
<td>frem+e+de</td>
<td>ner+e+de</td>
<td>luf+o+de</td>
</tr>
<tr>
<td>Plural</td>
<td>dēm+don</td>
<td>frem+e+don</td>
<td>ner+e+don</td>
<td>luf+o+don</td>
</tr>
<tr>
<td>P. Participle</td>
<td>dēm+e+d</td>
<td>frem+e+d</td>
<td>ner+e+d</td>
<td>luf+o+d</td>
</tr>
</tbody>
</table>
Diachronics of Weak Verbs

- glide vocalization: j in Ic and II (1st.sing) became i
- Ic merged with II, and picked up o in past tense
- degemination: the distinction between Ib and II’ lost
- Ia and II’’ remained in Late OE: further phonological change (vowel reduction, elimination of final i in II) lost the distinction between the two classes
How Phonology Killed Morphology

- Ic→II: β=32, α=256, threshold=50)
 - leveling of Ic **must** happen

- Ib→II’ (β=64, α=288, threshold=60)
 - leveling is highly **probable**

- Ia→II’’: β=128, needed about N=α+β=900 verbs altogether to level)
 - Need better verb counts from the right period, but this is easily met at least in modern English

- NB: leveling was not complete, some historical weak verbs didn’t level and became strong/irregular (*send*-sent, *bend*-bent in Ia), and there were also lots of variations (Lass & Anderson 1975)

- Not a complete theory of change, but rather what might happen after some (unpredictable) change has taken place

<table>
<thead>
<tr>
<th>Class</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>128</td>
</tr>
<tr>
<td>Ib</td>
<td>64</td>
</tr>
<tr>
<td>Ic</td>
<td>32</td>
</tr>
<tr>
<td>II</td>
<td>256*</td>
</tr>
</tbody>
</table>

Hare & Elman (1995)
Elsewhere Everywhere

Only difference between phonology and syntax:

- phonological default (if it exists) may be **inductively learned**
- syntactic default is **innate**: parameter value of the native language
Productivity in Lexical Change

- Lexical learning plays an important role.

- Within a homogeneous class of words, the learner may see mixed patterns: e.g., some verbs trigger subject inversion (α), and some do not (β).

- Tolerance Principle can tell the learner which pattern is productive: e.g., compare β with N/InN.

- As α and β evolve, one may observe rather abrupt changes in the syntactic behavior of a lexical class.

- Phonological change: resistance to vowel shift in a class of words that are characterized semantically (Quebec French, Yaeger-Dror 1996).
L2 learning

- Artificial language learning (Kam & Newport 2005): regularization under inconsistent data.
- Adults probability match up to a point, kids forge ahead to make rules, but see the figure on the left.
- Adults handle α and β somewhat differently which may affect α and β in later generations.
Conclusion

- exceptions--cumulative or abrupt--can change regularity
- it is useful to build basic models that explore the dynamics of learning and change: one can always make them more complicated and closer to reality later
- formal models of synchronics may shed light on the study of diachronics
- formal models of synchronics can certainly shed light on the study of synchronics