Phonetic properties of the non-modal phonation in Shanghaiese register contrast

Jia Tian, Jianjing Kuang
Department of Linguistics, University of Pennsylvania, USA
jialian@sas.upenn.edu; kuangling@sas.upenn.edu

Introduction

- **Shanghaiese (SH)**
 - Spoken in Shanghai, one of the largest cities in China.
 - Northern Wu dialect.
 - Five tones (Xu and Tang 1988).

- **Tones in SH (Yip, 1980):**
 - Register: Tone (Shao numbers)
 - [+Upper] 53 34 13 22
 - [-Upper] 98 34 13 22
 - Undoubtedly there are differences with glottal stop.

- **Tonal registers:**
 - Related to pitch difference: Pitch range is up to register tone.
 - Two halves (Yip, 1980): [+Upper] vs. [-Upper].
 - Related to phonation difference: Non-modal phonation is associated with the [-Upper] register (Chao, 1928; Sherard, 1972; Qian, 1992, etc.).
 - Instrumental studies in the early 1990s found non-modal phonation:

 - More recent studies found the loss of non-modal phonation:

<table>
<thead>
<tr>
<th>Studies</th>
<th>Subjects</th>
<th>Measures</th>
<th>Findings</th>
</tr>
</thead>
</table>

- **Goals of the study:**
 - Examine the acoustic and articulatory properties of the non-modal phonation in Shanghaiese.
 - Make comparison with other languages.

Methods

- **Participants:** 107 native speakers of SH in total. Those born before 1980 (N = 52) still maintain phonation contrast.

- **Methods:**
 - Participants: 107 native speakers of SH in total. Those born before 1980 (N = 52) still maintain phonation contrast.
 - **Measures:**
 - Noise: Cepstral Peak Prominence (CPP), Formant and bandwidth: F1, B1: Electroglottograph: Contact Quotient (CQ), Peak Increase in Contact (PIC), Sped Quotient (SQ).
 - Within-speaker score normalization was done on each measure.
 - **Statistics analysis:**
 - Multiple linear mixed-effects models to determine which measures differ significantly between registers. (Based on measures taken from the third interval where the contrast is the strongest)
 - Fixed effects: Reduced model. Gender + Register. Full model. Gender x Register. Random intercepts: item, speaker. Random slopes: gender by item random slope when it improves the model.
 - Logistic regression models on acoustic and F0/G quotients measures separately to determine which of the measures are most useful. (Based on measures taken from the entire syllable)

Results

- **Selected individual measures:**
 - F0:
 - H1-H2*:
 - H1-A1*:
 - H1-A2*:
 - H1-A3*:
 - CPP:

- **Cross-linguistic comparison:**
 - Relative importance of acoustic measures

Conclusions

- The phonetic properties of the non-modal phonation in Shanghaiese:
 - Lower pitch.
 - Breather phonation:
 - Steeper spectral slope (higher H1-An values). However, H1-A2* and H2-A* makes very little contribution to the contrast.
 - Higher noise ratio and less periodicity (smaller CPP).
 - Expanded bandwidth (B1).
 - Smaller Contact Quotient.
 - CPP is the most important acoustic correlate of the non-modal phonation.
 - Variations of non-modal phonation are found in different dialects.

References and Acknowledgements

This study is supported by an Upenn faculty research fund to Prof. Jianjing Kuang.

Acoustics ’17 Boston, 25-29 June 2017