Revisiting the register contrast in Shanghai Chinese

Jia Tian, Jianjing Kuang

Department of Linguistics, University of Pennsylvania, USA
jiatian@sas.upenn.edu; kuangj@sas.upenn.edu

Introduction

- Shanghai Chinese (SC)
 - Spoken in Shanghai, one of the largest cities in China.
 - Northern Wu dialect.
 - Five tones (Xu and Tang 1988).
 - Tones in SC (Yip, 1980):
 Register Tones (Cho numbers)
 [+Upper] 53 34 5
 [-Upper] 23 12

- Tonal registers
 - Related to pitch difference: Pitch range is divided into two halves (Yip, 1980): [+Upper] vs. [-Upper].
 - Related to phonation difference: Non-modal phonation is associated with the [-Upper] register (Chao, 1928; Sherard, 1972; Qian, 1992, etc).
 - Instrumental studies in the early 1990s:

Recent studies:

- Studies Subjects Measures Findings
 - Cao and Maddieson 1992 Speakers born in 1956 and 1960s. HI-RE, HI-AI, Airflow-pressure ratio (APAP) HI-RE, HI-AI, the [-Upper] register is breathier.
 - Ren 1992

Research Questions

- Do speakers from different age groups (older vs. younger) differ in making the register contrast?
 - What are the phonetic correlates of the register contrast made by different speakers?

Methods

- Participants: 20 native speakers of SC, Two age groups: 10 older (mean age 55) vs. 10 younger speakers (mean age 24): 10 male vs. 10 female.
 - Speech Materials: 5 onset types (stop, fricative, affricate, nasal, etc) * 2 registers ([+Upper], [-Upper]) * 3 different tokens * 2 repetitions.
 - Measures:
 - Pitch: F0, Spectral: H1+H2*, H1+H3*, H1+H2**, H1+H3**.
 - Noise: Central Peak Pronunciation (CPP), Harmonic-to-Noise Ratio (HNR), Subharmonic to Harmonic Ratio (SRH).
 - Electroglotthographic: Contact Quotient (CQ).
 - Within-speaker normalization to minimize differences across speakers and recording conditions.
 - Statistics analysis:
 - Multiple mixed-effects models, one model for each onset type in each speaker group.
 - Equation: measure ~ Register + (1|Speaker) + (1|item).

Results

- Significant age differences.

<table>
<thead>
<tr>
<th>All groups</th>
<th>Old speakers</th>
<th>Younger speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI+H2**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI+H2*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI+H3**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI+H3*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Clear F0 differences in all groups.

<table>
<thead>
<tr>
<th>Old speakers</th>
<th>Younger speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean F0:</td>
<td></td>
</tr>
<tr>
<td>HI+H2**</td>
<td>HI+H2*</td>
</tr>
<tr>
<td>HI+H3**</td>
<td>HI+H3*</td>
</tr>
<tr>
<td>CPP</td>
<td>CPP</td>
</tr>
</tbody>
</table>

- Clear F0 differences in all groups.

<table>
<thead>
<tr>
<th>Old speakers</th>
<th>Younger speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI+H2**</td>
<td>HI+H2*</td>
</tr>
<tr>
<td>HI+H3**</td>
<td>HI+H3*</td>
</tr>
<tr>
<td>CPP</td>
<td>CPP</td>
</tr>
</tbody>
</table>

- obvious differences at p < 0.05 level in all onset types.

- Close H1+*H2* and reversed trends in all groups.

<table>
<thead>
<tr>
<th>Old speakers</th>
<th>Younger speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean H1+H2*</td>
<td>Mean H1+H2**</td>
</tr>
<tr>
<td>HI+H2**</td>
<td>HI+H2*</td>
</tr>
<tr>
<td>HI+H3**</td>
<td>HI+H3*</td>
</tr>
<tr>
<td>CPP</td>
<td>CPP</td>
</tr>
</tbody>
</table>

- Close H1+*H2* and reversed trends in all groups.

<table>
<thead>
<tr>
<th>Old speakers</th>
<th>Younger speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean H1+H2*</td>
<td>Mean H1+H2**</td>
</tr>
<tr>
<td>HI+H2**</td>
<td>HI+H2*</td>
</tr>
<tr>
<td>HI+H3**</td>
<td>HI+H3*</td>
</tr>
<tr>
<td>CPP</td>
<td>CPP</td>
</tr>
</tbody>
</table>

Conclusions

- Significant age differences:
 - Older speakers use pitch, spectral slope, noise ratios, periodicity, contact quotient.
 - Younger speakers use pitch, noise ratios and periodicity only.

- The phonetic correlates of the register contrast for older speakers: The [-Upper] register has
 - Lower pitch
 - Breather phonation:
 - Steep spectral slope (higher H1-An values)
 - Higher noise ratios and less periodicity
 - Smaller Contact Quotient
 - However, H1 * H2* is not significant. Probably a special variant of breathy voice.
 - Similar to Jiashan Wu (Jiang and Kuang, 2016).

- Shanghai Chinese has phonation contrast
 - Across all onset types
 - With onset variations

References and Acknowledgements

This study is supported by an UPG Faculty research fund RFP to Prof. Jianjing Kuang.