Kashaya foot extrametricality as post-accentuation

EUGENE BUCKLEY
UNIVERSITY OF PENNSYLVANIA

Annual Meeting on Phonology
UC San Diego

7 October 2018
Outline of talk

• Iambic stress pattern
 – within words and phrases
 – (CV:) foot causes rightward shift of accent
 • including when length is lost or moved
 – lexical triggers with no long vowels

• Analysis as alignment
 – require head foot to follow the triggering foot
 – disrupted by phrasal resyllabification
 – unified diacritic analysis of all cases, with account for opacity
Kashaya in California
Kashaya footing

• Iambs from left to right
 – iterative, as evidenced by iambic lengthening
 • for clarity, the head (accented) foot is highlighted
• First syllable is extrametrical by default
 – blocked if the root is monosyllabic and unprefixed
 • essentially, a root vowel must be footed
• Focus on pattern with syllable extrametricality
 – but will also show monosyllabic root examples
Stress within a word

• Second or third syllable
 – depending on weight of second syllable

 a. \textit{cuʔdan-tʰu-meʔ} \textit{‘don’t shoot! PL’} \\
 \textit{<cuʔ>(dán)(tʰumeʔ)}

 b. \textit{cuʔdan-ad-u} \textit{‘keep shooting’} \\
 \textit{<cuʔ>(daná:)du}

 c. \textit{cahci-hqa-w} \textit{‘place in seated position’} \\
 \textit{<cah>(cíh)(qaw)}

 d. \textit{cahci-meʔ} \textit{‘sit down! IN-LAW’} \\
 \textit{<cah>(ciméʔ)}
Phrasal groupings

• Stress is often assigned across two or more words
 – or to a word and following clitic(s)
• Distinct from lexical footing
 – for words beyond the first in the phrase
 – iambic lengthening depends on word-internal feet
• Assume basic stratal architecture
 – Word vs. Phrase
• Examples presented here show phrasal footing
 – this is the source of surface accent
 – even in one-word utterances
Stress within a phrase

• Second or third syllable, once again
 – might fall on first or second word (or clitic)

 a. *bihše hčʰoyic’-ʔ* ‘the deer died’
 <bih>(šéh)(cʰoyiʔ)
 b. *bihše boʔo-ʔkʰe* ‘will hunt deer’
 <bih>(šebó)(ʔoʔ)kʰe
 c. *simá =ltow* ‘during sleep’
 <si>(mál)(tow)
 d. *simá miṭi-ad-u* ‘lying asleep on the ground’
 <si>(mamí)(ṭi:)du
Accent shift

- If leftmost foot is (CV:), pitch accent will fall on the following foot instead
 - thus occurs on third or fourth syllable
 - depending on weight of third syllable
- Skipped (CV:) is a nonbranching foot
 - parallel to (CVC) that takes the accent
Accent shift within a word

- To third or fourth syllable
 a. *dase:-wa-em*
 <da>(se:)(wám)
 ‘I see (you’re) washing it’
 b. *dase:-weti*
 <da>(se:)(wetí)
 ‘although I washed it’
 c. *maṭ’a:-qac’-tʰuʔ*
 <ma>(ṭ’a:)(qáʔ)(tʰuʔ)
 ‘don’t let it hex you!’
 d. *maṭ’a:-wi-y-e: to*
 <ma>(ṭ’a:)(wiyé:)to
 ‘it hexed me’
Accent shift within a phrase

• Quite a common occurrence
 – provides frequent evidence for phrasal stress

a. ʔima:ta =ʔyow-a-em ‘former woman NOM’
 <ʔi>(ma:)(táʔ)(yowam)

b. ʔima:ta našoya ‘young woman’
 <ʔi>(ma:)(taná)(šoya)

c. qahwe: wahqa-qa =ʔ ‘must have swallowed gum’
 <qah>(we:)(wáh)(qaqaʔ)

d. qahwe: qac-id-u ‘ask for gum’
 <qah>(we:)(qací:)du
Accentual domain

• Foot is excluded from “end rule left” domain

\[
\text{ma (ṭ’āːː) (wijéːː) to}
\]

• Accent is shifted within footing domain

\[
\text{ma (ṭ’āːː) (wijéːː) to}
\]
Accentual domain

- Foot is excluded from “end rule left” domain

\[
\begin{array}{c}
\text{ma (ť’a:) (wiyé:)}
\end{array}
\]

- This representation is like the result of foot extrametricality
 - but we’ll create it by different means

- Better account of (CV:) not at the left edge
Syllable extrametricality

• Exclusion of a syllable from foot structure

\[\text{bih} \quad \text{(še bó)} \quad (ʔoʔ) \quad k^h_e \]

• Caused by a constraint dominating PARSE-SYL

• “Some syllable precedes every foot” (Buckley 1997)
 – ALIGN(Foot, L; Syllable, R)

• “No word begins with a foot” (Buckley 2009)
 – *ALIGN(Word, L; Foot, L)
Foot extrametricality

• Accent shift as extrametricality of the foot (Buckley 1994 et seq.)

 \[
 \begin{array}{cccc}
 \langle F \rangle & \tilde{F} & F \\
 \langle \sigma \rangle & \sigma & \sigma & \sigma & \sigma \\
 \hat{\imath} & (\text{ma:}) & (\text{ta ná}) & (\text{šo ya})
 \end{array}
 \]

• Trickier to formalize by means of alignment
 – not just any foot, but (CV:) specifically
 – also at a higher level of structure
 – “Align the left edge of a line 2 constituent with the right edge of a CV: foot.” (Buckley 1997)
Foot extrametricality

• Foot extrametricality is problematic as a component of the theory
 – few examples exist, and perhaps should be abandoned as an option (McCarthy 2003)
 – limited evidence for cumulativity of extrametricality at different levels (Hayes 1995)
• Other options, such as *(CÚ:), do not require exclusion from the accent domain
• Opacity in Kashaya, where (CV:) is not present on the surface, leads to particular complications...
Opaque accent shift

• Long vowel regularly shortens in closed syllable
 – but still causes accent shift
 a. šula:m-iʔba ‘would get sick’
 <šu>(la:)(máʔ)ba
 b. šula:m-qa-em ‘the one who seems sick NOM’
 <šu>(lam)(qám)
 c. šula:m-wi-y-e: to ‘I got sick’
 <šu>(lam)(wiyé:)to

• Compare underlying short vowel: no accent shift
 d. duṭ’am-wi-y-e: to ‘more keep coming to me’
 <du>(ṭ’ám)(wiye:)to
Opacity

• Long vowel often surfaces in stems like /šulaːm/
 – good evidence for underlying length

• Analysis by ordering
 – apply foot extrametricality before shortening
 (Buckley 1994)

• Analysis by output constraints
 – stem paradigms are uniform in showing accent shift
 (Buckley 1999)

• Or faithfulness to prior footing
 – in a stratal OT model
Word-edge accent shift

• CVC ending a disyllable is normally stressed
 – extrametrical syllable plus nonbranching foot

a. \(yahmoʔ = yac^{h}ma \) ‘mountain lion NOM.PL’
 \(<yah>(móʔ)(yac^{h})ma\)

b. \(kilak^{h} = yacol \) ‘eagle OBJ’
 \(<ki>(lák^{h})(yacol)\)

• But some such words (\(\rangle\)) show accent shift

c. \(\hat{acac}^{\rangle} = yac^{h}ma \) ‘person NOM.PL’
 \(<\hat{a}>(caʔ)(yác^{h})ma\)

d. \(\hat{acac}^{\rangle} = yacoʔk^{h}e \) ‘person BEN’
 \(<\hat{a}>(caʔ)(yacóʔ)k^{h}e\)
Word-edge accent shift

• Additional examples
 a. $k'abat \rightarrow shihp^h_a$ ‘madrone leaf’
 $<k'a>(ba?)(\acute{s}i\acute{h})p^h_a$
 b. $k'abat \rightarrow q^h_ale$ ‘madrone tree’
 $<k'a>(ba?)(q^h_ale)$
 c. $calel \rightarrow hi\acute{b}aya$ ‘some random man’
 $<ca>(lel)(hi?)(baya)$
 d. $calel \rightarrow cic'i:d-e: ma$ ‘you’re doing it haphazardly’
 $<ca>(lel)(cic'i:)(de:)ma$

• Not really discussed in previous literature
Monosyllables

• This occurs also with some monosyllables
 – they lack extrametricality, so the pattern is shifted

 a. \(k'is > mi?da \)
 \((k'is)(mí?)da \)
 ‘every red one’

 b. \(k'is > cic'i:d-i \)
 \((k'is)(cíc'í:)du \)
 ‘keep turning red!’

 c. \(hec' > =t^{h}in =?-e: mu \)
 \((hec')(t^{h}iné:)mu \)
 ‘it’s not a nail’

 – compare underlying short vowel: no accent shift

 d. \(meṭ =t^{h}in =?-e: mu \)
 \((mé?)(t^{h}ine:)mu \)
 ‘it’s not time’
Accent shift and vowel length

• These words never have a surface long vowel
 – they are not verbs, so they lack the necessary alternations under suffixation

• But that is Oswalt’s treatment of them
 – /ʔacaːc/, /caleːl/, /k’iːs/, etc.
 – always undergo closed-syllable shortening

• Not opacity in the same way
 – underlying long vowel is fully abstract
 – also makes incorrect prediction...
Restricted distribution

• Prediction if abstract long vowels exist
 – should be possible word-interally
 – compare transparent /ʔima:ta/ ‘woman’
 – and opaque /šula:m-qam/ ‘the one who seems sick’

• But no such forms exist
 – such as */ʔima:nta/
 – surfacing as *<ʔi>(man)(taʔé:)mu

• Medial CVC in such words always takes the accent
 – as in <šah> (phén)ta ‘bluebird’
Post-accentuation

• Lexicalized accent shift occurs only finally
 – confirms connection to the word edge
• Analyze as post-accentuation
 – requirement that the accent follow a certain element
 – ultimately, property of a foot rather than a stem edge
• Two possible sources
 – foot that consists of a syllable with a long vowel
 – lexeme that bears an idiosyncratic property
• Compare to similar patterns in other languages
Post-accentuation in Japanese

• Prefix *ma-* ‘true’ can induce accent on next syllable
 a. *ma>* + *minami* ‘due south’
 ma-mínami
 b. *ma>* + *yonaká* ‘dead of night’
 ma-yónaka

• Also (more common) pre-accenting suffixes
 c. *yosida* + *<ke* ‘Yoshida family’
 yosidá-ke
 d. *nisímura* + *<ke* ‘Nishimura family’
 nisimurá-ke
Analyzing Japanese

• Poser (1984): invisibility
 – prefix or suffix is ignored when accenting edge syllable
 – similar to Foot Extrametricality for Kashaya

• Alderete (1999): local anti-faithfulness
 – transderivational (output-output):
 • affixed stem must differ from its prominence realization in other contexts
 • must happen on syllable adjacent to the triggering affix
 – cannot be applied to Kashaya
 • not “base-mutating” as in most of Alderete’s cases
Post-accentuation in Russian

• Some basic accent patterns in nouns
 1. always on the same stem vowel
 2. on an accented suffix, else the first syllable
 3. always on the first suffix vowel

<table>
<thead>
<tr>
<th>koróv-a</th>
<th>borod-á</th>
<th>gospož-á</th>
<th>nom.sg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>koróv-ı</td>
<td>bórod-ı</td>
<td>gospož-ı</td>
<td>nom.pl.</td>
</tr>
<tr>
<td>‘cow’</td>
<td>‘beard’</td>
<td>‘lady’</td>
<td></td>
</tr>
</tbody>
</table>

• Last class is post-accenting
 – location on suffix is a property of the stem
 – occurs on unaccented suffixes such as nom.pl.
Analyzing Russian

• Melvold (1989): shifting stress
 – lexically at end of stem, but moves rightward
 – compare moving accentual tone to next foot head

• Idsardi (1992): final left bracket: \[xx (\]
 – similar to fixed stem stress: \[x (x \] or \[(x x \]
 – equivalent to alignment in OT
 • at least for bracket at edge, rather than internally

• Alderete (1999): post-stem prominence
 – Align(\textsc{PROM}, L; \textsc{Stem}, R)
 – Kashaya requires alignment with head foot rather than with a prominence
Accent shift as alignment

• Responds to lexical marking on stems
 – since true of just a subset of stems
• Cannot just be “some foot”
 – that’s expected anyway in most cases, since heavy syllable would be final in an iambic foot
• Treat as Head Foot
 – accent is then assigned to this foot
• Call it POST-ACCENT
 – right edge > is aligned with left edge of head foot
 – similar effect to extrametricality, but different basis
Analysis with accent shift

- **Non-Initial**: Initial syllable extrametricality
- **Post-Accent**: Must refer to diacritic feature of stem

<table>
<thead>
<tr>
<th>yahmoṭ =yacʰ ma</th>
<th>Non-Initial</th>
<th>Post-Accent</th>
<th>Align-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (yáh) (moʔ) (yacʰ) ma</td>
<td>*!</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>b. yah (móʔ) (yacʰ) ma</td>
<td>—</td>
<td>—</td>
<td>*</td>
</tr>
<tr>
<td>c. yah (moʔ) (yácʰ) ma</td>
<td>—</td>
<td>—</td>
<td>**!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>?acac> =yacʰ ma</th>
<th>Non-Initial</th>
<th>Post-Accent</th>
<th>Align-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ?a (cáʔ) > (yacʰ) ma</td>
<td>*!</td>
<td>—</td>
<td>*</td>
</tr>
<tr>
<td>b. ?a (caʔ) > (yácʰ) ma</td>
<td>—</td>
<td>—</td>
<td>**</td>
</tr>
</tbody>
</table>

29
Analysis as (CV:) alignment

- Constraint (CV:) (HD)
 - Foot (CV:) is right-aligned with head (accented) foot
 - direct reference to the triggering property of length
- Not the same as extrametricality
 - no reference to the left edge

<table>
<thead>
<tr>
<th>?ima:ta našoya</th>
<th>NON-INITIAL</th>
<th>(CV:) (HD)</th>
<th>ALIGN-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ?i (má:) (tana) (šoya)</td>
<td></td>
<td>*!</td>
<td>*</td>
</tr>
<tr>
<td>b. ?i (ma:) (taná) (šoya)</td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>c. ?i (ma:) (tana) (šoyá)</td>
<td></td>
<td>*!</td>
<td>****</td>
</tr>
</tbody>
</table>
Diacritic alignment of (CV:)

- Alternatively, same diacritic is inserted for (CV:) feet
 - does not make direct reference to vowel length
 - details otherwise remain quite similar
- Perhaps all alignment is with foot, not stem
 - even for the lexically specific items (more below)

<table>
<thead>
<tr>
<th>?ima:ta našoya</th>
<th>Non-Initial</th>
<th>Post-Accent</th>
<th>Align-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ?i (má:) > (tana) (šoya)</td>
<td></td>
<td>*!</td>
<td>*</td>
</tr>
<tr>
<td>b. ?i (ma:) > (taná) (šoya)</td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>c. ?i (ma:) > (tana) (šoyá)</td>
<td></td>
<td>*!</td>
<td>****</td>
</tr>
</tbody>
</table>
Opaque alignment of (CVC)

- Underlying length in /CV:C/ eventually lost
 - could assign diacritic in Word level, with length still present
 - persists to Phrase level where lexical diacritic is also needed
- These outputs have shortening but retain diacritic
 - opacity is situated in the diacritic

<table>
<thead>
<tr>
<th>Word: šu(la:m) > (qam)</th>
<th>NON-INITIAL</th>
<th>POST-ACCENT</th>
<th>ALIGN-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. šu (lám) > (qam)</td>
<td></td>
<td>!</td>
<td>*</td>
</tr>
<tr>
<td>b. šu (lam) > (qám)</td>
<td></td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>
“Foot Flipping” to (CVCV:)

• Leftmost foot (CV:) plus CV surfaces as (CVCV:)
 (Buckley 1994)

 a. šula:m-iʔba ‘would get sick’
 <šu>(la:)(máʔ)ba
 – with opaque accent shift

 b. šula:m-adad-pʰi ‘after getting sicker’
 <šu>(lama:)(dán’)pʰi

 c. šula:m-uced-u ‘keep getting sick’
 <šu>(lama:)(ducé:)du
 – compare underlying short vowel: no accent shift

 d. hoṭʰam-ad-uced-u ‘keep getting warm’
 <ho>(ṭʰamá:)(duce:)du
Opaque alignment of (CVCV:)

- Diacritic could operate for this foot as well
- Best overall analysis is less clear (see Buckley 2017)
 - might be Output-Output effect (Buckley 1999)
 - i.e., via shared stem /šulaːm/
 - or assigned to (CV:) foot and persists with addition of CV

<table>
<thead>
<tr>
<th>Word: šu(la:ma) > (duce:) du</th>
<th>NON-INITIAL</th>
<th>POST-ACCENT</th>
<th>ALIGN-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. šu (lamá:) > (duce:) du</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. šu (lama:) > (ducé:) du</td>
<td></td>
<td>***</td>
<td></td>
</tr>
</tbody>
</table>
Glottal-initial clitics

• Glottal stop at the beginning of an enclitic
 – surfaces as glottalization of a preceding stop/affricate
 – disappears after a sonorant
 – e.g., copular /ʔe:/, nominative /ʔemu/

• In either case, that consonant surfaces as an onset
 a. siʔbal =ʔe: mito ‘you are far away’
 <si?>(balé:)mito
 b. yahmoṭ =ʔemu ‘the mountain lion NOM’
 <yah>(moṭ’é)mu
Loss of accent shift

• In the same context, shifting words lose this special property
 – due to syllabification across the boundary
 a. ʔacac> =ʔemu ‘the man NOM’
 <ʔa>(cac’é)mu
 *<ʔa>(cac’)(emú)
 *<ʔa>(ca)(c’emú)
 – pattern just like regular words
 b. yahmoṭ =ʔemu ‘the mountain lion NOM’
 <yah>(moṭ’é)mu
More examples

• Regular accent due to resyllabification

 a. \(?a\text{cac}^> =?i\text{-yow-a-l} \) ‘the former man OBJ’
 <\(?a \rangle (\text{cac’í)yowal
 *<\(?a \rangle (\text{cac’})(\text{iyó})\text{wal
 *<\(?a \rangle (\text{ca})(\text{c’iyó})\text{wal

 b. \(ma\text{ṭʰey}^> =\text{ʔemu} \) ‘the doe NOM’
 <\(ma \rangle (\text{ṭʰeyé})\text{mu
 *<\(ma \rangle (\text{ṭʰey})(\text{emú})
 *<\(ma \rangle (\text{ṭʰe})(\text{yemú})
Effect of resyllabification

• Lexemes like ?aca? require post-accentuation
 – but this effect is mediated by prosody
 – akin to crisp edges (Ito & Mester 1999)

• Undominated ONSET leads to a prosodic conflict
 – maṭʰey> in ma.tʰe.y|e.mu
 – Foot alignment is impossible, renders it inert
 • not to mention effect of glottal fusion

• Same insight seems unavailable in other approaches
 – whether extrametricality or tone shift
Analysis with resyllabification

- *C? : Forces fusion with preceding consonant
- *[\sigma R’ : Loss of glottalization in onset for all sonorants
- Open question whether diacritic is actually present for (c)–(e)

<table>
<thead>
<tr>
<th>maṭʰey ≥ʔemu</th>
<th>Onset</th>
<th>*C?</th>
<th>*[\sigma R’</th>
<th>Post-Accent</th>
<th>Align-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ma (ṭʰey) > (ʔemú)</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>b. ma (ṭʰey’) > (emú)</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>c. ma (ṭʰe) (y’>emú)</td>
<td>*!</td>
<td></td>
<td>*?</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>d. ma (ṭʰe y>é) mu</td>
<td></td>
<td></td>
<td>*?</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>e. ma (ṭʰe) (y>e mú)</td>
<td></td>
<td></td>
<td>*?</td>
<td></td>
<td>**!</td>
</tr>
</tbody>
</table>

• Forces fusion with preceding consonant
• Loss of glottalization in onset for all sonorants
• Open question whether diacritic is actually present for (c)–(e)
Underlying long vowel

• This also happens with a true long vowel
 – in verbs that show surface length elsewhere

 a. \(\text{šula:m-ʔ =ʔi-yow-a-l} \) ‘formerly sick OBJ’
 \(<\text{šu}>\text{(lamí)}\text{(yowal)}\)
 *\(<\text{šu}>\text{(lam)}\text{(iyó)}\text{wal}\)

 b. \(\text{da-t’e:l-ʔ =ʔi-do: mu} \) ‘they say he smeared it’
 \(<\text{da}>\text{(t’elí)}\text{(do:)mu}\)
 *\(<\text{da}>\text{(t’el)}\text{(idó:)mu}\)

 c. \(\text{mace:-w =ʔi-qan} \) ‘apparently protected’
 \(<\text{ma}>\text{(cewí)}\text{(qan)}\)
 *\(<\text{ma}>\text{(cew)}\text{(iqán)}\)
Loss of length

• It is quite noteworthy that the underlying long vowel fails to surface even in this open syllable
 \[\text{šula:m-ʔ =ʔi-yow-a-l} \quad \text{‘formerly sick OBJ’}\]
 <šu>(lamí)(yowal)
 *<šu>(la:)(miyó)wal
 – If (CV:) persists long enough to cause accent shift here, why is the length absent?

• But this makes sense under the diacritic analysis
 – does not rely on continued presence of (CV:)
 – assumes it is generally lost before Phrase level
Dubiousness of length as trigger

• Where long vowel can’t surface, accent shifts
 – but where it could surface, it disappears and accent doesn’t shift (b, d)

a. šula:m-ʔ banema:duʔ ‘arrived and fell down sick’
 <šu>(lam’)(bané)(ma:)(duʔ)

b. šula:m-ʔ =ʔi-yow-a-l ‘formerly sick OBJ’
 <šu>(la.mí)(yowal)

c. da-t’e:l-ʔ tubic-ic’-ʔ ‘start to smear’
 <da>(t’el’)(tubí)(yiʔ)

d. da-t’e:l-ʔ =ʔi-do: mu ‘they say he smeared it’
 <da>(t’e.lí)(do:)mu
Unified treatment

• At first glance, we find disjunct loci of accent shift
 – the right edge of certain stems
 – the right edge of (CV:) feet

• There is also considerable opacity
 – (CVC) from closed-syllable shortening
 – (CVCV:) that results from underlying CV: + CV

• But in every case, it is the right edge of a foot
 – requires accent on following foot
 – maybe it’s really about the foot in all cases
Focus on feet

- The transparent situation with (CV:) feet is already fairly unusual cross-linguistically
 - perhaps not surprising it requires an ad-hoc solution
 - diacritic on foot, triggering alignment constraint
 - with another foot, of course, so at the same prosodic level
- Remaining cases can all take the same approach
 - addresses the opacity problem
 - depends on diacritic, not on (prior) vowel length
 - effect at right stem boundary is also at a foot boundary
 - since CVC must end an iambic foot
 - lexical diacritic actually associates with this foot
Subtleties of edges

• Post-accentuation only if foot maintains its integrity
 – material can be added, but not moved out
• Maintained if external material is incorporated
 a. $q^h os'a: =\tilde{?}-yow-a-m$ ‘formerly in winter NOM’
 $<q^h o>(s'a?)(yowám)$
• Fails if internal C is syllabified outside the foot
 b. $šula:m-?=i-yow-a-m$ ‘formerly sick NOM’
 $<šu>(lamí)owam$
 $*<šu>la(miyó)wam$
• Disruption of syllable structure (from Word to Phrase level)
 – may depend on change in bimoraic syllable structure
 – foot is recreated (à la Hayes 1989) and loses diacritic
Diacritics and morphemes

• Lexical exceptionality often associated with morphemes, rather than phonological objects (Pater 2007, Gouskova 2012)
 – many long vowels in Kashaya arise from elision across morphemes, and behave the same way
 – but the (CV:) diacritic is predictable anyway, not specified underlyingly

• The only underlying diacritic is indeed linked to particular morphemes, such as /ʔacaʔ/
 – but I suggest it is transferred to the right-aligned foot
Diacritics and feet

- Lexically indexed constraints sometimes linked to phonological elements (Round 2017)
 - not necessary (or perhaps possible) in Kashaya, since the foot structure itself is regular, not in UR
 - but shares the notion that the diacritic is affiliated (ultimately) with a phonological category
 - here, the foot rather than the more typical segment

- Question remains about the mechanism that assigns this diacritic
 - need similar cases for comparison
Summary

• Advantages of alignment approach
 – avoids abstract underlying vowel length
 • accounts for lack of word-internal abstract length
 – deals with diverse and opaque triggers
 • unifies divergent sources of shifted accent
 – accounts for loss of accent shift under resyllabification

• Important question
 – how does this kind of prosodic diacritic fit into a larger theoretical picture
References

References