Cyclic Degrading: Strict Cyclicitiy Meets Variable Rules

Kobey Shwayder Soohyun Kwon Brittany McLaughlin
shwayder@ling.upenn.edu ksuhyun@ling.upenn.edu bdmclaug@cs.cmu.edu
University of Pennsylvania Carnegie Mellon University

NWA V43 — 30 October 2014
Previous Work: Exponential Model

- Morphologically sensitivity for variable rules following intuition of Guy (1991a,b)
Previous Work: Exponential Model

- Morphologically sensitivity for variable rules following intuition of Guy (1991a,b)
- Deeper embedded = higher rate of application
 Previously on Morphologically Sensitive Variable Rules

Previous Work: Exponential Model

- Morphologically sensitivity for variable rules following intuition of Guy (1991a,b)
- Deeper embedded = higher rate of application
- Using stem/word/phrase, Exponential Model
Previous Work: Exponential Model

- Morphologically sensitivity for variable rules following intuition of Guy (1991a,b)
- Deeper embedded = higher rate of application
- Using stem/word/phrase, Exponential Model
Previous Work: Exponential Model

- Morphologically sensitivity for variable rules following intuition of Guy (1991a,b)
- Deeper embedded = higher rate of application
- Using stem/word/phrase, Exponential Model

$$XY \rightarrow Z$$
Previous Work: Exponential Model

- Morphologically sensitivity for variable rules following intuition of Guy (1991a,b)
- Deeper embedded = higher rate of application
- Using stem/word/phrase, Exponential Model

\[XY \rightarrow Z \]

\[
[[[XY]_s]_\omega] \phi \quad \text{Stem}
\]
\[
[[[X]_s Y]_\omega] \phi \quad \text{Word}
\]
\[
[[[X]_s]_\omega Y] \phi \quad \text{Phrase}
\]

- 3x
- 2x
- 1x
Previous Work: Guy 1991

Guy’s Model: TD deletion in English

<table>
<thead>
<tr>
<th></th>
<th>% Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monomorphemic ("mist")</td>
<td>38.1%</td>
</tr>
<tr>
<td>[[st]s]ω</td>
<td></td>
</tr>
<tr>
<td>Regular Past ("missed")</td>
<td>16.0%</td>
</tr>
<tr>
<td>[[s]s +t]ω</td>
<td></td>
</tr>
</tbody>
</table>
Previous Work: Guy 1991

Guy’s Model: TD deletion in English

<table>
<thead>
<tr>
<th>Monomorphemic ("mist")</th>
<th>% Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[st]<sub>s</sub>]<sub>ω</sub></td>
<td>38.1%</td>
</tr>
<tr>
<td>Regular Past ("missed")</td>
<td>16.0%</td>
</tr>
<tr>
<td>[[s]<sub>s</sub> +t]<sub>ω</sub></td>
<td></td>
</tr>
</tbody>
</table>

(Ignoring semiweak, for which, see Fruehwald 2012; Tamminga and Fruehwald 2013)
Overview: New Data shows opposite trend

- Two cases: Korean /w/-deletion and AAVE /t/-assibilation
Overview: New Data shows opposite trend

- Two cases: Korean /w/-deletion and AAVE /t/-assibilation
- Environment at stem level = less deletion, environment only at word level = more deletion.

\[XY \rightarrow Z \]
Overview: New Data shows opposite trend

- Two cases: Korean /w/-deletion and AAVE /t/-assibilation
- Environment at stem level = less deletion, environment only at word level = more deletion.

XY → Z
Overview: New Data shows opposite trend

- Two cases: Korean /w/-deletion and AAVE /t/-assibilation
- Environment at stem level = less deletion, environment only at word level = more deletion.

\[
XY \rightarrow Z
\]

\[
\left[[XY]_s \right]_\phi \quad \left[[X]_s Y \right]_\phi
\]

- Stem: \(\checkmark\)
- Word: \(\checkmark\) & \(\checkmark\)

Exponential Predictions
- Higher
- Lower
Overview: New Data shows opposite trend

- Two cases: Korean /w/-deletion and AAVE /t/-assibilation
- Environment at stem level = less deletion, environment only at word level = more deletion.

\[XY \rightarrow Z \]

\[
\begin{align*}
[[XY]_s \omega]_\phi & \quad [[X]_s Y \omega]_\phi \\
\checkmark & \\
\checkmark & \\
\checkmark & \\
\end{align*}
\]

Stem

Exponential Predictions

Korean & AAVE

Higher

Lower

Higher

Shwayder, Kwon & McLaughlin

Cyclic Degrading

N WAV43

30 Oct 2014
Outline

- More detail on each case study
- Parallel to standard phonology phenomenon
- Discussion of implementation in grammar
Korean /w/-deletion (Kwon 2014)

- Seoul Korean: /w/ variably deleted in CwV
Korean /w/-deletion (Kwon 2014)

- Seoul Korean: /w/ variably deleted in CwV
- (variety of conditioning factors, see Kwon 2014)
Korean /w/-deletion (Kwon 2014)

- Seoul Korean: /w/ variably deleted in CwV
- (variety of conditioning factors, see Kwon 2014)
- Feeding Phonology: /o/ → /w/ / _ V
Korean /w/-deletion (Kwon 2014)

- Seoul Korean: /w/ variably deleted in CwV
- (variety of conditioning factors, see Kwon 2014)
- Feeding Phonology: /o/ \rightarrow/w/ / _ V
Korean /w/-deletion (Kwon 2014)

- Seoul Korean: /w/ variably deleted in CwV
- (variety of conditioning factors, see Kwon 2014)
- Feeding Phonology: /o/ → /w/ / _ V

Two Morphological conditions:

- (A) CwV sequence part of stem
eexample: swip- "easy"
Korean /w/-deletion (Kwon 2014)

- Seoul Korean: /w/ variably deleted in CwV
- (variety of conditioning factors, see Kwon 2014)
- Feeding Phonology: /o/ → /w/ / _ V

Two Morphological conditions:

- (A) CwV sequence part of stem
 example: swip- "easy"
- (B) CwV sequence created by word level affix
 example: s’o- "shoot, fire" + -ayo "informal polite"
 → s’wayo
Korean /w/-deletion: Expected Results

Class A
swipta "to be easy"

Class B
s’wayo "shoot, fire (inf.pol.)"

\[
\begin{align*}
\text{Stem:} & \quad [[s\text{wip}]_s +\text{ta}]_\omega & \quad \text{✓} \\
\text{Word:} & \quad [[s\text{wip}]_s +\text{ta}]_\omega & \quad \text{✓} \\
\text{Phrase:} & \quad \text{higher w-deletion} & \quad \text{lower w-deletion}
\end{align*}
\]
Korean /w/-deletion: Expected Results

Class A
swipta "to be easy"
[[[swip]_s +ta]_ω]_φ

Class B
s’wayo "shoot, fire (inf.pol.)"
[[[s’o]_s+ayo]_ω]_φ → [[s’wayo]_ω]_φ

- Stem
 ✓

- Word
 ✓ ✓

- Phrase
 ✓ ✓
 higher w-deletion lower w-deletion

- Deletion A>B
Results

Average Deletion Rate

<table>
<thead>
<tr>
<th>Age</th>
<th>A (s+w)</th>
<th>B (w only)</th>
<th>Pattern</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20</td>
<td>0.17</td>
<td>≈ 0.20</td>
<td>A=B</td>
<td>No</td>
</tr>
<tr>
<td>21-40</td>
<td>0.21</td>
<td>< 0.32</td>
<td>A<B</td>
<td>No</td>
</tr>
<tr>
<td>40+</td>
<td>0.44</td>
<td>> 0.24</td>
<td>A>B</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Three age groups behaved differently with respect to /w/-deletion rates (and some other factors). In each age group, each person had the same directionality of pattern. The 40+ age group showed the expected exponential model. The 15-20 age group showed equal rates, which Kwon posits change to a process that is not morphologically sensitive (i.e., phrasal only). The puzzle arises in the 21-40 year old group, where the pattern shows a reversal.
Results

Average Deletion Rate

<table>
<thead>
<tr>
<th>Age</th>
<th>A (s+w)</th>
<th>B (w only)</th>
<th>Pattern</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20</td>
<td>0.17</td>
<td>≈ 0.20</td>
<td>A=B</td>
<td>No</td>
</tr>
<tr>
<td>21-40</td>
<td>0.21</td>
<td>< 0.32</td>
<td>A<B</td>
<td>No</td>
</tr>
<tr>
<td>40+</td>
<td>0.44</td>
<td>> 0.24</td>
<td>A>B</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Three age groups behaved differently w.r.t. /w/-deletion rates (and some other factors)
Results

Average Deletion Rate

<table>
<thead>
<tr>
<th>Age</th>
<th>A (s+w)</th>
<th>B (w only)</th>
<th>Pattern</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20</td>
<td>0.17</td>
<td>≈ 0.20</td>
<td>A=B</td>
<td>No</td>
</tr>
<tr>
<td>21-40</td>
<td>0.21</td>
<td>< 0.32</td>
<td>A<B</td>
<td>No</td>
</tr>
<tr>
<td>40+</td>
<td>0.44</td>
<td>> 0.24</td>
<td>A>B</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Three age groups behaved differently w.r.t. /w/-deletion rates (and some other factors)
- In each age group each person had same directionality of pattern
Results

Average Deletion Rate

<table>
<thead>
<tr>
<th>Age</th>
<th>A (s+w)</th>
<th>B (w only)</th>
<th>Pattern</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20</td>
<td>0.17</td>
<td>0.20</td>
<td>A=B</td>
<td>No</td>
</tr>
<tr>
<td>21-40</td>
<td>0.21</td>
<td>0.32</td>
<td>A<B</td>
<td>No</td>
</tr>
<tr>
<td>40+</td>
<td>0.44</td>
<td>0.24</td>
<td>A>B</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Three age groups behaved differently w.r.t. /w/-deletion rates (and some other factors)
- In each age group each person had same directionality of pattern
- 40+: Expected as Exponential Model
Results

Average Deletion Rate

<table>
<thead>
<tr>
<th>Age</th>
<th>A (s+w)</th>
<th>B (w only)</th>
<th>Pattern</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20</td>
<td>0.17</td>
<td>≈ 0.20</td>
<td>A=B</td>
<td>No</td>
</tr>
<tr>
<td>21-40</td>
<td>0.21</td>
<td>< 0.32</td>
<td>A<B</td>
<td>No</td>
</tr>
<tr>
<td>40+</td>
<td>0.44</td>
<td>> 0.24</td>
<td>A>B</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Three age groups behaved differently w.r.t. /w/-deletion rates (and some other factors)
- In each age group each person had same directionality of pattern
- 40+: Expected as Exponential Model
- 15-20: Equal Rates – Kwon posits change to process that is not morphologically sensitive (i.e. phrasal only)
Results

Average Deletion Rate

<table>
<thead>
<tr>
<th>Age</th>
<th>A (s+w)</th>
<th>B (w only)</th>
<th>Pattern</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20</td>
<td>0.17</td>
<td>≈ 0.20</td>
<td>A=B</td>
<td>No</td>
</tr>
<tr>
<td>21-40</td>
<td>0.21</td>
<td>< 0.32</td>
<td>A<B</td>
<td>No</td>
</tr>
<tr>
<td>40+</td>
<td>0.44</td>
<td>> 0.24</td>
<td>A>B</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Three age groups behaved differently w.r.t. /w/-deletion rates (and some other factors)
- In each age group each person had same directionality of pattern
- 40+: Expected as Exponential Model
- 15-20: Equal Rates – Kwon posits change to process that is not morphologically sensitive (i.e. phrasal only)
Results

Average Deletion Rate

<table>
<thead>
<tr>
<th>Age</th>
<th>A (s+w)</th>
<th>B (w only)</th>
<th>Pattern</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20</td>
<td>0.17</td>
<td>≈ 0.20</td>
<td>A=B</td>
<td>No</td>
</tr>
<tr>
<td>21-40</td>
<td>0.21</td>
<td>< 0.32</td>
<td>A<B</td>
<td>No</td>
</tr>
<tr>
<td>40+</td>
<td>0.44</td>
<td>> 0.24</td>
<td>A>B</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Three age groups behaved differently w.r.t. /w/-deletion rates (and some other factors)
- In each age group each person had same directionality of pattern
- 40+: Expected as Exponential Model
- 15-20: Equal Rates – Kwon posits change to process that is not morphologically sensitive (i.e. phrasal only)
- Puzzle: 21-40 year old group shows reversal of pattern.
Retreat of a rule

- Kwon suggests a retreat of the /w/-deletion rule

<table>
<thead>
<tr>
<th>Level at which /w/-deletion is active</th>
<th>Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem</td>
<td>40+</td>
</tr>
<tr>
<td>Word</td>
<td>21-40</td>
</tr>
<tr>
<td>Phrase</td>
<td><20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>40+</th>
<th>21-40</th>
<th><20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Word</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Phrase</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
Retreat of a rule

- Kwon suggests a retreat of the /w/-deletion rule

<table>
<thead>
<tr>
<th>Level at which /w/-deletion is active</th>
<th>Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem</td>
<td>40+ 21-40 <20</td>
</tr>
<tr>
<td>Word</td>
<td>YES YES NO</td>
</tr>
<tr>
<td>Phrase</td>
<td>YES YES YES</td>
</tr>
</tbody>
</table>

- Youngest and Oldest groups work; interpolate middle group

However, we expect the 21-40 group to have equal /w/-deletion in Class A and B (because CwV sequence is equally available at word level in both classes).

21-40 still a Puzzle!
AAVE /t/-assibilation

- Variably /t/ → [s] / _ s

Data from Frank Porter Graham Corpus

*Thanks to the FPG institute, NCState, and Walt Wolfram for use of the FPG corpus
AAVE /t/-assibilation

- Variably /t/ → [s] / _ s
 /ts/ → [ss] (→ [s])

Data from Frank Porter Graham Corpus

Thanks to the FPG institute, NCState, and Walt Wolfram for use of the FPG corpus
AAVE /t/-assibilation

- Variably /t/ → [s] / _ s
 /ts/ → [ss] (→ [s])

- Data from Frank Porter Graham Corpus*

*Thanks to the FPG institute, NCState, and Walt Wolfram for use of the FPG corpus
AAVE /t/-assibilation

- Variably /t/ → [s] / _ s
 /ts/ → [ss] (→ [s])

- Data from Frank Porter Graham Corpus*
- 6th-10th grade AAVE speakers in informal contexts

*Thanks to the FPG institute, NCState, and Walt Wolfram for use of the FPG corpus
AAVE /t/-assibilation

Schematically

Expected Assibilation Rate

<table>
<thead>
<tr>
<th>Monomorphemic</th>
<th>Polymorphemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>([[ts]_s]_ω)</td>
<td>([[t]_s +s]_ω)</td>
</tr>
</tbody>
</table>

Stem

- Expected: higher

Word

- Expected: lower

Expect: monomorphemic > polymorphemic
AAVE /t/-assibilation

Expect: monomorphemic > polymorphemic

Actual Rate /t/-assibilation

<table>
<thead>
<tr>
<th></th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>monomorphemic</td>
<td>0%</td>
</tr>
<tr>
<td>plural</td>
<td>22%</td>
</tr>
<tr>
<td>(verbal)</td>
<td>43%</td>
</tr>
</tbody>
</table>

low n, q’s about auxiliary *gets*
AAVE /t/-assibilation

Expect: monomorphemic > polymorphemic

<table>
<thead>
<tr>
<th>Type</th>
<th>Actual Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monomorphemic [ts]s</td>
<td>0%</td>
</tr>
<tr>
<td>Plural [t]s+s</td>
<td>22%</td>
</tr>
<tr>
<td>(Verbal [t]s+s</td>
<td>43%</td>
</tr>
</tbody>
</table>

low n, q’s about auxiliary *gets*

Note on monomorphemic [ts]s:

- Tokens in corpus are "united states" (agrees as singular)
- AAVE speaker intuitions on other common /ts/ words "pizza" and "blitz" are good as [ts] and bad as [s]
 (minimal pairs with "piece o’" and "bliss")
AAVE /t/-assibilation

Expect: monomorphemic > polymorphemic

Actual Rate /t/-assibilation

<table>
<thead>
<tr>
<th>Type</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>monomorphemic [ts]s</td>
<td>0%</td>
</tr>
<tr>
<td>plural [t]s+s</td>
<td>22%</td>
</tr>
<tr>
<td>(verbal [t]s+s</td>
<td>43%</td>
</tr>
</tbody>
</table>

low n, q’s about auxiliary *gets*

- /t/-assibilation not even active the stem level?
- Still seems to affect application of /t/-assibilation at word level (blocks completely!)
Summary of Data and Generalization

- **Cyclic Degrading**: The rate of application of variable rules is lower in deeper embedded environments

<table>
<thead>
<tr>
<th>Stem Level/ Monomorphemic</th>
<th>Word Level/ Polymorphemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>([[XY]s]\omega)</td>
<td>([[X]s Y]\omega)</td>
</tr>
</tbody>
</table>

- Expected Exponential
- Korean /w/-deletion (21-40)
- AAVE /t/-assibilation

Shwayder, Kwon & McLaughlin

Penn

Cyclic Degrading

N-WAV43

30 Oct 2014

14 / 25
Summary of Data and Generalization

- **Cyclic Degrading**: The rate of application of variable rules is lower in deeper embedded environments.

<table>
<thead>
<tr>
<th>Stem Level/ Monomorphemic</th>
<th>Word Level/ Polymorphemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[XY]s]ω</td>
<td>[[X]s Y]ω</td>
</tr>
</tbody>
</table>

- Expected Exponential: >
- Korean /w/-deletion (21-40): <
- AAVE /t/-assibilation: <

- What is the mechanism?
- Why does this deviate from Exponential Model?
Observation: Non-Derived Environment Blocking

- Standard phonology literature: **Strict Cycle Effect (SCE)** (Kean 1974; Mascaró 1976; Kiparsky 1982) or **Non-derived Environment Blocking (NDEB)** (Kiparsky 1993; Burzio 2009)
Observation: Non-Derived Environment Blocking

- Standard phonology literature: **Strict Cycle Effect (SCE)** (Kean 1974; Mascaró 1976; Kiparsky 1982) or **Non-derived Environment Blocking (NDEB)** (Kiparsky 1993; Burzio 2009)

- A rule may only apply if it makes use of new phonological material from its cycle or derivational stratum.
Observation: Non-Derived Environment Blocking

- Standard phonology literature: **Strict Cycle Effect** (SCE) (Kean 1974; Mascaró 1976; Kiparsky 1982) or **Non-derived Environment Blocking** (NDEB) (Kiparsky 1993; Burzio 2009)

- A rule may only apply if it makes use of new phonological material from its cycle or derivational stratum.
Observation: Non-Derived Environment Blocking

- Standard phonology literature: **Strict Cycle Effect** (SCE) (Kean 1974; Mascaró 1976; Kiparsky 1982) or **Non-derived Environment Blocking** (NDEB) (Kiparsky 1993; Burzio 2009)
- A rule may only apply if it makes use of new phonological material from its cycle or derivational stratum.

Classic Example: (Kiparsky 1993)

- Finnish /t/-assibilation: /t/ → [s] / _ i
- Feeding Phonology: /e/-raising: /e/ → [i] / _ #
Observation: Non-Derived Environment Blocking

- Standard phonology literature: **Strict Cycle Effect** (SCE) (Kean 1974; Mascaró 1976; Kiparsky 1982) or **Non-derived Environment Blocking** (NDEB) (Kiparsky 1993; Burzio 2009)
- A rule may only apply if it makes use of new phonological material from its cycle or derivational stratum.

Classic Example: (Kiparsky 1993)

Finnish /t/-assibilation /t/ → [s] / _ i

Feeding Phonology: /e/-raising /e/ → [i] / _ #

Essive Sg. Nom. Sg.

"water" √VETE vete-nä vesi
"mother" √ÄITI äitti-nä äitti
Observation: Non-Derived Environment Blocking

- Same environment as our data

\[XY \rightarrow Z \]
Observation: Non-Derived Environment Blocking

- Same environment as our data

\[XY \rightarrow Z \]

\[
[[[XY]_s]_\omega]_\phi \quad [[X]_s Y]_\omega]_\phi
\]

<table>
<thead>
<tr>
<th>Stem</th>
<th>NDEB</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Observation: Non-Derived Environment Blocking

- Same environment as our data

\[
XY \rightarrow Z
\]

\[
[[[XY]_s]_\omega]_\phi \quad [[[X]_s Y]_\omega]_\phi
\]

- Stem: \checkmark
- Word: NDEB: \checkmark

- In NDEB case, at word level environment XY has not changed
Proposal: Cyclic Degrading is SCE/NDEB

- **Cyclic Degrading**: The rate of application of variable rules is lower in SCE/NDEB environments.
Proposal: Cyclic Degrading is SCE/NDEB

- **Cyclic Degrading**: The rate of application of variable rules is lower in SCE/NDEB environments

- Question: Blocked completely or only degraded rate?

 Korean /w/-deletion rate

<table>
<thead>
<tr>
<th>Age</th>
<th>$[[[CwV]s]\omega]_\phi$</th>
<th>$[[[Co]s V]\omega]_\phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-40</td>
<td>0.21</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Not impossible to apply deletion in blocking environment (unlike classic SCE/NDEB)

Ideally, same blocking mechanism as SCE/NDEB (still somewhat mysterious)

Shwayder, Kwon & McLaughlin
Proposal: Cyclic Degrading is SCE/NDEB

- **Cyclic Degrading**: The rate of application of variable rules is lower in SCE/NDEB environments

- **Question**: Blocked completely or only degraded rate?

 Korean /w/-deletion rate

<table>
<thead>
<tr>
<th>Age</th>
<th>[[CwV]_s]_ω</th>
<th>[[[Co]s V]_ω]_φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-40</td>
<td>0.21</td>
<td>0.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s, ω, φ</th>
<th>ω, φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>
Proposal: Cyclic Degrading is SCE/NDEB

- **Cyclic Degrading**: The rate of application of variable rules is lower in SCE/NDEB environments

- Question: Blocked completely or only degraded rate?

 Korean /w/-deletion rate

<table>
<thead>
<tr>
<th>Age</th>
<th>[[CwV]_s]_ω</th>
<th>[[Co]_s V]_ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-40</td>
<td>0.21</td>
<td>0.32</td>
</tr>
</tbody>
</table>

 ↑ s, ω, φ ↑ ω, φ

- Not impossible to apply deletion in blocking environment (unlike classic SCE/NDEB)

- Ideally, same blocking mechanism as SCE/NDEB (still somewhat mysterious)
Implementations in Grammar

How is Cyclic Degrading implemented in the grammar?

1. Full Blocking (Classic SCE/NDEB)
2. Variable “Activity”
3. Competing Grammars
Full Blocking

- SCE/NDEB are about the phonology not having access to “inactive” material (see Embick 2013)
Implementations in Grammar

Full Blocking

- SCE/NDEB are about the phonology not having access to “inactive” material (see Embick 2013)

Full Blocking (complete inactivity):

\[XY \rightarrow Z \]
Full Blocking

- SCE/NDEB are about the phonology not having access to “inactive” material (see Embick 2013)

Full Blocking (complete inactivity):

\[XY \rightarrow Z \]
\[[[XY]_s]_\omega \]
\[[[X]_s Y]_\omega \]

Stem

Word

Surface Rate:

Stem Rate

Word Rate
Full Blocking

- SCE/NDEB are about the phonology not having access to “inactive” material (see Embick 2013)

Full Blocking (complete inactivity):

\[XY \rightarrow Z \]
\[[[XY]_s]_\omega \]
\[[[X]_s Y]_\omega \]

Stem

<table>
<thead>
<tr>
<th>Z</th>
<th>XY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Word

- BLOCK

<table>
<thead>
<tr>
<th>Z</th>
<th>XY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surface Rate:

- Surface rates = rate at word (alone) and stem (alone).
- Prediction: No process can ever apply at both stem and word in same derivation
Full Blocking

- To the extent we do see Exponential Model patterns, this seems odd
Full Blocking

- To the extent we do see Exponential Model patterns, this seems odd

Korean /w/-deletion rate

<table>
<thead>
<tr>
<th>Age</th>
<th>$[[CwV_s]\omega]\phi$</th>
<th>$[[Co_s V_\omega]_\phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>40+</td>
<td>0.44</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Shwayder, Kwon & McLaughlin
Full Blocking

- To the extent we do see Exponential Model patterns, this seems odd

Korean /w/-deletion rate

<table>
<thead>
<tr>
<th>Age</th>
<th>$[[CwV]s]\omega\phi$</th>
<th>$[[Co]s V]\omega\phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>40+</td>
<td>0.44</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Full Block:

- s, ω, ϕ
- ω, ϕ

Shwayder, Kwon & McLaughlin

Cyclic Degrading

NWAV43 30 Oct 2014 20/25
Variable “Activity”

- Possibility: What makes phonology “active” or “accessible” is different for variable rules.
- Activity of a variable rule at one level makes environment for that rule “active” for the next level.
Variable “Activity”

- Possibility: What makes phonology “active” or “accessible” is different for variable rules.
- Activity of a variable rule at one level makes environment for that rule “active” for the next level.

Korean /w/-deletion rate

<table>
<thead>
<tr>
<th>Age</th>
<th>$[[[CwV]s]\omega]_\phi$</th>
<th>$[[[Co]s V]\omega]_\phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>40+</td>
<td>0.44</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Act.: $s \rightarrow \omega, \phi = 3 \quad \omega, \phi = 2$

Suggestion: Some sort of neural/psychological activation (see, e.g., Tamminga 2014)
Variable “Activity”

- Possibility: What makes phonology “active” or “accessible” is different for variable rules.
- Activity of a variable rule at one level makes environment for that rule “active” for the next level.

Korean /w/-deletion rate

<table>
<thead>
<tr>
<th>Age</th>
<th>([[[CwV]s]\omega]_\phi)</th>
<th>([[[Co]s V]\omega]_\phi)</th>
<th>Act.:</th>
<th>(s \rightarrow \omega, \phi)</th>
<th>(\omega, \phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40+</td>
<td>0.44</td>
<td>0.24</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>21-40</td>
<td>0.21</td>
<td>0.32</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Why? How?

Suggestion: Some sort of neural/psychological activation (see, e.g., Tamminga 2014)
Variable “Activity”

- Possibility: What makes phonology “active” or “accessible” is different for variable rules.
- Activity of a variable rule at one level makes environment for that rule “active” for the next level.

Korean /w/-deletion rate

<table>
<thead>
<tr>
<th>Age</th>
<th>([[\text{CwV}s]\omega]_\phi)</th>
<th>([[\text{Co}s \text{V}]\omega]_\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40+</td>
<td>0.44</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Act.: \(s \rightarrow \omega, \phi \) =3 \(\omega, \phi \) =2

<table>
<thead>
<tr>
<th>Age</th>
<th>0.21</th>
<th>0.32</th>
</tr>
</thead>
</table>

Act.: \(s \not\rightarrow \omega, \phi \) =1 \(\omega, \phi \) =2

- Why? How?
- Suggestion: Some sort of neural/psychological activation (see, e.g., Tamminga 2014)
Competing Grammar Approach

- Grammar which violates SCE/NDEB is chosen less often
Competing Grammar Approach

- Grammar which violates SCE/NDEB is chosen less often

Grammar Competition: \[XY \rightarrow Z \]
Competing Grammar Approach

- Grammar which violates SCE/NDEB is chosen less often

Grammar Competition: \(XY \rightarrow Z \)

- Stem: \(Z \) \(XY \)
- Word: \(!\text{NDEB!} \)

Rate: Between Stem and Stem+Word

Word Rate
Predictions

<table>
<thead>
<tr>
<th>Stem Level/ Monomorphemic</th>
<th>Word Level/ Polymorphemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[[XY]s \omega]\phi$</td>
<td>$[[X]s Y \omega]\phi$</td>
</tr>
<tr>
<td>Exponential</td>
<td>></td>
</tr>
<tr>
<td>s,ω,ϕ</td>
<td>ω,ϕ</td>
</tr>
<tr>
<td>Full Blocking</td>
<td>?</td>
</tr>
<tr>
<td>s,ϕ</td>
<td>ω,ϕ</td>
</tr>
<tr>
<td>Variable “Activity”</td>
<td>></td>
</tr>
<tr>
<td>$s \rightarrow \omega,\phi$</td>
<td>ω,ϕ</td>
</tr>
<tr>
<td>or</td>
<td><</td>
</tr>
<tr>
<td>$s \not\rightarrow \omega,\phi$</td>
<td>ω,ϕ</td>
</tr>
<tr>
<td>Competing Grammars</td>
<td>?</td>
</tr>
<tr>
<td>$s,\pm\omega,\phi$</td>
<td>ω,ϕ</td>
</tr>
</tbody>
</table>
Conclusions

- Two case studies which show opposite trend of Exponential Model
Conclusions

- Two case studies which show opposite trend of Exponential Model
 - Korean /w/-deletion
Conclusions

- Two case studies which show opposite trend of Exponential Model
 - Korean /w/-deletion
 - AAVE /t/-assibilation
Conclusions

- Two case studies which show opposite trend of Exponential Model
 - Korean /w/-deletion
 - AAVE /t/-assibilation
- Cyclic Degrading: Lower rate of application in SCE/NDEB environments
Conclusions

- Two case studies which show opposite trend of Exponential Model
 - Korean /w/-deletion
 - AAVE /t/-assibilation
- Cyclic Degrading: Lower rate of application in SCE/NDEB environments
- Implementations? Full Blocking, Variable “Activity”, Competing Grammars
Thank you!
References

