Constructing a parsed corpus of Early Modern English

Beatrice Santorini
University of Pennsylvania
http://www.ling.upenn.edu/~beatrice/corpus-ling/index.html

IV Encontro de Corpora - USP
24 August 2004

Overview of presentation

- Some useful URLs
- Motivation for constructing electronic parsed historical corpora
- Goals and principles of our annotation
- How we build a corpus - a flowchart
- CorpusSearch - a search engine for parsed corpora

Some useful URLs

- Annotation manual
- For beginners http://www.ling.upenn.edu/~ataylor/ppcme-lite.htm
- For advanced users
http://www.ling.upenn.edu/~ataylor/ppcme2-man-toc.htm
- CorpusSearch manual http://www.ling.upenn.edu/mideng/csdocs/CSRefToc.htm

Why construct historical corpora ?

- Recourse to native speaker intuitions impossible
- Hence, we need representative historical corpora (= collections of texts)
- Corpora can be important even for synchronic studies
- How do people actually speak/write (as opposed to how they say they do)?
- Basis for statistical parsers

Why parsed historical corpora?

- The syntactic structure of sentences is not completely determined by the words and their linear order
- Sentences can be structurally ambiguous
- Sentences can be produced by distinct grammars
- Hence, we need corpora that are annotated with appropriate information

Synchronic structural ambiguity

- ((IP-MAT (NP-SBJ (VAG Flying) (NS planes)) (MD can)
(BE be)
(ADJP (ADJ dangerous))
(. .)))
- ((IP-MAT (IP-SBJ (NP-SBJ *arb*)
(VAG Flying)
(NP-OB1 (NS planes))
(MD can)
(BE be)
(ADJP (ADJ dangerous))
(. .)))

Variation between two grammars

Earlier forms of English showed variation between an old (OV) and a new (VO) grammar.

- ((IP-MAT (NP-SBJ they)
(MD will)
(NP-OB1 the old house) <--- old (OV)
(VB buy)
(. .)))
- ((IP-MAT (NP-SBJ they)
(MD will)
(VB buy) <--- new (VO)
(NP-OB1 the old house)
(. .)))

Uncertainty between two grammars

- ((CP-QUE (WNP-1 Which house)
(IP (MD will)
(NP-SBJ they)
(NP-OB1 *T*-1) <--- old (OV)?
(VB buy)
(. ?)))
- ((CP-QUE (WNP-1 Which house)
(IP (MD will)
(NP-SBJ they)
(VB buy)
(NP-OB1 *T*-1) <--- new (VO)?
(. ?)))

Why electronic parsed historical corpora?

- To ensure representativity, we need large corpora
- Annotation by hand is slow, expensive, and error-prone
- The answer: automate annotation as much as possible
- Electronic corpora are (relatively) easy to correct and update
- Electronic corpora can be built in stages

Further advantages of electronic corpora

- Electronic corpora can be searched quickly and reliably
- Research hypotheses are more easily tested and refined
- Results become replicable across research groups
- Increased search speed makes possible different kinds of results

Goals and principles of our annotation

- Parsed corpus consists of straight-up ASCII
- Structural information is represented as labeled bracketing
- No hidden formatting codes
- No dependence on obsolescent software
- If necessary, we would use ISO-Latin-1, ISO-Latin-2, Unicode
- Annotated corpus $=$ God's truth, not
- The primary goal of our annotation is to facilitate searches for various constructions of interest.
- The goal is not (!) to associate every sentence with a correct structural description.

Dealing with uncertainty and ambiguity

- As many syntactic categories as possible should have clear meanings so that the number of unclear cases is minimized.
- We try to avoid decisions that are controversial, very time-consuming, or otherwise difficult.
- To that end, we sometimes omit information.
- Adjectival vs. verbal passive (The door is shut)
- VP boundaries
- In other cases, we use default rules.
- Location of wh- traces (= gaps)
- PP attachment ("when in doubt, attach high")

OV, or VO + leftward pronoun movement?

- (PP (P until)
(CP-ADV (C 0)
(IP-SUB (NP-SBJ (N death))
(DOP do)
(VP (NP-OB1 (PRO us))
(VB part)))))
- (PP (P until) (CP-ADV (C 0) (IP-SUB (NP-SBJ (N death))
(DOP do)
(NP-1 (PRO us))
(VP (VB part)
(NP-OB1 *T*-1)))))

Omitting undecidable information

Our solution: a 'flat' structure without a VP

```
(PP (P until)
    (CP-ADV (C 0)
    (IP-SUB (NP-SBJ (N death))
            (DOP do)
            (NP-OB1 (PRO us))
            (VB part))))
```


Question movement revisited

- ((CP-QUE (WNP-1 Which house)
(IP (MD will)
(NP-SBJ they)
(NP-OB1 *T*-1) <--- old (OV)?
(VB buy)
(. ?)))
- ((CP-QUE (WNP-1 Which house)
(IP (MD will)
(NP-SBJ they)
(VB buy)
(NP-OB1 *T*-1) <--- new (VO)?
(. ?)))

An incorrect, yet useful, structure

Our solution: we consistently put the trace in a position that is linguistically unmotivated, but competely predictable and so exploitable for searches.
((CP-QUE (WNP-1 Which house)
(IP (NP-OB1 *T*-1)
(MD did)
(NP-SBJ they)
(VB buy)
(. ?)))

PP attachment - high or low?

- ((IP-MAT (NP-SBJ They)
(VBD painted)
(NP-OB1 (D the) (N man))
(PP (P with)
(NP (D a) (N brush)))
(. .)))
- ((IP-MAT (NP-SBJ They)
(VBD painted)
$\begin{aligned} \text { (NP-OB1 } & \text { (D the) (N man) } \\ & (\mathrm{PP} \quad(\mathrm{P} \text { with) } \\ & (N P \text { (D a) (N telescope)))) }\end{aligned}$
(. .)))

Omitting undecidable information

A useful solution: undecidable or difficult cases are attached high by default.

```
( (IP-MAT (NP-SBJ They)
    (VBD saw)
    (NP-OB1 (D the) (N man))
    (PP (P with)
    (NP (D a) (N telescope)))
(. .)))
```


Argument se

In (European) Portuguese, the clitic se can function either as a true argument or as a grammatical function-changing morpheme.

- ((IP-MAT (NP-SBJ A Marta)
(VB-D lavou)
(NP-OB1 a roupa)
(. .)))
- ((IP-MAT (NP-SBJ A Marta)
(NP-OB1 (CL se))
<--- argument 'se'
(VB-D lavou)
(. .)))

Passive se

- ((IP-MAT (NP-SBJ os jarros) (NP-SE (CL se)) <--- passive 'se' (VB-D quebraram) (. .)))
- ((IP-MAT (NP-SBJ os jarros) (SR-D foram)
(VAN-P quebrados)
(. .)))

Omitting undecidable information

((IP-MAT (NP-SBJ las crian,cas)))
(NP-??? (CL se))
(VB-D lavaram)
(. .)))

Did the children wash themselves? se = NP-OB1
Or were they washed by someone else? se = NP-SE
A useful solution: undecidable or difficult instances of se are labelled NP-SE by default

How we build a parsed corpus - a flowchart

- POS tagging
- Automatic preprocessing (punctuation, contractions)
- Automatic tagging (Brill 1995)
- Human correction
- Parsing
- Automatic parsing (Collins 1996, Bikel 2004)
- Human editing ($=$ correction + addition of information)
- Final editing (partially automated)

Correction software

- We use correction software developed in connection with the Penn Treebank (http://www.cis.upenn.edu/~treebank) and implemented in Emacs Lisp
- Incorrect tags are corrected by positioning cursor on item to be corrected and entering correct tag
- Proposed tag is checked to ensure that new tag is legal
- Incorrect structures can be corrected with mouse clicks and modifier keys
- All correction software leaves input text inviolate

POS tagging - Automatic stage

- Text is tokenized
- Punctuation is split off from words
- Contractions are decomposed into (possibly abstract) constituents
we'll \rightarrow \$we/PRO \$'Il/MD \{TEXT:we'll\}/CODE pelos \rightarrow \$por/P \$os/D \{TEXT:pelos\}/CODE
- Text is run through tagger (in our case, Brill 1995)

The Brill tagger

- Step 1:

Based on a training corpus ($=$ a relatively large corpus of already tagged text), each word is tagged with its most frequent part of speech

He/PRO opened/VBD a/D can/MD of/P soup/N

- Step 2:

Tagger guesses at the tag for words that are not in the training corpus

Wimple/? \rightarrow Wimple/NPR
wimple/? \rightarrow wimple/N

The Brill tagger, 2

- Step 3:

Tagger refines guesses from Step 2 on the basis of morphological clues
wimpleless/ $N \rightarrow$ wimpleless/ADJ

- Step 4:

Tagger adjusts tags from Step 1 in light of context
\ldots. a/D can/MD of/P soup/ $N \rightarrow \ldots$ can/N . . .

Sample raw text

\# indicates continuation of line in source edition.

```
My Lord,
    I return my most humble thankes for y=e= honour of y=r=
Lord=ps= letter.
I have not yet bin any were, but at shopes and a veseting; but #
I
believe shall be on Munday at a ball at St. Jeames, where, as #
they
tell me, ther is a famose new danser to apere, which is to
#
charme
us all, but not make amends for y=e= loss of M=rs= Ibbings who #
danced
at Lincolns Inn Feild and is lately dead.
```


Sample tokenized text

Punctuation has been split off.
My Lord , I return my most humble thankes for $y=e=$ honour of $y=r=$ Lord=ps= letter .
I have not yet bin any were, but at shopes and a veseting ; but I believe shall be on Munday at a ball at St. Jeames, where, as they tell me, ther is a famose new danser to apere, which is to charme us all , but not make amends for $\mathrm{y}=\mathrm{e}=$ loss of $\mathrm{M}=\mathrm{rs}=$ Ibbings who danced at Lincolns Inn Feild and is lately dead .

Sample tagged text before correction

Tagger errors are highlighted in red. The narrow text formatting facilitates human correction.

My/PRO\$ Lord/N,/, I/PRO return/VBP my/PRO\$ most/QS humble/ADJ thankes/NS for/P
$\mathrm{y}=\mathrm{e}=/ \mathrm{D}$ honour/N of/P
$\mathrm{y}=\mathrm{r}=/ \mathrm{PRO} \$$ Lord $=\mathrm{ps}=/ \mathrm{N} \$$
letter/N ./.
I/PRO have/HVP not/NEG yet/ADV bin/BEN any/Q were/BED ,/, but/P at/P shopes/NS and/CONJ a/D veseting/VAG ;/.
but/CONJ I/PRO believe/VBP shall/MD be/BE on/P
Munday/NPR at/P a/D ball/N at/P St./NPR Jeames/NPR ,/,
where/WADV ,/, as/P they/PRO tell/VBP me/PRO ,/, ther/EX
is/BEP a/D famose/ADJ new/ADJ
danser/N to/TO apere/VB ,/, which/WPRO is/BEP to/TO charme/VB us/PRO all/Q,/, but/P not/NEG make/VB amends/NS for/P y=e=/D loss/N of/P $\mathrm{M}=\mathrm{rs}=/ \mathrm{NPR}$ Ibbings/NPR who/WPRO danced/VBD at/P Lincolns/NPR Inn/NPR Feild/NPR and/CONJ is/BEP lately/ADV dead/ADJ ./.

Sample tagged text after correction

Tagger errors are highlighted in red; human corrections in green.
My/PRO\$ Lord/N ,/, I/PRO return/VBP my/PRO\$ most/QS humble/ADJ thankes/NS for/P $y=e=/ D$ honour $/ N$ of $/ \mathrm{P} y=r=/ P R O \$$ Lord $=p s=/ N \$$ letter/N ./. I/PRO have/HVP not/NEG yet/ADV bin/BEN any/Q were/BED*/WADV ,/, but/P at/P shopes/NS and/CONJ a/D*/P veseting/VAG*/N ;/. but/CONJ I/PRO believe/VBP shall/MD be/BE on/P Munday/NPR at/P a/D ball/N at/P St./NPR Jeames/NPR ,/, where/WADV ,/, as/P they/PRO tell/VBP me/PRO ,/, ther/EX is/BEP a/D famose/ADJ new/ADJ danser/N to/TO apere/VB ,/, which/WPRO is/BEP to/TO charme/VB us/PRO all/Q ,/, but/P*/CONJ not/NEG make/VB amends/NS for/P y=e=/D loss/N of/P $\mathrm{M}=\mathrm{rs}=/$ NPR Ibbings/NPR who/WPRO danced/VBD at/P Lincolns/NPR*/NPR\$ Inn/NPR Feild/NPR and/CONJ is/BEP lately/ADV dead/ADJ./.

Parsing - Automatic stage

- POS-tagged text is stripped of all but correct tags
- Text is run though a parser (Collins 1996, Bikel 2004)
- As we have seen, output of parser is in the form of formatted labeled bracketing, in which depth of indenting corresponds to depth of structural embedding

The Collins parser

- Parses strings according to structures most frequently associated to input in a training corpus
- Chooses likely attachment on the basis of both POS tags and lexical items
- paint the man with a brush (high attachment)
- paint the man with a telescope (low attachment)
- Like the Brill tagger, the Collins parser can be trained

Parsing - Human editing stage

Editing operations include:

- Changing syntactic tags
- Adding subcategory information
- ADVP \rightarrow ADVP-TMP, ADVP-LOC, . . .
- CP \rightarrow CP-THT, CP-QUE, CP-CMP, . .
- NP \rightarrow NP-SBJ, NP-OB1, NP-MSR, . . .
- Changing attachment level
- Breaking up run-on sentences or consolidating fragments

Parsing - Human editing stage, 2

- Adding empty categories (gaps, silent understood subjects, etc.)
- Adding matching indices to gaps and their antecedents
- What did you drink ?
- Adding matching indices to expletives ('it', 'there') and their associates
- It is clear that they are coming .
- There is a unicorn in the garden.

Sample parsed text, before correction

```
( (IP-MAT (NP-SBJ (PRO I))
    (HVP have)
    (NEG not)
    (ADVP (ADV yet)) <--- missing -TMP label
    (BEN bin)
    (NP-ACC (Q any))
    (CP (WADVP (WADV were)) <--- parser misled by
    (, ,)
    (C 0)
    (PP (P but) (P at)
        (CONJP (CONJ and)
        (PP (P a)
    (NP (N veseting)))))))
    (. ;)))
```


Sample parsed text, after correction

```
( (IP-MAT (NP-SBJ (PRO I))
(HVP have)
(NEG not)
(ADVP-TMP (ADV yet))
(BEN bin)
(ADVP-LOC (Q any) (WADV were)
    (, ,)
    (PP (P but)
        (PP (PP (P at)
                                (NP (NS shopes))
                                (CONJP (CONJ and)
                                (PP (P a)
                                    (NP (N veseting))))))))
    (. ;)) (ID ALHATTON,2,240.6))
```


Some recent advances in automation

- The Collins parser is now superseded by Bikel 2004
- Bikel parser based on similar principles as Collins parser
- Allows modification of linguistic parameters, allowing more cross-linguistic flexibility
- Outputs includes grammatical function tags (-SBJ, -OB1, -OB2)

Some recent advances in automation, 2

- Allows multiple passes through a corpus, each pass respecting the previous ones.
- Multiple passes simplify editing task (divide and conquer)
- Simplification means improvements in speed and consistency
- Editing could be carried out by a mixture of more and less highly trained annotators.
- Advances in query language allow yet further automation of corpus construction.

Project management

- Mean editing speed (in language well-known to annotator):

2,000 words/hours for POS-tagging 1,000 words/hours for parsing

- Annotators can work approx. 4 hours/day or 20 hours/week
- Annotators are relatively easy to find and train for POS-tagging, but quite a bit harder to find and train for parsing (people are used to thinking about words, but not in terms of constituent structure)

So how long does it take to produce a parsed corpus of 1 M words?

- POS-tagging stage
$-1,000,000$ words / 2,000 words/hours $=500$ hours
- 500 hours $/ 20$ hours/week $=25$ weeks
- Parsing stage
- 1,000,000 words / 1,000 words/hours $=1,000$ hours
- 1,000 hours / 20 hours/week $=50$ weeks
- Total: 75 weeks

CorpusSearch, a search engine for parsed corpora

- A corpus without a search program is like the Internet without Google
- Enter CorpusSearch (Randall 2000), a dedicated search engine for parsed corpora
- Written in Java
- Runs under Linux, Mac, Unix, Windows

Properties of CorpusSearch

- Basic search functions are linguistically intuitive (immediately) precedes, (immediately) dominates
- End user can custom-define further linguistically relevant search expressions
- Searches can disregard material as necessary
- A key feature: The output of CorpusSearch is itself searchable

A key feature: Searchable output

- Complicated and error-prone monster queries can be implemented as a sequence of simpler queries.
- Sequences of queries are consistent with the way that corpus research proceeds, via a successive refinement of hypotheses.
- Generating searchable output slows CorpusSearch down somewhat (searches of 1-2M words can take 2-3 minutes)

A simple sample query

```
node: IP*
query: ((IP* iDomsNum1 NP-ACC)
    AND (IP* iDomsNum2 MD))
```

- IP* matches IP-MAT, IP-SUB, IP-INF, etc.
- CorpusSearch searches the corpus for constituents with the label(s) specified in node.
- Whenever it finds such a constituent, it checks whether the material in the constituent matches the condition(s) in query.
No match: I will eat the pie.
Match: The pie will I eat. (possible in older forms of English)
- Matching instances of node are recorded in an output file.

A possible query, but long-winded and error-prone

```
node: IP*
query: ((IP* iDomsNum1 NP-ACC | NP-DAT | NP-GEN)
    AND
    (IP* iDomsNum2 BE-PRES | BE-PAST |
    DO-PRES | DO-PAST |
    HAVE-PRES | HAVE-PAST |
    MD | VB-PRES | VB-PAST))
```


A better way

define: v2.def
node: IP*
query: ((IP* iDomsNum1 OBJECT) AND (IP* iDomsNum2 FINITE-VERB))

Contents of the definition file v2.def:
OBJECT: NP-ACC | NP-DAT | NP-GEN
FINITE-VERB: *-PRES | *-PAST | MD

Ignoring material

- CorpusSearch ignores certain material by default.
- punctuation
- page numbers
- editorial comments
- The default is overridable.
- In addition, other material can be ignored as convenient or necessary (gaps, interjections, parentheticals, vocatives, etc.).

Recent advances in CorpusSearch

- NOT and OR now function more intuitively
- Extraction of subcategorization frames
- "Search and replace" annotation support

Search and replace annotation support

- According to our annotation guidelines, all of the following sentences have parallel structures and include a (possibly silent) complementizer (= subordinating conjunction).
- I know you are coming.

I know that you are coming.

- They wonder when _ you arrived.

They wonder when that you arrived.
(possible in older forms of English)

- In the past, silent complementizers had to be added by hand or with Perl scripts.
- Now, silent complementizers (and if necessary, traces) can be added automatically, saving days or even weeks of work

Before and after "search and replace"

- ((IP-MAT (NP-SBJ (PRO They))
(VBP wonder)
(CP-QUE (WADVP (WADV when))
(IP-SUB (NP-SBJ you)
(VBD arrived))) (. .)))
- ((IP-MAT (NP-SBJ (PRO They))
(VBP wonder)
(CP-QUE (WADVP (WADV when))

(C 0)		$<---$ added
(IP-SUB	$($ ADVP $* T *)$	$<---$ added
	$($ NP-SBJ you)	
	$($ VBD arrived)))	$(.)))$.

Automatic regularization of $\mathrm{P}+\mathrm{D}$ combinations

- (PP (P+D-F-P pelas)
($\mathrm{N}-\mathrm{P}$ meninas))
- (PP (P \$por)
(NP (D-F-P \$as)
(CODE \{TEXT:pelas\})
($\mathrm{N}-\mathrm{P}$ meninas)))

An example from the EModEng corpus

Points of interest (see next slide)

- Expletive there is coindexed with logical subject
- Annotation indicates where (silent) relative pronoun is interpreted
- Tokens are identified by reference labels

ALHATTON 2, 241. 7
text ID vol. page serial token number
Volume number is optional; serial token number is unique within text.

Example sentence 1

```
( (IP-MAT (NP-SBJ=1 (EX There))
    (BEP is)
    (NP-1 (ONE one) (NPR M=r=) (NPR Colson)
        (CP-REL (WNP-2 0)
                        (C 0)
                        (IP-SUB (NP-SBJ (PRO I))
                (BEP am)
                (ADJP (ADJ shure)
                (CP-THT (C 0)
                    (IP-SUB (NP-ACC *T*-2)
                                    (NP-SBJ (PRO$ my) (N Lady))
                                    (HVP has)
                                    (VBN seen)
                                    (PP (P at)
                                    (NP (N diner)
                                    (PP (P w=th=)
                                    (NP (PRO$ my)
                                    (N Unckle)))))
(. .)) (ID ALHATTON,2,241.7))
```


A second example from the EModEng corpus

Points of interest (see next slide)

- Annotation indicates dependency between measure phrase (so much) and degree complement clause
- Locative (as well as directional and temporal) AdvPs are specially marked.

Example sentence 2

```
( (IP-MAT (NP-SBJ (PRO I))
    (HVP have)
    (NP-ACC (QP (ADVR so) (Q much)
                (CP-DEG *ICH*-1))
            (N business))
    (ADVP-LOC (ADV here))
    (CP-DEG-1 (C y=t=)
            (IP-SUB (NP-SBJ (PRO I))
                        (VBP hope)
                (CP-THT (C 0)
                        (IP-SUB (NP-SBJ (PRO$ my) (N Lady))
                                    (MD will)
                                    (VB excuse)
                                    (NP-ACC (PRO me))
                                    (PP (P till)
                                    (NP (ADJS next)
                                    (N post))))))))
    (. .)) (ID ALHATTON,2,245.46))
```

