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L ll'HRODUCTION 

In this paper, we will give a brief introduction to Tree Adjoining Grammars 
(TAG) and summarize some of the mathematical properties of TAG's. This pap!!r 
is primarily based on Joshi, Levy, and Takahashi (1975): Joshi (1 985 [1983]); 
Vijay-Shanker and Joshi (1985) ; Joshi, Vijay-Shanker and Weir (1986): and Vijay­
Shanker (1986). The linguistic significance of TAG's is discussed in Joshi (1985 
[1983]), Krach and Joshi (1985, 1986). 

The main characteristics of TAG's are as follows. 
1. TAG is a tree generating system. It consists of a finite set of 

elementary trees (elaborated up to preterminal (tenninal) symbols) 
and a composition operation (adjoining) which builds trees out of 
elementary trees and trees derived from elementary trees by 
adjoining. The terminal strings of a TAG constitute a string 
language. However, a TAG should be viewed primarily as a tree 
generating system in contrast to a string generating system such as a 
context-free grammar or some of its extensions. 

2. TAG's 	factor recursion and dependencies in a novel way. The 
elementary trees are the domain of dependencies which are statable 
as co-accurence relations among the elements of the elementary trees 
and also relations between elementary trees. Recursion enters via the 
operation of adjoining. Adjoining preserves the dependencies. 
Localization of dependencies in this manner has both mathematical 
and linguistic significance. Such localization cannot be achieved 
directly in a string generating system. 

3. TAG's 	are more powerful than context-free grammars, but only 
"mildly" so. This extra power of TAG is a direct corollary of the 
way TAG factors recursion and dependencies. 

The plan of the paper is as follows. In Section 2, we will describe the 
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formalism for TAG giving several examples. We will also briefly state some of 
the mathematical properties. In Section 3, we will briefly describe 
multicomponent adjoining (used by Krach in his paper in this volume) and some of 

its propertieS. 

2. TREE ADJOINING GRA.t.\1MAR FORMALISM 

A tree adjoining grammar (TAG) G = (I,A) where [ and A are finite sets of 
elementary trees. The trees in I will be called the initial trees and the trees in A, 
the auxiliary trees. A tree a. is an initial tree if it is of the form in (1): 

That is, the root node of a. is labelled S and the frontier nodes are all non­
terminals. A tree !3 is an auxiliary tree if it is of the form in (2): 

/ 
6 
~ 

tenninals tenninals 

That is, the root node of ~ is labelled X where X is a non-terminal and the 
frontier nodes are all terminals except one which is labelled X, the same label as 
that of the root. The node labelled X on the frontier will be called the foot node of 
p. The internal nodes are non-terminals. The initial and the auxiliary trees are not 
constrained in any manner other than as indicated above. The idea, however, is 
that both the initial and auxiliary trees will be millima! in some sense. An initial 
tree will correspond to a minimal sentential tree (Le., without recursing on any 



non-terminal) and an auxiliary tree, with root and foot node labelled X, will 
correspond to a minimal recursive structure that must be brought into the 
derivation, if one recurses on X. 

We will now define a composition operation called adjoining (or adjunction), 
which composes an auxiliary tree ~ with a tree y. Let y be a tree containing a node 
n bearing the label X and let ~ be an auxiliary tree whose root node is also labelled 
X. (Note that ~ must have. by definition, a node (and only one such) labelled X on 
the frontier.) Then the adjunction of ~ to y at node n will be the tree y' that results 
when the following complex operation is carried out: 

1) The sub-tree ofYdominated by n, call it t, is excised, 
leaving a copy of n behind. 

2) The auxiliary tree ~ is attached at n and its root node is 
identified with n. 

3) The sub-tree t is attached to the foot node of ~ and the root 
node n of t is identified with the foot node of ~. 

Figure 1 illustrates this operation. 

y- s ~ = &Y'=S 
X 

node 

n X&1:\ X __ 1\­
~+ 

~ 
t 

!X\~1\ ~ 
~t 

Figure 1 

The intuition underlying the adjoining operation is a simple one but the 
operation is distinct from other operations on trees that have been discussed in the 
literature. In particular, we want to emphasize that adjoining is not a substitution 



operation2. Let us now look at some derivations in the TAG, G=(I,A). 

EJ>AMPLE2.1 

~3 will be adjoined to 'YO at T as indicated in 'YO' (We will use '" to indicate the 
node to which adjunction is made). The resulting tree 'Y1 is then 

We can continue the derivation by adjoining, say, ~4' at S as indicated in ri' The 

2Adjoining reduces to substitution only in the special case where an auxiliary uee adjoins to the 
root node of another tree so that it "sitll on top of" the tree to which it is adjoined. In this special 
case the adjoinin& operation has the same effect as would the substitution of a tree at irs root node 
{or the foot node of the auxiliary tree. 



resulting tree Y2 is then 

Note that Yo is an initial tree, a sentential tree. The derived trees Y1 and Y2 are also 
sentential trees. It can be shown that the string language of this TAG is a context­
free language. 

Let us now defme two auxiliary notions, the tree set of a TAG grammar and 
the string language of a TAG. Suppose G=CI.A) is a TAG with a finite set of initial 
trees, a fmite set of auxiliary trees, and the adjoining operation, as above. Then we 
defme the tree set of a TAG G. T(G), to be the set of all trees derived in G starting 
from initial trees in r. We further define the string language (or language) of G to 
be the set of all terminal strings of the trees in T(G). The relationship between 
TAG's, context-free grammars, and the corresponding string languages can then be 
summarized in the following theorems Joshi, Levy, and Takahashi (1975), Joshi 
(1985 [1983]), 

THEOREM 2.1: For every context-free grammar, G', there is a TAG, G, 
which is both weakly and strongly equivalent to G'. In other words, L(G)=(G') 
md T(G)~T(G'). 

THEOREM 2.2: There exists a non-empty set of TAG grammars G1 such 
that for every G EO G I, L(G) is context-free but there is no CFG G' such that 
T(G')~T(G). 

THEOREM 2.3: There exists a non-empty set of TAG grammars 02 such 



that for every Ge 02' L(G) is strictly context sensitive; that is, there is no CFG 
grammar G' such that L(G)=L(G'). 

TheoreII»'l2.1 and 2.3 appear in Joshi, Levy, and Takahashi (1975). Theorem 
2.2 is implicit in that paper, but we make it explicit here because of its linguistic 
importance. Examples 2.2 and 2.3 below illustrate theorems 2.2 and 2.3 
respectively. 

EXAMPLE 2.2: Let G = (I.A) where 

I: 
<X l = 

S 

I 
e 

A: ~1 • ~2 

A T 

T 1\a 
a S

1\ 
S b 1\ 

bT 

The language generated by G is context-free; but there is no CFG that 
is strongly equivalent to G. We can see this if we examine some 
derivations in G. Thus. consider the following trees: 



s· 
I 
e 

11 =Yo with ~1 
withP2 
adjoined at S as adjoined at T as 
as indicated in YO' indicated in ''h' 

Clearly, LeG) is {an e bn I n ,;!J}. which is a context· free language. Thus, 
there must exist a context-free grammar, 0', which is at least weakly equivalent to 
O. It can be shown however that there is no context-free grammar G' which is 
strongly equivalent to G; j.e., for which T(G) "" T(O'), This follows from the fact 
that T(O) is non-recognizable; i.e., there is no finite state bottom-up tree 

automaton that can recognize precisely T(O). Thus a TAG may generate a context· 
free language, yet assign structural descriptions to the strings that cannot be 
assigned by any comw-free grammar. 



EXAMPLE 2.3: Let G = (I,A) where 

I, 


s 

l 
A, ~ I • 


T 


a 
A 

T 1\ 

/T'\ 

a S 


/T'\b S c 
b T c 


The precise definition of L(G) is as follows: 


L(G) = Ll = {we cn I n ~ 0, w is a string of a's and b's such that 

(1) the number of a's = the number of b's = n, and 

(2) for any initial substring of w, the number 
ota's ~ the number of b's. } 

L t is a strictly context-sensitive language (Le., a context­
sensitive language that is not context-free). This can be shown as 
follows. Intersecting L with the fmite state language a· b· e c· results 
in the language 

~ = {an bnecn/n~o} =L1 na· b· ec· 

~ is well-known strictly context-sensitive language. The result of 
intersecting a context-free language with a finite state language is 
always a context-free language; hence, Ll is not a context-free 
language. It is thus a strictly context-sensitive language. Example 2.3 
thus illustrates Theorem 2.3. 

We have seen that TAG's have more power than CFG's, but the extra power 
is quite limited. Joshi (1985 [1983]) characterizes this limitation in detail, but the 
above example gives some indication of its nature. The language Ll has an equal 



number of a's, b's and c's; however, the a's and b's are mixed in a certain way, 
The language ~ is similar to LI• except that a's come before all b's. TAG's as 
defined so far are not powerful enough to generate Lz. This can be seen as 
follows. Clearly, for any TAG for L,., each initial tree must contain equal number 
of a's, b's and c's (including zero), and each auxiliary tree must also contain equal 
number of a's, b's and c's. Further in each case the a's must precede the b's. Then 
it is easy to see from the grammar of Example 2.3, that it will not be possible to 
avoid getting the a's and b's mixed. However, ~ can be generated by a TAG with 
local constraints (see Section 2.3) The so-called copy language 

L= {wew/we {a,b}·} 

also cannot be generated by a simple TAG but can be by a TAG with local 
constraints. Furthermore, it can be shown that TAG's even with local constraints, 
cannot generate all context-sensitive languages (Joshi (1985 [1983])). 

Although TAG's are more powerful than CFG's, this extra power is highly 
constrained and apparently it is just the right kind for characterizing certain 
structural descriptions. TAG's share almost all the formal properties of CFG's 
(more precisely, the corresponding classes of languages). The string languages of 
TAG's can also be pmed in polynomial time, in particular in time Kn6, or less, 
where K is a constant that depends on the grammar and n is the length of the string 
(see Vijay-Shankcr and Joshi 1985 for further details), 

2.1 	 TAG's WITH "LmKS" 

Elementary trees (initial and auxiliary trees) are the appropriate domains for 
characterizing certain dependencies (e.g., subcategorization dependencies and 
filler-gap dependencies). The characterization of certain of these dependencies can 
be achieved by introducing a special relationship between certain specified pairs of 
nodes of an elementary tree. This relationship, which we shall call "linking," is 
pictorially exhibited by an arc (a dotted line) from one node to the other. For 
example, in the tree in (3) below, the nodes labelled Band Q are linked. 



(3) 
A 

A 
B·•., C 

1\ '\ 1\ 
c d 1F G 

.._.J 1\ 
/' f It /Q 

C......----/ \ 

Linking can be defined for any two nodes in an elementary tree. However. in the 
linguistic context we will require the following conditions to hold for a link in an 
elementary tree: 

If a node 01 is linked to a node 02 then 

1. ~ c-commands n1' (i.e•• 02 does not dominate 01 and there 
exists a node m which immediately dominates 02 and also 
dominates nt). 

2. n1 and n2 have the same label. 

3.01 dominates a null string (or a terminal symbol in the non-
linguistic formal grammar examples). 

The notion of linking thus defined is related to the one discussed in Peters and 
Ritchie (1982). A TAG with /inks is a TAG in which some of the elementary trees 
may have links as defined above. Henceforth, we may refer to a TAG with links 
just as a TAG. 

Links arc dermed on the elementary trees. However, the important point is 
that the composition operation of adjoining will preserve the links. Links defined 
on the elementary trees may become stretched as the derivation proceeds. 
Example 2.4 will illustrate this point. 



EXAMPLE 2.4: Let G=(I, A) where 

A; ~ = 

A 
a', T 

T 

1\ 
a... s 

Let 
/1\ 

... S :'b<--....... ,V';b 
'(0 = 0; s* 

I 
e 

Adjoining ~I at S as indicated in ro, we have 

y:/>..X·" 

'·.. ·:::i~~.. ··· ~~1 

w"'<aeb 

The terminal string corresponding to [I is a e b, where the dependency is indicated 
by the solid line. 

Adjoinmg)32 again at S as indicated in [I' we have the following tree 



1 2/:....."A"_..,....\ 
a·...\ T* \ 

", )(\ ! 
·....".S:.~~~._.,,··· ~ 

I\. ~l 
a··•. T 

Y.\
S ~.••-b 

I 
e 

W "" a a ebb (nested dependencies) 

Adjoining 132 at T as indicated in ''fl. we have 

w .. a a a ebb b (croSNerial and nested dependencies) 

In this example ]31 and ~ each have one link. and the composed trees 
"12 and 13 show how linking is preserved under adjunction. In "(3' for 
example. onc of the links is stretched. It should be clear now how, in 
general, the links will be preserved during the derivation and we shall 
not give a formal treatment afthis property here. 



We should also note with regard to the above example that the dependencies 
in 12 between the a's and b's, as reflected in the terminal string, are properly 
nested, while in 13 two of them are properly nested, and the third one is cross­
serial. The: cfoss-serial one is crossed with respect to the nested ones (not, of 
course, a unique description), The two elementary trees ~1 and ~ have only one 
link each so that the nestings and crossings in "h and 13 are the result of adjoining, 
There are two points of importance here: 

L TAG's with links can characterize certain cross-serial dependencies 
(as well as, of coune, nested dependencies. which is not a surprise), 

2. The cross-serial dependencies (as well as the nested dependencies) 
arise as a result of adjoining. But this is not the only way they can 
arise. It is possible to have two links in an elementary tree which 
represent cross-serial or nested dependencies, which will then be 
preserved during the derivation. Thus cross-serial dependencies, as 
well as nested dependencies. will arise in two distinct ways - either 
by adjoining or by being present in some elementary trees to start 
with. 

It is clear from our example that the string language of TAG with links is not 
affected by the links; that is, links do not affect weak. generative capacity. 
However, they make certain aspects of the structural description explicit which are 
implicit in a TAG without links. In principle, any two nodes in an elementary tree 
are 'related' simply by virtue of the fact that they belong to the same cree, and this 
relationship will be synunetrical. 'Linking' as defined here is an asymmetrical 
relation introduced primarily to characterize filler-gap dependencies. 

2.2 TAG's WIlli LOCAL CONSTRAINTS ON ADJOINING 

The adjoining operation as defined in Section 2.1 is "context-free". An 
auxiliary cree pwith the form in (4) 

~ = X 
(4) 

6
is adjoinable to a tree t at a node n if the label of node n is X, independently of the 
(tree) context around n. In this sense, adjoining is context-free. In Joshi (1985 
[1983]), local constraints on adjoining similar to those investigated by Joshi and 
Levy (1978) were used. These are a generalization of the context-sensitive 
constraints studied by Peters and Ritchie (1969), It was soon recognized, however, 
that the full power of these constraints was never exploited, either in the linguistic 



context or in the "formal language" cases. The so~called proper analysis contexts 
and domination contexts (as defined in Joshi and Levy (1978» that were actually 
used in Joshi.(1985 [1983]) always turned out to be such that the context elements 
were within a single elementary tree; that is, they were far more localized than the 
definitions required. Based on this observation and a suggestion in Joshi, Levy 
and Takahashi (1975), we will describe a new way of introducing local constraints, 

This approach not only captures the i~sight stated above. but it is more in the spirit 
of the TAG formalism. with its emphasis on locality. (For further details, see 
Vijay·Shanker and Joshi 1985) The earlier approach. was less so, although it was 
certainly adequate for the investigation in Joshi (1985 [1983]). A precise 
characterization of the original approach remains an open problem. 

Let G = (I,A) be a TAG with local constraints if for eacll elementary tree t E 

I v A, and for each node, n, in t, we specify the set j3 of auxiliary trees that can be 
adjoined at the node n. Note that if there is no constraint then any auxiliary tree 
whose root has the same label as the label of the node n is adjoinable at n. Thus, in 

general, j3 is a subset of the set of all auxiliary trees structurally adjoinable at n. 
We adopt the following conventions for the statement of local constraints: 
1. Since, by definition, no auxiliary trees are adjoinable to a node 

labelled by a terminal symbol. no constraint has to be stated. for a 
node labelled by a terminal. 

2. If there is no constraint, i.e" all auxiliary trees with the appropriate 
root label are adjoinable at a node n. then we will not state this 
explicitly, as this is the case we nave discussed in Section 2.t. 

3. If no auxiliary trees are adjoinable at a node n, then we will write the 
constraint as ($), where $ denotes the null set. 

4, We will also allow for the possibility that for a given node at least 
one adjoining is obligatory from the set of all pos5ible auxiliary trees 
adjoinable at that node. of course. 

Hence, a TAG with local constraints is defined as follows. G = (1. A) is a TAG 
with local constraints if for each node n, in each tree t, one (and only one) of the 
following constraints is specified: 

1. Selective Adjoining (SA): Only a specified subset of the set of all 

auxiliary trees are adjoinable at n. SA is written as d~\ where if is a 
subset of the set of all auxiliary trees structurally adjoinable at n. 

If j3 equals the set of all auxiliary trees adjoinable at n, then we do 



not explicitly state this at the node n. 

2. Null Adjoining (NA): No auxiliary tree is adjoinable at the node 
N. NA will be written as ($). 

3. Obliga~ory Adjoining (OA): At least one (out of all the auxiliary 

trees adjoinable at n) must be adjoined at n. OA is written as O(il) 
where "if is a subset of the set of all auxiliary trees adjoinable at n. 

EXAMPLE 2.5: Let G = (I,A) be a TAG with local constraints 
where 

j, 

P2 = s CP, l 

A 
Col S b 

In at no auxiliary trees can be adjoined to the root node. Only PI is 
adjoinable to the left S node at depth 1 and only ~ is adjoinable to the 
right S node at depth 1. In PI only P1 is adjoinable at the root node 
and no auxiliary trees are adjoinable at the foot node. Similarly for P2. 

We must now modify our definition of adjoining to take care of the local 
constraints. Given a tree 1 with a node n labelled A and given an auxiliary tree P 
with the root node labelled A. we shall modify our definition of adjoining as 

follows: P is adjoinable to 1 at node n if P e 13, where 13 is the constraint 
associated with node n in 1. The result of adjoining Pto y will be as defined in 

Section 2.1, except that the constraint p associated with n will be replaced by il: 
the constraint associated with the root node of Pand by W: the constraint associated 



with the foot node of B. Thus, given 

the resultant tree 1 is 

We also adopt the convention that any derived tree with a node which has an OA 
constraint associated with it will not be included in the tree set associated with a 
TAG, G. The string language L of G is then defined as the set of all terminal 
strings of all trees derived in G (starting with initial trees) which have no OA 
constraints left in them. 



EXAMPLE 2.6: Let G = (I,A) be a TAG with local constraints 

where 

I: 

A: ~. A(~) 

a S 

/f\
S (~) 

There are no constraints in al' In pno auxiliary trees are adjoinable at 
the root node and the foot node and for the center S node there are no 
constraints. 

Starting with Ct.! and adjoining pto al at the root node we obtain 



Adjoining ~ to the center S node (the only node at which adjunction 
can occur) we have 

y' ~ A($:...,. 
a"''''~''($) 
l /\ '\ 

! a S'" \ 

! I1\. ~ 
\. b lei ~ 

""'~f~'/ 
~$) 

I 
e 

It is easy to see that G generates the string language 

EXAMPLE 2.7: Let 0' be a TAG similar to G in Example 2.6, 
except that in 0' there are no constraints in~. G' generates 

L", { ween I n.<::. 0, # a's in w '" # h's in w '" n, 
and for any proper initial string u 
of w, # a's in u.<:. # b's in u.} 

This is the same language as in Example 2.3. This language is closely 
related to the context-sensitive language discussed in Higginbotham 
(1984). which can also be shown to be a TAG language. 



EXMIPLE 2.8: Let G = (I,A) be a TAG with local constraints 

where 

~, = S ($)
A: 

1\ 
a S 

1\ 
S($) b 

G generates the language 

L", {wew!w E {a,b}"'} 

EXAMPLE 2.9: Let G' be a TAG which is the same as G in 
Example 2.8 but without any local constraints, The corresponding 
language is 

L={wew'!w,w' E {a,b}"',w::w'",2n, 
# a's in w = # a's in w' = # b's 
in w=# b's in w' :sn} 

This language is related to the Swiss-German example in Shieber 
(1984). 



EXAMPLE 2.10: Let G = (I,A) be a TAG with local constraints 
where 

G generates 

Note that it can be shown that languages 

and 

0= {www/w e {a,b}"'} 

cannot be generated by TAG's either with or without local constraints 
(Joshi 1985 [1983]). Other languages such as L'={an2 In .?!oI} also 
cannot be generated by TAG. This is because the strings of a TAG 
grow linearly (for a detailed definition of this property. called the 
"constant growth" property. see (Joshi (1985 [1983])). L' does not 
satisfy this property. 

For those familiar with Joshi (1985 [1983]). it is worth pointing out that the 
SA constraint is only abbreviating i.e .• it does not affect the power of TAG's. The 
NA and OA constraints, however. do affect the generative power of TAG's. Thus. 



NA is needed to generate the languages in Examples 2,6, 2.7, and 2,8, OA is 
needed to generate the language in Example 2.11 below; 

EXNvlPLE 2.11: Let 0,::(1, A) be a TAG with local constraints 

I: 

A: ~2 = 
S($) 

1\ 
f S($) 

G generates 

oor more adjunctions of ~l generates 

{an bn ecn ln2:,O} 

The resulting trees each have one node still with an OA constraint. 
which can be removed by adjoining ~, generating L. 

In contrast to Joshi (1985 [1983]), where we stated for each auxiliary tree the 
constraints on its adjoinability, we have here stated, for each node in each 
elementary tree, the constraints on what auxiliary trees can be adjoined there. This 
way of looking at local constraints has not only greatly simplified their statement, 
but it has also allowed us to capture the insight that the 'locality' of the constraints 
is statable in terms of the elementary trees themselves! 

2.3 DERIVATION IN A TAG 

Although we shall not describe formally the notion of derivation in a TAG, 
we want to give the reader a more precise understanding of the concept than (s)he 



might form from our illustrative examples. Adjoining is an operation defined on 
an elementary tree, say"(, an auxiliary tree, say 13, and a node (Le., an address) in "(, 
say n. Thus, every instance of adjunction is of the form "~ is adjoined to"( at n," 
and this adju;ction is always and only subject to the local constraints associated 
with n. Although we very often speak of adjoining a tree to a node in a complex 
structure, we do so only for convenience. Strictly speaking, adjoining is always at 
a node in an elementary tree; and, therefore, it is more precise to talk about 
adjoining at an address in an elementary tree. More than one auxiliary tree can be 
adjoined to an elementary tree as long as each tree is adjoined at a distinct node. 
After these auxiliary trees are adjoined to the elementary tree, only nodes in the 
auxiliary trees are available [or further adjunction. This precision in the definition 
of adjunction will be necessary when we define multicomponent adjunction in 
section 3 below. 

Now suppose that a is an initial tree and that 13 1, 132.... are auxiliary trees in a 
TAG, O. Then the derivation structure corresponding to the generation of a 
particular string in L(G) might look as follows: 

(Xl is an initial tree. ~3' ~6 and 1310 are adjoined at nodes nl' n2' and nJ 
respectively in Ill' where nl' n2' and 03 are all distinct nodes. PI and 133 are 
adjoined to 133 at nodes ml and m2 respectively. Again, ml and m2 are distinct. 
136 has no further adjunctions but 138 is adjoined to 1310 at node Pl' Note that the 
derivation structure D implicitly characterizes the 'surface' tree that is generated 
by it D also serves as the basis for defining a compositional semantic 
interpretation (Vijay~Shanker 1986). In this way the derivation structure can be 
seen as the basic formal object constructed in the course of sentence generation. 
Associated with it will be two mappings, one to a surface syntactic tree and the 
other to a semantic interpretation. as below: 

surface tree <~--. derivation structure ••_-> semantic interpretation 



2.4 SOME FORMAL PROPERTIES OF TAG's 

Here we will state without proof some additional formal properties of TAG's. 
1. Closure properties (Vijay-Shanker and Joshi 1985, Vijay-Shanker 

1986) • 

Tree Adjoining Languages (TAL) are used under 

• union 

• concatenation 

• Kleene-star 

• intersection with regular languages 

• substitution 

• homomorphism 

• inverse homomorphism 

It follows, therefore, that TAL form a Full AFL (Abstract Family of 
Languages). 

2. A pumping lemma, similar 	to that for context-free languages has 
been established for TAL's. This lemma allows one to establish that 
certain languages are not TAL's, for example, L1 and L2 in Example 
2.10 (Vijay..shanker 1986). 

3. The tabular parsing algorithm for context-free grammars (the so­
called CKY algorithm) can be extended in a natural fashion for 
parsing TAL's, although the extension is not immediate because 
adjoining is not a substitution operation. The time bound of the 
parsing algorithm is proportional to n6, where n is the length of the 
string to be parsed, as compared to the n3 bound that has been 
established for context-free grammars (Vijay-Shanker and Joshi 
1985). 

4. 	Head Grammars (HG) were introdLlced by Pollard (1984). The 
wrapping operation in HG is undefined for empty strings. If this 
formal deficiency of HG is fixed then it can be shown that HG's are 
equivalent to TAG's, in the weak sense. For details see (Vijay­
Shanker, Weir and Joshi 1986 and Joshi, Vijay-Shanker and Weir 
1986). 

5. Recently, Vijay-Shanker (1986) has established several siring and 
tree automata related results about TAG's, including a variant of a 
push-down automata that corresponds exactly to TAL's. 



6. Vijay-Shanker, Weir and Joshi (this volume) have studied a variety 
of relations between regular languages, linear context free languages, 
context~free languages, linear tree adjoining languages, tree adjoining 
languages, Dyck languages and a hierarchy of languages that are 
appropriate generalizations of tree adjoining languages. 

3. MULTICOMPONENT ADJOINING 

In Joshi, Levy, Takahashi (1975) a version of the adjoining operation is 
introduced under which, instead of a single auxiliary tree, a set of such trees is 
adjoined to a given elementary tree. We define the adjunction of such a set as the 
simultaneous adjunction of each of its component trees to a distinct node (address) 
in an elementary tree. This adjunction can, of course, take place only if the local 
constraints associated with each affected node of the elementary tree are satisfied. 
Consider, for example, the following grammar G = (I,A): 

at S 

j'\B 

1{\ 


a 
A 

A 

-[ ~1 
~1 is an auxiliary set consisting of the two trees ~ll and ~12· Here is a 

sample derivation in G: ~ 
Yo=al= / ............. 


(n1)1 /(2) 
a C b 

I 
c 



11 = 

11 above. it should be clear, is obtained by the adjunction of the components 

~ll and ~12 of the auxiliary set ~1 to 'YO at the nodes nl and n2 respectively. In the 
current example, the set ~1 has two component trees and ~2 has only one 
component. If every auxiliary tree set of a TAG has only one component, we have 
a TAG as def'med in Section 2. It can be shown that the number of components in 
the auxiliary sets does not make any difference to the generative capacity Le., both 
the weak and strong (with respect to tree sets generated and not, of course, with 
respect to the derivation structures) generative capacities of multicomponent TAG 
are the same as that for TAG where each auxiliary set has exactly one component. 
On the other hand, derived auxiliary sets can be defined by adjoining an auxiliary 
set, say ~1' to another auxiliary set, say Ilz. as follows. Each component of ~1 is 
adjoined to one (and exactly one) component of ~ and all adjunctions are at 
distinct nodes. Note that since it is not required that each component of ~1 adjoins 
to the same component of j3z. one component may adjoin to one component and 
another component to a different component of ill, Le., adjunctions of components 
are not to the same component (elementary tree) of ~1' but they are all adjunctions 
to the Sam6 auxiliary set. Thus, locality of adjoining can be defined in two ways: 
(1) by requiring that all components of an auxiliary set adjoin to the same 



elementary tree, (2) by requiring that all components of an auxiliary set adjoin to 

the same aw:iliary set, not necessarily to the same elementary tree. The first type 
of locality does not add to the generative capacity of the multicomponent TAG. 
The second tYpe of locality does add to the weak generative capacity of the 
multicomponent TAG; however, the resulting class of languages still falls within 
the class of "mildly context sensitive" languages characterized in Joshi (1985 
[1983]). With the second type of locality a multicomponent TAG can be defined 
for the language L'={anbn In ~l} such that the a's all hang from one path from the 
root node S and the b's all hang from another path from the root node. Such a 
structural description cannot be provided by TAG where each auxiliary set has 
exactly one component (see also Joshi (1985 [1983]). A study of these two types 
of localities will be pursued in a later paper. 

The notion of local constraints extends to TAG's with auxiliary sets in a 
straightforward way. The null adjoining constraint (NA) carries over directly. For 
the selective adjoining constraint (SA) and the obligatory adjoining (OA) 
constraint, which specify one or more auxiliary trees to be adjoined at a node, we 
need to modify the definition of the constraints because adjoining now takes place 
at two distinct nodes (more than two nodes, if there are more than two components 
in the auxiliary set). Let us say that if an auxiliary set ~l (with components P11 
and 1l12) is adjoinable at nodes 01 and 01 in an elementary tree y, then ]311 and ]312 

will be specified at the nodes 01 and 01 respectively. Since the two components 
1111 and ]312 are to be adjoined at distinct nodes, this specification guarantees that if 
]31 is adjoined to 'Y as specified, ]311 and PI2 will be adjoined at 01 and nz 
simultaneously. The convention that the constraints on the auxiliary tree replace 
those that appear at the nodes where adjoining tak~ place remains as before. 

Linking can also be d.efmed for any two nodes belonging to the trees of the 
same auxiliary set. When two nodes are in the same tree, linking reduces to the 
case already discussed. When the two nodes are in different trees, the c·command 
condition is required to hold between the linked nodes after the auxiliary set is 

adjoined to the elementary tree. Thus, if there is a link-across two components Pi1 

and ~12 of an auxiliary set PI with say, the link mother in Pll and the link daughter 
in P12• then the required c·command condition for the link will have to be satisfied 
by virtue of an appropriate dominance relation between the nodes of the tree into 
which ~1 is adjoined. If ~1l is adjoined at node nl and ~lZ at node nz, for 
example, then Dz must dominate Rl. Linking will be preserved under adjunction as 
before. 



Finally, it is possible to extend the notion of derivation structure to the case of 
TAG with auxiliary sets, but we shall not describe that extension here. We simply 
wisn to emphasize in this connection that multi-component adjunction is defined 
over an auxililry set, an elementary tree, and a set of addresses in that elementary 
tree. In other words, the distinct nodes to which the different components of an 
auxiliary set adjoin always belong to the same elementary tree. 

Multicomponent adjoining has been used by Kroch in his paper in this 
volume. Kroch and Joshi (1986) have also used multicomponent adjoining in their 
analysis of extraposition. In both cases the multicomponent adjoining has the 
locality of the fmt kind. 
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