
AN INTRODUCTION TO TREE ADJOINING GRAMMARS I

Aravind K. Joshi

University of Pennsylvania

L ll'HRODUCTION

In this paper, we will give a brief introduction to Tree Adjoining Grammars
(TAG) and summarize some of the mathematical properties of TAG's. This pap!!r
is primarily based on Joshi, Levy, and Takahashi (1975): Joshi (1 985 [1983]);
Vijay-Shanker and Joshi (1985) ; Joshi, Vijay-Shanker and Weir (1986): and Vijay­
Shanker (1986). The linguistic significance of TAG's is discussed in Joshi (1985
[1983]), Krach and Joshi (1985, 1986).

The main characteristics of TAG's are as follows.
1. TAG is a tree generating system. It consists of a finite set of

elementary trees (elaborated up to preterminal (tenninal) symbols)
and a composition operation (adjoining) which builds trees out of
elementary trees and trees derived from elementary trees by
adjoining. The terminal strings of a TAG constitute a string
language. However, a TAG should be viewed primarily as a tree
generating system in contrast to a string generating system such as a
context-free grammar or some of its extensions.

2. TAG's 	factor recursion and dependencies in a novel way. The
elementary trees are the domain of dependencies which are statable
as co-accurence relations among the elements of the elementary trees
and also relations between elementary trees. Recursion enters via the
operation of adjoining. Adjoining preserves the dependencies.
Localization of dependencies in this manner has both mathematical
and linguistic significance. Such localization cannot be achieved
directly in a string generating system.

3. TAG's 	are more powerful than context-free grammars, but only
"mildly" so. This extra power of TAG is a direct corollary of the
way TAG factors recursion and dependencies.

The plan of the paper is as follows. In Section 2, we will describe the

lThis work was partial ly supponed hy ARO grant DAA29-84-9-0027, NSF grant MCS-8219 1 16­
CER, NSF grantS MCS-B2-072'J4, DCR-84-10413, MCS 83-05221. DARPA gram NOOO14-85­
K·OO18

I want to thank A. Krach, K. Vijay-Shanker, and D. Weir for their valuable comments.

formalism for TAG giving several examples. We will also briefly state some of
the mathematical properties. In Section 3, we will briefly describe
multicomponent adjoining (used by Krach in his paper in this volume) and some of

its propertieS.

2. TREE ADJOINING GRA.t.\1MAR FORMALISM

A tree adjoining grammar (TAG) G = (I,A) where [and A are finite sets of
elementary trees. The trees in I will be called the initial trees and the trees in A,
the auxiliary trees. A tree a. is an initial tree if it is of the form in (1):

That is, the root node of a. is labelled S and the frontier nodes are all non­
terminals. A tree !3 is an auxiliary tree if it is of the form in (2):

/
6
~

tenninals tenninals

That is, the root node of ~ is labelled X where X is a non-terminal and the
frontier nodes are all terminals except one which is labelled X, the same label as
that of the root. The node labelled X on the frontier will be called the foot node of
p. The internal nodes are non-terminals. The initial and the auxiliary trees are not
constrained in any manner other than as indicated above. The idea, however, is
that both the initial and auxiliary trees will be millima! in some sense. An initial
tree will correspond to a minimal sentential tree (Le., without recursing on any

non-terminal) and an auxiliary tree, with root and foot node labelled X, will
correspond to a minimal recursive structure that must be brought into the
derivation, if one recurses on X.

We will now define a composition operation called adjoining (or adjunction),
which composes an auxiliary tree ~ with a tree y. Let y be a tree containing a node
n bearing the label X and let ~ be an auxiliary tree whose root node is also labelled
X. (Note that ~ must have. by definition, a node (and only one such) labelled X on
the frontier.) Then the adjunction of ~ to y at node n will be the tree y' that results
when the following complex operation is carried out:

1) The sub-tree ofYdominated by n, call it t, is excised,
leaving a copy of n behind.

2) The auxiliary tree ~ is attached at n and its root node is
identified with n.

3) The sub-tree t is attached to the foot node of ~ and the root
node n of t is identified with the foot node of ~.

Figure 1 illustrates this operation.

y- s ~ = &Y'=S
X

node

n X&1:\ X __ 1\­
~+

~
t

!X\~1\ ~
~t

Figure 1

The intuition underlying the adjoining operation is a simple one but the
operation is distinct from other operations on trees that have been discussed in the
literature. In particular, we want to emphasize that adjoining is not a substitution

operation2. Let us now look at some derivations in the TAG, G=(I,A).

EJ>AMPLE2.1

~3 will be adjoined to 'YO at T as indicated in 'YO' (We will use '" to indicate the
node to which adjunction is made). The resulting tree 'Y1 is then

We can continue the derivation by adjoining, say, ~4' at S as indicated in ri' The

2Adjoining reduces to substitution only in the special case where an auxiliary uee adjoins to the
root node of another tree so that it "sitll on top of" the tree to which it is adjoined. In this special
case the adjoinin& operation has the same effect as would the substitution of a tree at irs root node
{or the foot node of the auxiliary tree.

resulting tree Y2 is then

Note that Yo is an initial tree, a sentential tree. The derived trees Y1 and Y2 are also
sentential trees. It can be shown that the string language of this TAG is a context­
free language.

Let us now defme two auxiliary notions, the tree set of a TAG grammar and
the string language of a TAG. Suppose G=CI.A) is a TAG with a finite set of initial
trees, a fmite set of auxiliary trees, and the adjoining operation, as above. Then we
defme the tree set of a TAG G. T(G), to be the set of all trees derived in G starting
from initial trees in r. We further define the string language (or language) of G to
be the set of all terminal strings of the trees in T(G). The relationship between
TAG's, context-free grammars, and the corresponding string languages can then be
summarized in the following theorems Joshi, Levy, and Takahashi (1975), Joshi
(1985 [1983]),

THEOREM 2.1: For every context-free grammar, G', there is a TAG, G,
which is both weakly and strongly equivalent to G'. In other words, L(G)=(G')
md T(G)~T(G').

THEOREM 2.2: There exists a non-empty set of TAG grammars G1 such
that for every G EO G I, L(G) is context-free but there is no CFG G' such that
T(G')~T(G).

THEOREM 2.3: There exists a non-empty set of TAG grammars 02 such

that for every Ge 02' L(G) is strictly context sensitive; that is, there is no CFG
grammar G' such that L(G)=L(G').

TheoreII»'l2.1 and 2.3 appear in Joshi, Levy, and Takahashi (1975). Theorem
2.2 is implicit in that paper, but we make it explicit here because of its linguistic
importance. Examples 2.2 and 2.3 below illustrate theorems 2.2 and 2.3
respectively.

EXAMPLE 2.2: Let G = (I.A) where

I:
<X l =

S

I
e

A: ~1 • ~2

A T

T 1\a
a S

1\
S b 1\

bT

The language generated by G is context-free; but there is no CFG that
is strongly equivalent to G. We can see this if we examine some
derivations in G. Thus. consider the following trees:

s·
I
e

11 =Yo with ~1
withP2
adjoined at S as adjoined at T as
as indicated in YO' indicated in ''h'

Clearly, LeG) is {an e bn I n ,;!J}. which is a context· free language. Thus,
there must exist a context-free grammar, 0', which is at least weakly equivalent to
O. It can be shown however that there is no context-free grammar G' which is
strongly equivalent to G; j.e., for which T(G) "" T(O'), This follows from the fact
that T(O) is non-recognizable; i.e., there is no finite state bottom-up tree

automaton that can recognize precisely T(O). Thus a TAG may generate a context·
free language, yet assign structural descriptions to the strings that cannot be
assigned by any comw-free grammar.

EXAMPLE 2.3: Let G = (I,A) where

I,

s

l
A, ~ I •

T

a
A

T 1\

/T'\

a S

/T'\b S c
b T c

The precise definition of L(G) is as follows:

L(G) = Ll = {we cn I n ~ 0, w is a string of a's and b's such that

(1) the number of a's = the number of b's = n, and

(2) for any initial substring of w, the number
ota's ~ the number of b's. }

L t is a strictly context-sensitive language (Le., a context­
sensitive language that is not context-free). This can be shown as
follows. Intersecting L with the fmite state language a· b· e c· results
in the language

~ = {an bnecn/n~o} =L1 na· b· ec·

~ is well-known strictly context-sensitive language. The result of
intersecting a context-free language with a finite state language is
always a context-free language; hence, Ll is not a context-free
language. It is thus a strictly context-sensitive language. Example 2.3
thus illustrates Theorem 2.3.

We have seen that TAG's have more power than CFG's, but the extra power
is quite limited. Joshi (1985 [1983]) characterizes this limitation in detail, but the
above example gives some indication of its nature. The language Ll has an equal

number of a's, b's and c's; however, the a's and b's are mixed in a certain way,
The language ~ is similar to LI• except that a's come before all b's. TAG's as
defined so far are not powerful enough to generate Lz. This can be seen as
follows. Clearly, for any TAG for L,., each initial tree must contain equal number
of a's, b's and c's (including zero), and each auxiliary tree must also contain equal
number of a's, b's and c's. Further in each case the a's must precede the b's. Then
it is easy to see from the grammar of Example 2.3, that it will not be possible to
avoid getting the a's and b's mixed. However, ~ can be generated by a TAG with
local constraints (see Section 2.3) The so-called copy language

L= {wew/we {a,b}·}

also cannot be generated by a simple TAG but can be by a TAG with local
constraints. Furthermore, it can be shown that TAG's even with local constraints,
cannot generate all context-sensitive languages (Joshi (1985 [1983])).

Although TAG's are more powerful than CFG's, this extra power is highly
constrained and apparently it is just the right kind for characterizing certain
structural descriptions. TAG's share almost all the formal properties of CFG's
(more precisely, the corresponding classes of languages). The string languages of
TAG's can also be pmed in polynomial time, in particular in time Kn6, or less,
where K is a constant that depends on the grammar and n is the length of the string
(see Vijay-Shankcr and Joshi 1985 for further details),

2.1 	 TAG's WITH "LmKS"

Elementary trees (initial and auxiliary trees) are the appropriate domains for
characterizing certain dependencies (e.g., subcategorization dependencies and
filler-gap dependencies). The characterization of certain of these dependencies can
be achieved by introducing a special relationship between certain specified pairs of
nodes of an elementary tree. This relationship, which we shall call "linking," is
pictorially exhibited by an arc (a dotted line) from one node to the other. For
example, in the tree in (3) below, the nodes labelled Band Q are linked.

(3)
A

A
B·•., C

1\ '\ 1\
c d 1F G

.._.J 1\
/' f It /Q

C......----/ \

Linking can be defined for any two nodes in an elementary tree. However. in the
linguistic context we will require the following conditions to hold for a link in an
elementary tree:

If a node 01 is linked to a node 02 then

1. ~ c-commands n1' (i.e•• 02 does not dominate 01 and there
exists a node m which immediately dominates 02 and also
dominates nt).

2. n1 and n2 have the same label.

3.01 dominates a null string (or a terminal symbol in the non-
linguistic formal grammar examples).

The notion of linking thus defined is related to the one discussed in Peters and
Ritchie (1982). A TAG with /inks is a TAG in which some of the elementary trees
may have links as defined above. Henceforth, we may refer to a TAG with links
just as a TAG.

Links arc dermed on the elementary trees. However, the important point is
that the composition operation of adjoining will preserve the links. Links defined
on the elementary trees may become stretched as the derivation proceeds.
Example 2.4 will illustrate this point.

EXAMPLE 2.4: Let G=(I, A) where

A; ~ =

A
a', T

T

1\
a... s

Let
/1\

... S :'b<--....... ,V';b
'(0 = 0; s*

I
e

Adjoining ~I at S as indicated in ro, we have

y:/>..X·"

'·.. ·:::i~~.. ··· ~~1

w"'<aeb

The terminal string corresponding to [I is a e b, where the dependency is indicated
by the solid line.

Adjoinmg)32 again at S as indicated in [I' we have the following tree

1 2/:....."A"_..,....\
a·...\ T* \

",)(\ !
·....".S:.~~~._.,,··· ~

I\. ~l
a··•. T

Y.\
S ~.••-b

I
e

W "" a a ebb (nested dependencies)

Adjoining 132 at T as indicated in ''fl. we have

w .. a a a ebb b (croSNerial and nested dependencies)

In this example]31 and ~ each have one link. and the composed trees
"12 and 13 show how linking is preserved under adjunction. In "(3' for
example. onc of the links is stretched. It should be clear now how, in
general, the links will be preserved during the derivation and we shall
not give a formal treatment afthis property here.

We should also note with regard to the above example that the dependencies
in 12 between the a's and b's, as reflected in the terminal string, are properly
nested, while in 13 two of them are properly nested, and the third one is cross­
serial. The: cfoss-serial one is crossed with respect to the nested ones (not, of
course, a unique description), The two elementary trees ~1 and ~ have only one
link each so that the nestings and crossings in "h and 13 are the result of adjoining,
There are two points of importance here:

L TAG's with links can characterize certain cross-serial dependencies
(as well as, of coune, nested dependencies. which is not a surprise),

2. The cross-serial dependencies (as well as the nested dependencies)
arise as a result of adjoining. But this is not the only way they can
arise. It is possible to have two links in an elementary tree which
represent cross-serial or nested dependencies, which will then be
preserved during the derivation. Thus cross-serial dependencies, as
well as nested dependencies. will arise in two distinct ways - either
by adjoining or by being present in some elementary trees to start
with.

It is clear from our example that the string language of TAG with links is not
affected by the links; that is, links do not affect weak. generative capacity.
However, they make certain aspects of the structural description explicit which are
implicit in a TAG without links. In principle, any two nodes in an elementary tree
are 'related' simply by virtue of the fact that they belong to the same cree, and this
relationship will be synunetrical. 'Linking' as defined here is an asymmetrical
relation introduced primarily to characterize filler-gap dependencies.

2.2 TAG's WIlli LOCAL CONSTRAINTS ON ADJOINING

The adjoining operation as defined in Section 2.1 is "context-free". An
auxiliary cree pwith the form in (4)

~ = X
(4)

6
is adjoinable to a tree t at a node n if the label of node n is X, independently of the
(tree) context around n. In this sense, adjoining is context-free. In Joshi (1985
[1983]), local constraints on adjoining similar to those investigated by Joshi and
Levy (1978) were used. These are a generalization of the context-sensitive
constraints studied by Peters and Ritchie (1969), It was soon recognized, however,
that the full power of these constraints was never exploited, either in the linguistic

context or in the "formal language" cases. The so~called proper analysis contexts
and domination contexts (as defined in Joshi and Levy (1978» that were actually
used in Joshi.(1985 [1983]) always turned out to be such that the context elements
were within a single elementary tree; that is, they were far more localized than the
definitions required. Based on this observation and a suggestion in Joshi, Levy
and Takahashi (1975), we will describe a new way of introducing local constraints,

This approach not only captures the i~sight stated above. but it is more in the spirit
of the TAG formalism. with its emphasis on locality. (For further details, see
Vijay·Shanker and Joshi 1985) The earlier approach. was less so, although it was
certainly adequate for the investigation in Joshi (1985 [1983]). A precise
characterization of the original approach remains an open problem.

Let G = (I,A) be a TAG with local constraints if for eacll elementary tree t E

I v A, and for each node, n, in t, we specify the set j3 of auxiliary trees that can be
adjoined at the node n. Note that if there is no constraint then any auxiliary tree
whose root has the same label as the label of the node n is adjoinable at n. Thus, in

general, j3 is a subset of the set of all auxiliary trees structurally adjoinable at n.
We adopt the following conventions for the statement of local constraints:
1. Since, by definition, no auxiliary trees are adjoinable to a node

labelled by a terminal symbol. no constraint has to be stated. for a
node labelled by a terminal.

2. If there is no constraint, i.e" all auxiliary trees with the appropriate
root label are adjoinable at a node n. then we will not state this
explicitly, as this is the case we nave discussed in Section 2.t.

3. If no auxiliary trees are adjoinable at a node n, then we will write the
constraint as ($), where $ denotes the null set.

4, We will also allow for the possibility that for a given node at least
one adjoining is obligatory from the set of all pos5ible auxiliary trees
adjoinable at that node. of course.

Hence, a TAG with local constraints is defined as follows. G = (1. A) is a TAG
with local constraints if for each node n, in each tree t, one (and only one) of the
following constraints is specified:

1. Selective Adjoining (SA): Only a specified subset of the set of all

auxiliary trees are adjoinable at n. SA is written as d~\ where if is a
subset of the set of all auxiliary trees structurally adjoinable at n.

If j3 equals the set of all auxiliary trees adjoinable at n, then we do

not explicitly state this at the node n.

2. Null Adjoining (NA): No auxiliary tree is adjoinable at the node
N. NA will be written as ($).

3. Obliga~ory Adjoining (OA): At least one (out of all the auxiliary

trees adjoinable at n) must be adjoined at n. OA is written as O(il)
where "if is a subset of the set of all auxiliary trees adjoinable at n.

EXAMPLE 2.5: Let G = (I,A) be a TAG with local constraints
where

j,

P2 = s CP, l

A
Col S b

In at no auxiliary trees can be adjoined to the root node. Only PI is
adjoinable to the left S node at depth 1 and only ~ is adjoinable to the
right S node at depth 1. In PI only P1 is adjoinable at the root node
and no auxiliary trees are adjoinable at the foot node. Similarly for P2.

We must now modify our definition of adjoining to take care of the local
constraints. Given a tree 1 with a node n labelled A and given an auxiliary tree P
with the root node labelled A. we shall modify our definition of adjoining as

follows: P is adjoinable to 1 at node n if P e 13, where 13 is the constraint
associated with node n in 1. The result of adjoining Pto y will be as defined in

Section 2.1, except that the constraint p associated with n will be replaced by il:
the constraint associated with the root node of Pand by W: the constraint associated

with the foot node of B. Thus, given

the resultant tree 1 is

We also adopt the convention that any derived tree with a node which has an OA
constraint associated with it will not be included in the tree set associated with a
TAG, G. The string language L of G is then defined as the set of all terminal
strings of all trees derived in G (starting with initial trees) which have no OA
constraints left in them.

EXAMPLE 2.6: Let G = (I,A) be a TAG with local constraints

where

I:

A: ~. A(~)

a S

/f\
S (~)

There are no constraints in al' In pno auxiliary trees are adjoinable at
the root node and the foot node and for the center S node there are no
constraints.

Starting with Ct.! and adjoining pto al at the root node we obtain

Adjoining ~ to the center S node (the only node at which adjunction
can occur) we have

y' ~ A($:...,.
a"''''~''($)
l /\ '\

! a S'" \

! I1\. ~
\. b lei ~

""'~f~'/
~$)

I
e

It is easy to see that G generates the string language

EXAMPLE 2.7: Let 0' be a TAG similar to G in Example 2.6,
except that in 0' there are no constraints in~. G' generates

L", { ween I n.<::. 0, # a's in w '" # h's in w '" n,
and for any proper initial string u
of w, # a's in u.<:. # b's in u.}

This is the same language as in Example 2.3. This language is closely
related to the context-sensitive language discussed in Higginbotham
(1984). which can also be shown to be a TAG language.

EXMIPLE 2.8: Let G = (I,A) be a TAG with local constraints

where

~, = S ($)
A:

1\
a S

1\
S($) b

G generates the language

L", {wew!w E {a,b}"'}

EXAMPLE 2.9: Let G' be a TAG which is the same as G in
Example 2.8 but without any local constraints, The corresponding
language is

L={wew'!w,w' E {a,b}"',w::w'",2n,
a's in w = # a's in w' = # b's
in w=# b's in w' :sn}

This language is related to the Swiss-German example in Shieber
(1984).

EXAMPLE 2.10: Let G = (I,A) be a TAG with local constraints
where

G generates

Note that it can be shown that languages

and

0= {www/w e {a,b}"'}

cannot be generated by TAG's either with or without local constraints
(Joshi 1985 [1983]). Other languages such as L'={an2 In .?!oI} also
cannot be generated by TAG. This is because the strings of a TAG
grow linearly (for a detailed definition of this property. called the
"constant growth" property. see (Joshi (1985 [1983])). L' does not
satisfy this property.

For those familiar with Joshi (1985 [1983]). it is worth pointing out that the
SA constraint is only abbreviating i.e .• it does not affect the power of TAG's. The
NA and OA constraints, however. do affect the generative power of TAG's. Thus.

NA is needed to generate the languages in Examples 2,6, 2.7, and 2,8, OA is
needed to generate the language in Example 2.11 below;

EXNvlPLE 2.11: Let 0,::(1, A) be a TAG with local constraints

I:

A: ~2 =
S($)

1\
f S($)

G generates

oor more adjunctions of ~l generates

{an bn ecn ln2:,O}

The resulting trees each have one node still with an OA constraint.
which can be removed by adjoining ~, generating L.

In contrast to Joshi (1985 [1983]), where we stated for each auxiliary tree the
constraints on its adjoinability, we have here stated, for each node in each
elementary tree, the constraints on what auxiliary trees can be adjoined there. This
way of looking at local constraints has not only greatly simplified their statement,
but it has also allowed us to capture the insight that the 'locality' of the constraints
is statable in terms of the elementary trees themselves!

2.3 DERIVATION IN A TAG

Although we shall not describe formally the notion of derivation in a TAG,
we want to give the reader a more precise understanding of the concept than (s)he

might form from our illustrative examples. Adjoining is an operation defined on
an elementary tree, say"(, an auxiliary tree, say 13, and a node (Le., an address) in "(,
say n. Thus, every instance of adjunction is of the form "~ is adjoined to"(at n,"
and this adju;ction is always and only subject to the local constraints associated
with n. Although we very often speak of adjoining a tree to a node in a complex
structure, we do so only for convenience. Strictly speaking, adjoining is always at
a node in an elementary tree; and, therefore, it is more precise to talk about
adjoining at an address in an elementary tree. More than one auxiliary tree can be
adjoined to an elementary tree as long as each tree is adjoined at a distinct node.
After these auxiliary trees are adjoined to the elementary tree, only nodes in the
auxiliary trees are available [or further adjunction. This precision in the definition
of adjunction will be necessary when we define multicomponent adjunction in
section 3 below.

Now suppose that a is an initial tree and that 13 1, 132.... are auxiliary trees in a
TAG, O. Then the derivation structure corresponding to the generation of a
particular string in L(G) might look as follows:

(Xl is an initial tree. ~3' ~6 and 1310 are adjoined at nodes nl' n2' and nJ
respectively in Ill' where nl' n2' and 03 are all distinct nodes. PI and 133 are
adjoined to 133 at nodes ml and m2 respectively. Again, ml and m2 are distinct.
136 has no further adjunctions but 138 is adjoined to 1310 at node Pl' Note that the
derivation structure D implicitly characterizes the 'surface' tree that is generated
by it D also serves as the basis for defining a compositional semantic
interpretation (Vijay~Shanker 1986). In this way the derivation structure can be
seen as the basic formal object constructed in the course of sentence generation.
Associated with it will be two mappings, one to a surface syntactic tree and the
other to a semantic interpretation. as below:

surface tree <~--. derivation structure ••_-> semantic interpretation

2.4 SOME FORMAL PROPERTIES OF TAG's

Here we will state without proof some additional formal properties of TAG's.
1. Closure properties (Vijay-Shanker and Joshi 1985, Vijay-Shanker

1986) •

Tree Adjoining Languages (TAL) are used under

• union

• concatenation

• Kleene-star

• intersection with regular languages

• substitution

• homomorphism

• inverse homomorphism

It follows, therefore, that TAL form a Full AFL (Abstract Family of
Languages).

2. A pumping lemma, similar 	to that for context-free languages has
been established for TAL's. This lemma allows one to establish that
certain languages are not TAL's, for example, L1 and L2 in Example
2.10 (Vijay..shanker 1986).

3. The tabular parsing algorithm for context-free grammars (the so­
called CKY algorithm) can be extended in a natural fashion for
parsing TAL's, although the extension is not immediate because
adjoining is not a substitution operation. The time bound of the
parsing algorithm is proportional to n6, where n is the length of the
string to be parsed, as compared to the n3 bound that has been
established for context-free grammars (Vijay-Shanker and Joshi
1985).

4. 	Head Grammars (HG) were introdLlced by Pollard (1984). The
wrapping operation in HG is undefined for empty strings. If this
formal deficiency of HG is fixed then it can be shown that HG's are
equivalent to TAG's, in the weak sense. For details see (Vijay­
Shanker, Weir and Joshi 1986 and Joshi, Vijay-Shanker and Weir
1986).

5. Recently, Vijay-Shanker (1986) has established several siring and
tree automata related results about TAG's, including a variant of a
push-down automata that corresponds exactly to TAL's.

6. Vijay-Shanker, Weir and Joshi (this volume) have studied a variety
of relations between regular languages, linear context free languages,
context~free languages, linear tree adjoining languages, tree adjoining
languages, Dyck languages and a hierarchy of languages that are
appropriate generalizations of tree adjoining languages.

3. MULTICOMPONENT ADJOINING

In Joshi, Levy, Takahashi (1975) a version of the adjoining operation is
introduced under which, instead of a single auxiliary tree, a set of such trees is
adjoined to a given elementary tree. We define the adjunction of such a set as the
simultaneous adjunction of each of its component trees to a distinct node (address)
in an elementary tree. This adjunction can, of course, take place only if the local
constraints associated with each affected node of the elementary tree are satisfied.
Consider, for example, the following grammar G = (I,A):

at S

j'\B

1{\

a
A

A

-[~1
~1 is an auxiliary set consisting of the two trees ~ll and ~12· Here is a

sample derivation in G: ~
Yo=al= /

(n1)1 /(2)
a C b

I
c

11 =

11 above. it should be clear, is obtained by the adjunction of the components

~ll and ~12 of the auxiliary set ~1 to 'YO at the nodes nl and n2 respectively. In the
current example, the set ~1 has two component trees and ~2 has only one
component. If every auxiliary tree set of a TAG has only one component, we have
a TAG as def'med in Section 2. It can be shown that the number of components in
the auxiliary sets does not make any difference to the generative capacity Le., both
the weak and strong (with respect to tree sets generated and not, of course, with
respect to the derivation structures) generative capacities of multicomponent TAG
are the same as that for TAG where each auxiliary set has exactly one component.
On the other hand, derived auxiliary sets can be defined by adjoining an auxiliary
set, say ~1' to another auxiliary set, say Ilz. as follows. Each component of ~1 is
adjoined to one (and exactly one) component of ~ and all adjunctions are at
distinct nodes. Note that since it is not required that each component of ~1 adjoins
to the same component of j3z. one component may adjoin to one component and
another component to a different component of ill, Le., adjunctions of components
are not to the same component (elementary tree) of ~1' but they are all adjunctions
to the Sam6 auxiliary set. Thus, locality of adjoining can be defined in two ways:
(1) by requiring that all components of an auxiliary set adjoin to the same

elementary tree, (2) by requiring that all components of an auxiliary set adjoin to

the same aw:iliary set, not necessarily to the same elementary tree. The first type
of locality does not add to the generative capacity of the multicomponent TAG.
The second tYpe of locality does add to the weak generative capacity of the
multicomponent TAG; however, the resulting class of languages still falls within
the class of "mildly context sensitive" languages characterized in Joshi (1985
[1983]). With the second type of locality a multicomponent TAG can be defined
for the language L'={anbn In ~l} such that the a's all hang from one path from the
root node S and the b's all hang from another path from the root node. Such a
structural description cannot be provided by TAG where each auxiliary set has
exactly one component (see also Joshi (1985 [1983]). A study of these two types
of localities will be pursued in a later paper.

The notion of local constraints extends to TAG's with auxiliary sets in a
straightforward way. The null adjoining constraint (NA) carries over directly. For
the selective adjoining constraint (SA) and the obligatory adjoining (OA)
constraint, which specify one or more auxiliary trees to be adjoined at a node, we
need to modify the definition of the constraints because adjoining now takes place
at two distinct nodes (more than two nodes, if there are more than two components
in the auxiliary set). Let us say that if an auxiliary set ~l (with components P11
and 1l12) is adjoinable at nodes 01 and 01 in an elementary tree y, then]311 and]312

will be specified at the nodes 01 and 01 respectively. Since the two components
1111 and]312 are to be adjoined at distinct nodes, this specification guarantees that if
]31 is adjoined to 'Y as specified,]311 and PI2 will be adjoined at 01 and nz
simultaneously. The convention that the constraints on the auxiliary tree replace
those that appear at the nodes where adjoining tak~ place remains as before.

Linking can also be d.efmed for any two nodes belonging to the trees of the
same auxiliary set. When two nodes are in the same tree, linking reduces to the
case already discussed. When the two nodes are in different trees, the c·command
condition is required to hold between the linked nodes after the auxiliary set is

adjoined to the elementary tree. Thus, if there is a link-across two components Pi1

and ~12 of an auxiliary set PI with say, the link mother in Pll and the link daughter
in P12• then the required c·command condition for the link will have to be satisfied
by virtue of an appropriate dominance relation between the nodes of the tree into
which ~1 is adjoined. If ~1l is adjoined at node nl and ~lZ at node nz, for
example, then Dz must dominate Rl. Linking will be preserved under adjunction as
before.

Finally, it is possible to extend the notion of derivation structure to the case of
TAG with auxiliary sets, but we shall not describe that extension here. We simply
wisn to emphasize in this connection that multi-component adjunction is defined
over an auxililry set, an elementary tree, and a set of addresses in that elementary
tree. In other words, the distinct nodes to which the different components of an
auxiliary set adjoin always belong to the same elementary tree.

Multicomponent adjoining has been used by Kroch in his paper in this
volume. Kroch and Joshi (1986) have also used multicomponent adjoining in their
analysis of extraposition. In both cases the multicomponent adjoining has the
locality of the fmt kind.

REFERENCES
Joshi. A. 1985. "How much context-sensitivity is required to provide reasonable structural

descriptions: tree adjoining grammars." In D. Dowty, L. Karttunen, and A. Zwicky, eds.
NatlUtll LangUtlge Processing: PsycFwlinguistic. Compll.laliQMi And Theoretical
Perspectillfls. New YOlk: Cambridge Univenity P~s. (Originally presented in May 1983 at
the Workshop on Natural Language Paning at the Ohio StalCl Univenity.)

Joshi, A.. L. Levy, and M. Takahashi. 1975. "Tree adjunct grammars". JOIUtrQ/. of 1M CompUler
andSysumScuACu.lO:l pp.136-1153.

Joshi, A.K., Vijay.Shank.er. K.. and Weir. D. 1986. "Tree Adjoining grammars and head
grammar", Teclmical Report MS-CIS·86-01. Department of Computer and Information
Science, UmversityofPennsylvania, Philadelphia.PA.

Higginbotham, J. 1984 "Engllsh is not a context·free language". Linguistic In.qWry 15:2 pp,
225-235.

Kroc:h, A. and Joshi. AX. 1985. Linguistic significance of tlee adjoining grammars, to appear in
LillguisticswPhiJosophy,1986.

Kroch, A. and Joshi, A.K., 19815. ~Analyzing extraposition in a tree adjoining grammar". To
appear in SynttU GIld S,malllics (DiscoruinuoIU COlIStiluefl/S). {Eds. G. Huck and
A. Ojeda.),Academic Pms 1986.

Peters, S. and R. Ritchie. 1982. 'Phrase linking grammars". Unpublished paper University of
Texas.

Pollard, C.. 1984. "Generalized Phrase Structure Grammars, Head Grammars, and Natural
lanauagc', PW rJis#rtanon, Stanford. University.

Shieber, S. 1984. "Evidence against conrext·freeness of natural language". To appear in
u'nguirtics aJUI Philosophy 19815,

Vijay-Shanker. K. .md Joshi, A.K. 198$. "Some computationally significant properties of tree
adjoining granImIIB", in Proce~lIgs of Ihe 23rd AnnUtl/ Meeling of 1M Associatioll for
CempfllaJkJMJ Linguistics.

Vljay-Shanker, K., Weir, D .. and Joshi, A.K. 19815. "Tree Adjoining and ilead wrapping", in
Proceedings of tM /nlerMlioMl Conference en CempultltieMl Linguistics (COLING)
Bonn. AUIUlt 1986.

Vijay-5hanker. K. 1986. "A study of tree adjoining grammars", PhD. Dissertation Proposal.

http:Philadelphia.PA
http:Vijay.Shank.er

Department of Computer and Information Science, University oCPennsylvania, Philadelphia,
PA.

Weir, D., Vijay-Shanker, K., and Joshi, A.K. 1986. "The relationship of tree adjoining grammars
and head arammars", in Proceedings of Ihe 24th Annual Meeling of the Association for
CompUialional Linguistics, New Yorlt, June 1986.

