Syntactic Change in Theories of Change

Claire Bowern
claire.bowern@yale.edu

Yale University

July 10, 2013
How is linguistic change similar to biological evolution?
How is linguistic change similar to biological evolution?

How have different research paths in historical syntax and historical phonology shaped our theories of change?
How is linguistic change similar to biological evolution?

How have different research paths in historical syntax and historical phonology shaped our theories of change?

What are the properties of language change?
Outline

1. Language change and biological evolution
2. Language change within the discipline
3. Population and individual models
Language change and biological evolution
Language change within the discipline
Population and individual models

Similarities between evolutionary biology and linguistics

There are discrete heritable units:
DNA :: words, phonemes, grammar, etc
which are (more or less) independent
which undergo mutation
and selection
at different rates.

There are homologous features which descend from
common ancestors.

With understanding of the processes of change, we can
inference and reconstruct features of those ancestors.

Transmission is both vertical and horizontal, with the
former (usually) predominating.

Change can be modeled in populations or individuals.

Claire Bowern
Syntactic Change
There are discrete heritable units:
- DNA :: words, phonemes, grammar, etc
Similarities between evolutionary biology and linguistics

- There are discrete heritable units:
 - DNA :: words, phonemes, grammar, etc
 - ... which are (more or less) independent
There are discrete heritable units:

- DNA :: words, phonemes, grammar, etc
- ... which are (more or less) independent
- ... which undergo mutation
Similarities between evolutionary biology and linguistics

- There are discrete heritable units:
 - DNA :: words, phonemes, grammar, etc
 - which are (more or less) independent
 - which undergo mutation
 - and selection
There are discrete heritable units:

- DNA :: words, phonemes, grammar, etc
- ... which are (more or less) independent
- ... which undergo mutation
- ... and selection
- ... at different rates.
There are discrete heritable units:
- DNA :: words, phonemes, grammar, etc
 - which are (more or less) independent
 - which undergo mutation
 - and selection
 - at different rates.
- There are homologous features which descend from common ancestors.
Similarities between evolutionary biology and linguistics

- There are **discrete heritable units**:
 - DNA :: words, phonemes, grammar, etc
 - ... which are (more or less) **independent**
 - ... which undergo **mutation**
 - ... and **selection**
 - ... at different **rates**.

- There are **homologous features** which descend from **common ancestors**.

- With understanding of the processes of change, we can infer and **reconstruct** features of those ancestors.
There are discrete heritable units:
- DNA :: words, phonemes, grammar, etc
 ... which are (more or less) independent
 ... which undergo mutation
 ... and selection
 ... at different rates.
- There are homologous features which descend from common ancestors.
- With understanding of the processes of change, we can infer and reconstruct features of those ancestors.
- Transmission is both vertical and horizontal, with the former (usually) predominating.
There are discrete heritable units:
- DNA :: words, phonemes, grammar, etc
- ... which are (more or less) independent
- ... which undergo mutation
- ... and selection
- ... at different rates.

There are homologous features which descend from common ancestors.

With understanding of the processes of change, we can infer and reconstruct features of those ancestors.

Transmission is both vertical and horizontal, with the former (usually) predominating.

Change can be modeled in populations or individuals.
Differences

Languages change much faster than genes.

Rates of change

Degrees of Lamarckian evolution (acquired traits are regularly inherited in language; controversial in biology)

Details of transmission and acquisition processes

Language acquisition from both care-givers and peers

Language acquisition is gradual

Individuals can speak more than one language

Language use changes across the lifespan

No easy way to define an effective population size.
Differences

- **Rates** of change

Do these differences invalidate comparisons between evolutionary systems?
Differences

- **Rates of change**
 - Languages change much faster than genes

Do these differences invalidate comparisons between evolutionary systems?
Differences

- **Rates of change**
 - Languages change much faster than genes
- Degrees of **Lamarckian** evolution (acquired traits are regularly inherited in language; controversial in biology)

Do these differences invalidate comparisons between evolutionary systems?
Differences

- **Rates** of change
 - Languages change much faster than genes
- Degrees of **Lamarckian** evolution (acquired traits are regularly inherited in language; controversial in biology)
- Details of **transmission and acquisition processes**

Do these differences invalidate comparisons between evolutionary systems?
Differences

- **Rates** of change
 - Languages change much faster than genes
- Degrees of **Lamarckian** evolution (acquired traits are regularly inherited in language; controversial in biology)
- Details of transmission and acquisition processes
 - Language acquisition from both care-givers and peers

Do these differences invalidate comparisons between evolutionary systems?
Differences

- **Rates of change**
 - Languages change much faster than genes
- Degrees of *Lamarckian* evolution (acquired traits are regularly inherited in language; controversial in biology)
- Details of *transmission and acquisition processes*
 - language acquisition from both care-givers and peers
 - language acquisition is gradual

Do these differences invalidate comparisons between evolutionary systems?
Differences

- **Rates of change**
 - Languages change much faster than genes
- Degrees of Lamarckian evolution (acquired traits are regularly inherited in language; controversial in biology)
- Details of transmission and acquisition processes
 - Language acquisition from both care-givers and peers
 - Language acquisition is gradual
 - Individuals can speak more than one language

Do these differences invalidate comparisons between evolutionary systems?
Differences

- **Rates of change**
 - Languages change much faster than genes
- Degrees of Lamarckian evolution (acquired traits are regularly inherited in language; controversial in biology)
- Details of transmission and acquisition processes
 - Language acquisition from both care-givers and peers
 - Language acquisition is gradual
 - Individuals can speak more than one language
 - Language use changes across the lifespan

Do these differences invalidate comparisons between evolutionary systems?
Differences

- **Rates of change**
 - Languages change much faster than genes
- Degrees of Lamarckian evolution (acquired traits are regularly inherited in language; controversial in biology)
- Details of transmission and acquisition processes
 - language acquisition from both care-givers and peers
 - language acquisition is gradual
 - individuals can speak more than one language
 - language use changes across the lifespan
 - ...

Do these differences invalidate comparisons between evolutionary systems?
Differences

- **Rates of change**
 - Languages change much faster than genes
- Degrees of **Lamarckian** evolution (acquired traits are regularly inherited in language; controversial in biology)
- Details of **transmission and acquisition processes**
 - Language acquisition from both caregivers and peers
 - Language acquisition is gradual
 - Individuals can speak more than one language
 - Language use changes across the lifespan
 - ...

- No easy way to define an effective population size.

Do these differences invalidate comparisons between evolutionary systems?
Do these differences invalidate comparisons between evolutionary systems?

- **Rates?** No, trivial difference.
Do these differences invalidate comparisons between evolutionary systems?

- **Rates?** No, trivial difference.
- **Acquired heritable traits?** Unclear: affects the mathematics of inheritance but at the population level (late-)acquired traits are just like other traits: they contribute to a pool of variation in the community.
Do these differences invalidate comparisons between evolutionary systems?

- **Rates?** No, trivial difference.
- **Acquired heritable traits?** Unclear: affects the mathematics of inheritance but at the population level (late-)acquired traits are just like other traits: they contribute to a pool of variation in the community.
- **Details of acquisition and transmission?** Probably not, if the units of analysis are well defined; relevant for individual-level models (Language ≠ Genotype) but less relevant for population-based models, where we take samples of variation at different points in time.
Do these differences invalidate comparisons between evolutionary systems?

- **Rates?** No, trivial difference.
- **Acquired heritable traits?** Unclear: affects the mathematics of inheritance but at the population level (late-)acquired traits are just like other traits: they contribute to a pool of variation in the community.
- **Details of acquisition and transmission?** Probably not, if the units of analysis are well defined; relevant for individual-level models (Language ≠ Genotype) but less relevant for population-based models, where we take samples of variation at different points in time.
Do these differences invalidate comparisons between evolutionary systems?

- **Rates?** No, trivial difference.
- **Acquired heritable traits?** Unclear: affects the mathematics of inheritance but at the population level (late-)acquired traits are just like other traits: they contribute to a pool of variation in the community.
- **Details of acquisition and transmission?** Probably not, if the units of analysis are well defined; relevant for individual-level models (Language \neq Genotype) but less relevant for population-based models, where we take samples of variation at different points in time.

(These issues can be tested... ; cf. Hunley et al 2012, Bowern and Atkinson 2012, etc.)
Much controversy over these issues

Andersen (2006)

“There is no chance of explaining language change by the mechanisms of evolutionary theory.”

Issues include...

- Problems with the naïvity of application of biological concepts;
- Frustration at glib use of metaphors as theoretical tools;
- Problems with “needing” to find equivalents of all aspects of biological evolution in the linguistic model;
- Genuine non-trivial difficulties in finding explanations for change;
- Problems in conceptualizing change some models of language.
Much controversy over these issues

Andersen (2006)

“There is no chance of explaining language change by the mechanisms of evolutionary theory.”

Issues include...

- Problems with the naïvity of application of biological concepts;
- Frustration at glib use of metaphors as theoretical tools;
- Problems with “needing” to find equivalents of all aspects of biological evolution in the linguistic model;
- Genuine non-trivial difficulties in finding explanations for change;
- Problems in conceptualizing change in some models of language.
Much controversy over these issues

Andersen (2006)

- “There is no chance of explaining language change by the mechanisms of evolutionary theory.”

Issues include...

- Problems with the naïvity of application of biological concepts;
- Frustration at glib use of metaphors as theoretical tools;
- Problems with “needing” to find equivalents of all aspects of biological evolution in the linguistic model;
- Genuine non-trivial difficulties in finding explanations for change;
- Problems in conceptualizing change some models of language.
Much controversy over these issues

Andersen (2006)

“There is no chance of explaining language change by the mechanisms of evolutionary theory.”

Issues include...

- Problems with the naïvity of application of biological concepts;
- Frustration at glib use of metaphors as theoretical tools;
- Problems with “needing” to find equivalents of all aspects of biological evolution in the linguistic model;
- Genuine non-trivial difficulties in finding explanations for change;
- Problems in conceptualizing change some models of language.
Much controversy over these issues

<table>
<thead>
<tr>
<th>Andersen (2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“There is no chance of explaining language change by the mechanisms of evolutionary theory.”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issues include...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems with the naïvity of application of biological concepts;</td>
</tr>
<tr>
<td>Frustration at glib use of metaphors as theoretical tools;</td>
</tr>
<tr>
<td>Problems with “needing” to find equivalents of all aspects of biological evolution in the linguistic model;</td>
</tr>
<tr>
<td>Genuine non-trivial difficulties in finding explanations for change;</td>
</tr>
<tr>
<td>Problems in conceptualizing change some models of language.</td>
</tr>
</tbody>
</table>
Much controversy over these issues

Andersen (2006)

“There is no chance of explaining language change by the mechanisms of evolutionary theory.”

Issues include...

- Problems with the naïvity of application of biological concepts;
- Frustration at glib use of metaphors as theoretical tools;
- Problems with “needing” to find equivalents of all aspects of biological evolution in the linguistic model;
- Genuine non-trivial difficulties in finding explanations for change;
- Problems in conceptualizing change some models of language.
Outline

1. Language change and biological evolution
2. Language change within the discipline
3. Population and individual models
Within language, how generalizable should our theories of change be?
Does syntactic change work the same way as sound change, for example?

Not necessarily any reason to think so
Does syntactic change work the same way as sound change, for example?

Not necessarily any reason to think so

- (Differences in rates of change)
Does syntactic change work the same way as sound change, for example?

Not necessarily any reason to think so

- (Differences in rates of change)
- Susceptibility to borrowing
Does syntactic change work the same way as sound change, for example?

Not necessarily any reason to think so

- (Differences in rates of change)
- Susceptibility to borrowing
- Level of salience for speakers
Does syntactic change work the same way as sound change, for example?

Not necessarily any reason to think so

- Differences in rates of change
- Susceptibility to borrowing
- Level of salience for speakers
- Participation in marking of social categories
Does syntactic change work the same way as sound change, for example?

Not necessarily any reason to think so

- Differences in rates of change
- Susceptibility to borrowing
- Level of salience for speakers
- Participation in marking of social categories
- Degree to which system is constrained by articulators
Does syntactic change work the same way as sound change, for example?

Not necessarily any reason to think so

- Differences in rates of change
- Susceptibility to borrowing
- Level of salience for speakers
- Participation in marking of social categories
- Degree to which system is constrained by articulators
- Complexity
On the other hand...

- Phonological knowledge is grammatical knowledge, as is syntax
On the other hand...

- Phonological knowledge is grammatical knowledge, as is syntax.
- Phonological and syntactic knowledge are acquired at the same time, from the same dataset.
On the other hand...

- Phonological knowledge is grammatical knowledge, as is syntax
- Phonological and syntactic knowledge are acquired at the same time, from the same dataset.
On the other hand...

- Phonological knowledge is grammatical knowledge, as is syntax.
- Phonological and syntactic knowledge are acquired at the same time, from the same dataset.

Problems conceptualizing change?
- equivalence of correspondence sets
- continuity of grammars
Syntactic change ≠ Phonological change?

Grammatical discontinuity

- Lightfoot (1979:388) “grammars are discontinuous—created afresh by each language learner, who is influenced only by the data to be mastered and the theory of grammar restricting available hypotheses; he is not influenced by the form of his parents’ grammar(s)”
Syntactic change ≠ Phonological change?

Grammatical discontinuity

- Phonological acquisition is similarly discontinuous, yet that has not stopped us studying change.
Syntactic change ≠ Phonological change?

Grammatical discontinuity

- Phonological acquisition is similarly discontinuous, yet that has not stopped us studying change.
- Different learners come to very similar conclusions about the features of their languages.
Syntactic change ≠ Phonological change?

Grammatical discontinuity

- Phonological acquisition is similarly discontinuous, yet that has not stopped us studying change.
- Different learners come to very similar conclusions about the features of their languages.
- If this weren’t the case, we wouldn’t be able to use introspective data for synchronic syntax (that is, using individuals as representative for a language).
Agent/individual models vs population models

Syntactic change

- Focus on I-Language leads to natural focus on agent models (that is, what individuals do; cf. Hale (1998))
Agent/individual models vs population models

Syntactic change

- Focus on I-Language leads to natural focus on agent models (that is, what individuals do; cf. Hale (1998))
- But most descriptive work on syntax, as well as work on diachronic syntax, implies population models.
Syntactic change

- Focus on I-Language leads to natural focus on agent models (that is, what individuals do; cf. Hale (1998))
- But most descriptive work on syntax, as well as work on diachronic syntax, implies population models.
- It’s easy to run into paradoxes—e.g. the paradox of “change” in an individual grammar—unless we are clear about the object of study.
Outline

1. Language change and biological evolution
2. Language change within the discipline
3. Population and individual models
Assumptions

Building on Lass’ (1997) “modest ontological proposal” and others

- A language is a set of grammars spoken by a population of individuals (cf. Chomsky 1986:27–31; Kroch 1989, etc).
Assumptions

Building on Lass’ (1997) “modest ontological proposal” and others

- A language is a set of grammars spoken by a population of individuals (cf. Chomsky 1986:27–31; Kroch 1989, etc).

- Within each population, there is variation, because not all grammars are identical (and can’t be, because as Lightfoot pointed out, grammars are created anew for each speaker, and speakers are not exposed to the same data).
Assumptions

Building on Lass’ (1997) “modest ontological proposal” and others

- A language is a set of grammars spoken by a population of individuals (cf. Chomsky 1986:27–31; Kroch 1989, etc).
- Within each population, there is variation, because not all grammars are identical (and can’t be, because as Lightfoot pointed out, grammars are created anew for each speaker, and speakers are not exposed to the same data).
- Individuals extrapolate from their experience to make judgments about the properties of their language.
Assumptions

Building on Lass’ (1997) “modest ontological proposal” and others

- A language is a set of grammars spoken by a population of individuals (cf. Chomsky 1986:27–31; Kroch 1989, etc).
- Within each population, there is variation, because not all grammars are identical (and can’t be, because as Lightfoot pointed out, grammars are created anew for each speaker, and speakers are not exposed to the same data).
- Individuals extrapolate from their experience to make judgments about the properties of their language.
- Languages change when individuals converge on grammars with the new properties.
Explanations for mechanisms of change are then concentrated on

1. Variant selection (how speakers acquire variants from the pool that they are exposed to; why they preferentially acquire some variants but not others, etc, how variation is structured socially, etc)
2. How speakers create new generalizations about the properties of their languages.

Explanations under this view are not the things like reanalysis, extension, borrowing, etc; they are descriptions of patterns and follow from how speakers implement (1) and (2).
Explanations for mechanisms of change are then concentrated on

1. **variant selection** (how speakers acquire variants from the pool that they are exposed to; why they preferentially acquire some variants but not others, etc, how variation is structured socially, etc)
Explanations for mechanisms of change are then concentrated on

1. **variant selection** (how speakers acquire variants from the pool that they are exposed to; why they preferentially acquire some variants but not others, etc, how variation is structured socially, etc)

2. how speakers create **new generalizations** about the properties of their languages.
Explanations for mechanisms of change are then concentrated on

1. **variant selection** (how speakers acquire variants from the pool that they are exposed to; why they preferentially acquire some variants but not others, etc, how variation is structured socially, etc)

2. how speakers create **new generalizations** about the properties of their languages.
Explanations for mechanisms of change are then concentrated on

1. **variant selection** (how speakers acquire variants from the pool that they are exposed to; why they preferentially acquire some variants but not others, etc, how variation is structured socially, etc)

2. how speakers create **new generalizations** about the properties of their languages.

Explanations under this view are **not** the things like reanalysis, extension, borrowing, etc; they are descriptions of patterns and follow from how speakers implement (1) and (2).
Variation

Neutral variation is stochastic, but not all variation is neutral.

Learners are biased towards certain conclusions about the properties of their language.
Neutral variation is stochastic, but not all variation is neutral.

Learners are biased towards certain conclusions about the properties of their language.

- Internal filters
Neutral variation is stochastic, but not all variation is neutral.

Learners are biased towards certain conclusions about the properties of their language.

- **Internal filters**
 - e.g. perceptual, production filters in phonetics/phonology [implicated in tonogenesis, assimilation, etc]
Neutral variation is stochastic, but not all variation is neutral.

Learners are biased towards certain conclusions about the properties of their language.

- **Internal filters**
 - e.g. perceptual, production filters in phonetics/phonology [implicated in tonogenesis, assimilation, etc]
 - behavioral and cognitive filters (cf. Deo (forthcoming), Schaden (2009) in semantic change)
Neutral variation is stochastic, but not all variation is neutral.

Learners are biased towards certain conclusions about the properties of their language.

- Internal filters
 - e.g. perceptual, production filters in phonetics/phonology [implicated in tonogenesis, assimilation, etc]
 - behavioral and cognitive filters (cf. Deo (forthcoming), Schaden (2009) in semantic change)
 - filters that exert biases on agents because of how our mouths and brains work.
Neutral variation is stochastic, but not all variation is neutral. Learners are biased towards certain conclusions about the properties of their language.

- **Internal filters**
 - e.g. perceptual, production filters in phonetics/phonology [implicated in tonogenesis, assimilation, etc]
 - behavioral and cognitive filters (cf. Deo (forthcoming), Schaden (2009) in semantic change)
 → filters that exert biases on agents because of how our mouths and brains work.

- **External filters**
Neutral variation is stochastic, but not all variation is neutral. Learners are biased towards certain conclusions about the properties of their language.

- Internal filters
 - e.g. perceptual, production filters in phonetics/phonology [implicated in tonogenesis, assimilation, etc]
 - behavioral and cognitive filters (cf. Deo (forthcoming), Schaden (2009) in semantic change)
 → filters that exert biases on agents because of how our mouths and brains work.

- External filters
 - Social factors (e.g. social signaling)
Neutral variation is stochastic, but not all variation is neutral. Learners are biased towards certain conclusions about the properties of their language.

- Internal filters
 - e.g. perceptual, production filters in phonetics/phonology [implicated in tonogenesis, assimilation, etc]
 - behavioral and cognitive filters (cf. Deo (forthcoming), Schaden (2009) in semantic change)
 → filters that exert biases on agents because of how our mouths and brains work.

- External filters
 - Social factors (e.g. social signaling)
 - Frequency (e.g. locally skewed variation, contact, etc.)
Neutral variation is stochastic, but not all variation is neutral.

Learners are biased towards certain conclusions about the properties of their language.

- **Internal filters**
 - e.g. perceptual, production filters in phonetics/phonology [implicated in tonogenesis, assimilation, etc]
 - behavioral and cognitive filters (cf. Deo (forthcoming), Schaden (2009) in semantic change)
 → filters that exert biases on agents because of how our mouths and brains work.

- **External filters**
 - Social factors (e.g. social signaling)
 - Frequency (e.g. locally skewed variation, contact, etc.)
 → filters that exert biases on agents because of the social meaning language has.
Conclusions

- Provides a way to think about the roles of individuals in populations
Conclusions

- Provides a way to think about the roles of individuals in populations
- Provides a way to model the interplay of I-Language and E-Language phenomena
Conclusions

- Provides a way to think about the roles of individuals in populations
- Provides a way to model the interplay of I-Language and E-Language phenomena
- Provides an array of testable hypotheses
Conclusions

- Provides a way to think about the roles of individuals in populations
- Provides a way to model the interplay of I-Language and E-Language phenomena
- Provides an array of testable hypotheses
- Constrains the mechanisms of change but not the outcomes.
Thanks

- NSF grants BCS-0844550 and BCS-0902114
- Contributors to the Routledge Handbook of Historical Linguistics, especially my co-editor, Beth Evans