How do listeners identify creak? The effects of tone, pitch range, prosodic position and creak locality in Mandarin ¹ (liaini, kuangj)@sas.upenn.edu, Department of Linguistics, University of Pennsylvania. ² wei.lai@Vanderbilt.edu, Department of Psychology and Human Development, Aini Li¹, Wei Lai² and Jianjing Kuang¹

Background

- **Creaky voice:** an aperiodic phonation that is often related to low pitch targets (also known as "creak", "vocal fry" and "glottalization").
- Acoustic cues featuring creak: irregular pulses, low F0, constricted glottis, damped pulses and presence of subharmonics [1].
- As a non-modal phonation, creak has been found to influence the perception of pitch range, prosodic boundary and lexical tones [2, 3, 4,
- However, few studies have examined how these factors could in turn affect listeners' perception of creak (e.g., [6])
- **This study**: examines the effects of pitch range, prosodic position, creak locality and lexical tones on creak identification in Mandarin

Method I

Experimental design

A 8 (Tone) X 2 (Pitch range) X 2 (Prosodic position) X 3 (Creak locality) within-subject design was implemented.

Table 1: A schema of the experimental design

Sentence	Prosodic Position	Creak
MMMMMMMCCCCC	SentenceFinal	Glob
MMMMMMMMMMC	SentenceFinal	Loc
CCCCCMMMMMMM	SentenceNonfinal	Glob
MCMMMMMM	SentenceNonfinal	Loc

Materials

- <u>Stimulus creation</u>
 - 64 simple declarative sentences were constructed.
 - 12-syllable long with the same syntactic structure (NP1-VP-NP2) but varying in terms of the exact content and lexical items.
 - NP1 and NP2 are disyllabic person names and only the tone of the second syllable was different (X Y1 vs. X Y2).
 - Names were all sonorants.
 - Creak-containing syllables differed in terms of *prosodic position* (final vs. non-final), *pitch range* (high-pitched vs. low-pitched) and creak locality (global creak [the surrounding 4-5 syllables of the creakcontaining target were creak] vs. local creak [only the creakcontaining target was creak]).
- For each target syllable, another two modal sentences were included to balance items with and without creak.

• Recording and manipulation

- 64 sentences were naturally produced by a female native speaker of Mandarin.
- Recording was conducted in a professional sound booth using a highquality BlueSnowball iCE microphone.
- Sentences were produced in equalized speech rates (at 40 bpm) using online metronome) with a sentence-final falling intonation.
- Recordings were digitized at a sampling rate of 44,100kHz and 32 bit sample width.
- Each sound file lasted for 2-3 seconds in duration.
- Sentences were then manipulated into low-pitched targets (the mean F0 for the low-pitched recordings was 110 Hz and the mean F0 for the original high-pitched recordings was 225 Hz.

Vanderbilt University

Method II

Participants

have hearing deficits.

- Procedure
- Conducted online in Mandarin Chinese using Qualtrics.
- → Test trials
- occurs.

▶ ● -0:02 李艾在公园散步碰到了李哀。									
李	艾 □	在 □	公 □	园	散	步	碰 □	到	

The experiment took around 25 minutes to finish.

Confusion matrix of creak identification

Table 1: overall	Production-Crea
Perception-Creak	Hit: 0.73
Perception-Modal	Miss: 0.27
Table 2: High Low pitch	Production-Crea
Perception-Creak	Hit: 0.69 0.76
Perception-Modal	Miss: 0.31 0.24
Table 3: Final Non-final	Production-Crea
Perception-Creak	Hit: 0.65 0.81
Perception-Modal	Miss: 0.35 0.1
Table 4: Global Local	Production-Crea
Perception-Creak	Hit: 0.88 0.69
Perception-Modal	Miss: 0.12 0.3
Table 5: T1 T2 T3 T4	Production-Crea
Perception-Creak	Hit: 0.85 0.55 0.91
Perception-Modal	Miss: 0.15 0.45 0.0
Table 6: N1 N2 N3 N4	Production-Crea
Perception-Creak	Hit: 0.64 0.77 0.62
Perception-Modal	Miss: 0.36 0.23 0.3

Creaky syllables

Locality

bal creak cal creak bal creak cal creak

VANDERBILT

V

Results II

	Estimate	Std. Error	z value	Pr(> z)
	-4.68	0.19	-24.10	< 0.001 ***
	-0.94	0.05	-20.00	< 0.001 ***
	0.06	0.06	1.10	0.27
osition (Final)	-0.07	0.05	-1.46	0.14
ange imes Prosodic	position + ([1]Participant) + (1 Sylli	able) + (1 Tone)