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Abstract 

Most learning theories agree that the productivity of a rule or a pattern relies on regular 

exemplars being dominant over exceptions; the threshold for productivity is, however, unclear; 

moreover, gradient productivity levels are assumed for different rules/patterns, regular or 

irregular. One theory (Yang, 2016), the Tolerance Principle (TP), specified a productivity 
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threshold applicable to all rules, calculated by the numbers of total exemplars and exceptions of a 

rule; furthermore, rules are viewed as quantal, either productive or unproductive, with no 

gradient levels. We evaluated the threshold and gradience-quantalness questions by investigating 

infants’ generalization. In an implicit learning task, 14-month-olds heard exemplars of an 

artificial word-order rule and exceptions; their distributions were set closed to the TP-threshold 

(5.77) on both sides: 11 regular exemplars versus 5 exceptions in Condition 1 (productiveness 

predicted), and 10 regular exemplars versus 6 exceptions in Condition 2 (unproductiveness 

predicted). These predictions were pitted against those of the statistical majority threshold (50%), 

a common assumption which would predict generalization in both conditions (68.75%, 62.5%). 

Infants were tested on the trained rule with new exemplars. Results revealed generalization in 

Condition 1, but not in Condition 2, supporting the TP-threshold, not the statistical majority 

threshold. Gradience-quantalness was assessed by combined analyses of Conditions 1-2 and our 

previous experiments (Koulaguina & Shi, 2013, 2019). The training across the conditions 

contained gradually decreasing regular exemplars (100%, 80%, 68.75%, 62.5%, 50%) relative to 

exceptions. Results of test trials showed evidence for quantalness in infants (productive: 100%, 

80%, 68.75%; unproductive: 62.5%, 50%), with no gradient levels of productivity.  

  

1. Introduction 

Productive knowledge of a rule or a pattern enables one to apply the regularity to novel 

instances. Even young children show productive knowledge. For example, they give the plural 

form of an invented word “wugs” upon hearing the singular “a wug” (Berko, 1958), and they 

produce overgeneralizations such as “goed” (e.g., Pinker, 1995). Much attention has been 

devoted to the understanding of how rules/patterns are represented and how they are acquired.  
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Models of linguistic representations for rules/patterns differ in certain basic theoretical 

constructs. Morphological processes, for example, have been intensely debated. In some theories 

all morphological patterns are represented as abstract rules (e.g., Chomsky & Halle, 1968), 

regulars and irregulars. The dual-route model (e.g., Pinker, 1999) proposes the co-existent 

representations of abstract rules for regulars and memorized exemplars for irregulars. At the 

other extreme, no abstract symbolic rules are represented; rather, exemplars are encoded as 

clusters of constructions or as networks with shared features (e.g., Goldberg, 2016; Rumelhart & 

McClelland, 1986), and if they are sufficiently regular, productivity can emerge. According to 

the radical exemplar model of Ambridge (2020), generalizations occur in language use through 

analogy with stored (non-abstract) exemplars in the representation that have similar surface 

forms and semantic/contextual information. Across these models, a shared view is that regular 

and irregular representations are in competition to yield the predicted productivity of regular 

rules/patterns and overgeneralizations (or the avoidance of the latter). Although most of them 

focus on the nature of representations, the models offer insights that impact learning.  

While rules can be learned through explicit teaching, as is often done in schools, most 

essentials of morphosyntactic regularities are acquired during preschool years from exemplars 

heard in natural environment without any instruction. The question then concerns how 

rules/patterns become productive for children. Drastically different theoretical positions have 

been proposed in the field. For some researchers, morphosyntactic structures are productive and 

abstract from the onset of acquisition, with no need for statistical learning from the distributional 

properties of the input. For example, Valian and colleagues (Valian, Solt & Stewart, 2009) claim 

that syntactic categories and structures are not only abstract, but also innate. Based on their 

analysis of the determiner-noun productions in CHILDES corpora, they concluded that young 
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children demonstrate adult-like full productivity as soon as they start combining determiners and 

nouns. In contrast, other corpus studies (e.g., Pine & Lieven, 1997; Pine, et al., 2013) reported 

that children’s initial NP productions are memorized exemplars, and that abstraction and 

productivity develop (through analogy-based inductive learning) in gradual stages. The mixed 

results and conclusions across studies reflect the methodological difficulties in working with 

natural speech samples, both for characterizing input distributions and for evaluating children’s 

productivity.   

Various induction-based models attempted to specify the input properties enabling the 

learning of productive rules/patterns when regular and irregular exemplars are co-present. Type 

frequency, namely, the number of different exemplars of a rule/pattern, is important in most 

models (e.g., Baayen, 1993; Bybee, 1995; Plunkett & Marchman, 1991; Yang, 2016). The ways 

to quantify the contribution of type frequency differ across theories. In their connectionist model 

of morphological learning, Rumelhart and McClelland (1986) showed that input needed to 

contain a large number of regular exemplars (i.e., high type frequency1) relative to exceptions 

before a network start generalizing. Bybee (1995) suggested that to achieve productivity, regular 

exemplars must be dominant in type frequency relative to exceptions, although the exact level of 

the types was unspecified. Baayen’s model (1993) proposed indices aiming at comparing 

morphological processes (e.g., regulars versus irregulars within a rule, or unrelated rules) in a 

 
1 Hare, Elman and Daugherty (1995) further showed that in the case of a low-type-frequency default 

inflection alongside other non-default inflections, their models succeeded in generalizing the default 

pattern. Whereas a default inflection had no specified phonological template for the stem, the stems of the 

non-default inflections had well-defined phonological shapes. Their models learned the non-default 

inflections as different processes irrelevant to the default process, rather than treating them as exceptions 

to the default. In this sense, the non-default processes were not in competition with the default; as a result, 

the type frequency of the default regular exemplars was still dominant relative to true exceptions (i.e., 

those that did not comply with the default pattern and also did not resemble the stem templates of the non-

defaults), and thus the default was generalizable.   
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language, by quantifying them into varying degrees of productivity. The variables in the 

calculation of his indices, which are properties of spoken corpora, seem relevant for learning. In 

particular, the productivity index p*=n/h divides the number of singletons n with a given suffix 

by the sum of singletons h with a range of suffixes in a corpus. For example, regular and 

irregular suffixes can be ranked in their p* values, with the higher type frequency of regular 

exemplars producing a higher p* (and thus more productive) than irregular exemplars. The 

emphasis on singletons (i.e., non-repeated exemplars) in p* highlights the importance of low 

token frequency for regular exemplars, an indication of generalization to novel instances, 

according to Baayen. Bybee’s learning model also stresses the importance of high type frequency 

and low token frequency of regular exemplars. Nearly all theories assume that rules/patterns vary 

in gradient degrees of productivity, and the threshold at which productivity emerges remains 

unspecified.   

One theory (Yang, 2016), the Tolerance Principle (TP), departs from other learning 

theories in two major aspects. First, productivity cannot be gradient. The learner either has a 

productive rule or no rule. Second, TP specifies a productivity threshold, by e ≤ θN where 

θN=N/lnN, with e being the exceptions to the rule in question, θN the TP-threshold, and N the sum 

of rule exemplars and the exceptions. Only type frequencies matter in this theory. Thus, if e does 

not exceed the threshold, the rule is learned and fully productive. If e is above the threshold, no 

rule is learned, and the learner resorts to rote memorization. Recent corpus studies showed 

support for TP-predicted (un)productiveness and quantalness of morphosyntactic patterns in 

adult speech (Henke, 2022; Pearl & Prouse, 2021; van Tuijl & Coopmans 2021) and in historical 

texts (Kodner, 2023). Furthermore, experiments on English-speaking 5-8-year-olds’ and 

Icelandic-speaking 2.5-to-6-year-olds’ production of morphological patterns (Schuler, Yang & 
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Newport, 2016; Bjornsdottir, 2021) and on Russian-speaking 4-6-year-olds’ ordinal acquisition 

(de Vries, Meyer & Peeters-Podgaevskaja, 2021) provided evidence for this theory. Yang 

(2016)’s analysis of the CHILDES corpora showed that children’s productivity and 

overgeneralization of English verb morphology was fully predictable by TP; notably, TP also 

correctly predicted the finding that children almost never produced irregularizations such as 

“wipe-wope” (only 0.02% such analogy errors in Xu & Pinter, 1995). Such errors would be 

predicted by analogy- and exemplar-based theories (e.g., Ambridge, 2020; Bybee, 1995). 

Contrary to TP, gradient productivity was reported in many studies, typically using 

adults’ acceptance ratings or computer simulations of learning. Various linguistic rules/patterns 

were tested, such as English past tense (Albright & Hayes, 2003), final devoicing in 

morphological alternations in Dutch (Ernestus & Baayen, 2003), vowel harmony in Hungarian 

(Hayes, et al., 2009), velar palatalization in Russian (Kapatsinsky, 2010), and consonant cluster 

phonotactics in English (Olejarczuk & Kapatsinsky, 2018). Participants were asked to produce 

novel words (i.e., the Wug test) or to make a perceptual response to novel word stimuli (e.g., 

force choice, parsing), and their performance showed gradient productivity, correlating with their 

ratings of the stimuli and matching the lexical distributions of the morphophonological patterns 

in the native languages.  

Interestingly, these findings of gradient productivity for native language patterns 

resemble the performance of adults in artificial language learning experiments. Artificial 

language paradigms are advantageous because precise input characteristics during training can 

be specified and manipulated for determining learning mechanisms. A number of studies 

(Austin, et al., 2022; Hudson Kam & Newport, 2005, 2009; Wonnacott, Newport & Tennenhous, 

2008) used a task in which the training input contained exemplars representing a phrase structure 
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pattern, with certain levels of inconsistencies. Hudson Kam and Newport found that adults’ 

performance at test matched the inconsistent distribution of their training input (called 

‘probability matching’), but children regularized, generalizing beyond the inconsistent input. 

Most notably, Austin and colleagues, who showed the same difference between adults and 

children in their recent study, further found that younger children (5- to 6-year-olds) regularized 

more than older children (7- to 8-year-olds). These results are important, demonstrating that 

adults and children have distinct learning mechanisms. While probability matching might be 

associated with adults’ gradient productivity, the regularization found in children, especially in 

younger ages, seems compatible with quantal representation.   

Our interest thus concerns how infants at the earliest stage of cognitive development 

generalize, given inconsistent input. Do they probability match the input and show gradient 

productivity as do adults, or do they regularize as shown in 5- to 7-year-olds (Austin, et al., 

2022; Hudson Kam & Newport, 2005, 2009) and operate according to TP?  In perceptual 

experiments that trained infants with 100% regular artificial language input, 7-9-month-old 

infants learned algebraic-like patterns (Gerken, 2006; Marcus, et al., 1999), 12-mont-olds learned 

grammatical categorization patterns (Gomez & Lakusta, 2004), and 14-month-olds generalized 

word-order movement (Koulaguina & Shi, 2013). Productive knowledge was demonstrated by 

infants’ discrimination of novel test exemplars that conformed with the trained pattern versus 

violating it. Limited work exists on infants’ learning under inconsistent input. In Gomez and 

Lakusta infants who heard regular exemplars with 17% exceptions (by type frequency) 

succeeded in generalization, but infants exposed to 33% exceptions failed to show learning. In 

Koulaguina and Shi (2019), infants’ generalization of word-order patterns was successful when 

the training input contained 20% exceptions, but unsuccessful when exceptions were increased to 



 7 

50%. These results suggest that the type frequency of regular exemplars indeed needs to be 

relatively high to ensure productivity, as is assumed across theories. Taking the raw numbers of 

exemplars instead of the proportions, we find that both the learning success and failure in these 

studies are as predicted by the TP algorithm (Yang, 2016).   

However, the productivity threshold remains unclear, as this was never tested in these 

studies. To do so, the numbers of exceptions in contrasting training conditions (i.e., predicted 

learning success versus failure) must be close to the threshold on both sides. Considering Yang 

(2016)’s algorithm, the 8 exceptions out of 24 total exemplars in the ‘failure’ condition of 

Gomez and Lakusta (2004) was closely above the tolerance threshold (θN=N/lnN=24/ln24=7.55), 

but the contrasting ‘success’ condition with 4 exceptions (out of 24) was far below the threshold. 

In Koulaguina and Shi (2019) the exceptions (e=2) in a ‘success’ condition was far below the 

threshold (θN=10/ln10=4.34), whereas the contrasting ‘failure’ condition with 8 exceptions was 

far above the threshold (θN=16/ln16=5.77). Thus, the exceptions in these studies were not set in a 

way to be informative of the productivity threshold. 

The present study aimed at better understanding rule/pattern learning in infants, by 

testing precise theoretical predictions. Specifically, we directly tested the threshold of 

productivity. Furthermore, we asked whether productivity is quantal or gradient. We built on our 

previously published experiments (Koulaguina & Shi, 2013, 2019), in which generalization 

success and failure were consistent with TP as well as with other pattern-learning theories, but 

the numbers of exceptions were not designed to test the productivity threshold. We report two 

new conditions that used the same implicit learning task and the same stimuli (of the word-order 

movement patterns) as in our prior studies, but that the numbers of exceptions in training were 

set close to the TP-threshold. Moreover, our new and previous studies form a continuum of 
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training conditions with gradually increasing exceptions, allowing us to analyze the combined 

data and address the gradience-quantalness question.  

In the remainder of this article that report our study, the term ‘rule’ is used for 

convenience to mean either abstract symbolic rule or non-abstract pattern, without a bias, as our 

study is not designed to test the distinction of abstract rule representation versus analogy-based 

generalization. The learning shown in our study is compatible with both theoretical assumptions.  

2. Methods 

2.1 Participants 

Forty-eight non-Russian-learning 14-month-olds completed this experiment (Condition 1: mean 

age=462 days; range=446-483; 11 girls; Condition 2: mean age=459 days; range: 435-478; 12 

girls). The data of another eight infants were excluded from analyses because of fussiness (2), 

out of the camera view during test trials (1), and lack of interest in the task (5). 

2.2 Stimuli 

Stimuli were those of our previously published studies (Koulaguina & Shi, 2013; 2019), adapted 

for the distributions of our new training conditions. They were three-word sentences in Russian, 

16 used for constructing training exemplars and two for testing exemplars. Given the TP-

threshold θN=N/lnN=16/ln16=5.77 for the training, we set 11 rule exemplars and 5 exceptions for 

Condition 1 (i.e., productive), and 10 rule exemplars and 6 exceptions for Condition 2 

(unproductive). In terms of proportion, rule exemplars were above 50% in both conditions.  

As in our previous studies, the stimuli were prepared by applying each rule sentences to 

two word-order movement rules. For Rule 1, Words 1 and 2 were switched (i.e., abc-bac), 

whereas Words 2 and 3 were switched for Rule 2 (i.e., abc-acb). Exceptions were sentences 



 9 

appearing only in the base form (i.e., abc), with no word-order-shifted version. The two test 

sentences were each applied to the two word-order rules. Table 1 shows the base sentences that 

we used to construct our stimuli.  

Table 1. Sentences used in the two conditions. 

  Base abc sentences for the word-order shift rules 

(either abc→bac or abc→acb; each rule 

exemplar consisted of a base sentence and its 

shifted version) 

Exception sentences 

(non-shifted; abc) 

Training Dozhd’ zalil cherdak. 
Veter gnjot derev’ja. 

Vorona nashla pugovitsy. 

Machty gnutsja lukom. 
Zina gladit plat’e. 

Pojte pesnju druzhno. 
Dimke snilos’ pole. 

Chistim tufli vaksoj. 

Budesh vilkoj kushat’. 

Flagi utrom snjali. 

Veter vybil okna. (removed in Condition 2) 

Stanut reki polny. 
Otzvuk smekha sladok. 

Seno pahnet volej. 

Skrojut tuchi solntse. 
Obuv’ skinul rezvo. 

Tanets veren bubnu. (added in 

Condition 2) 

Test Vizhu nosik belki. 

Snova milyj vessel. 

 

 

The sentences were recordings of a Russian female speaker from Koulaguina and Shi 

(2013; 2019). The recording was produced in infant-directed speech style. The speech rate was 

slow such that a brief pause occurred naturally between words in all sentences. The pauses were 

helpful cues to word segmentation, allowing our task to focus on testing the learning of word 

order movement without the complication of word segmentation difficulty in an unknown 

language.  

The recorded stimuli were organized as follows. For Condition-1 training, 11 exemplars 

in Rule 1 (abc-bac) and five exceptions (in abc) formed the input for one subgroup of infants. 

The 11 same base sentences in Rule 2 (abc-acb) and the same five exceptions formed the input 

for another subgroup. For Condition-2 training, one of the 11 rule exemplars of Condition 1 was 
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removed, and we added an exception; thus, the 10 remaining Rule-1 exemplars and six 

exceptions formed the input for one subgroup, and 10 Rule-2 exemplars and the six exceptions 

for the other subgroup.  

Thus, the distributions of the training input were organized in terms of exemplars. For 

both conditions, each rule exemplar consisted of a base sentence and its shifted version. For 

example, the sentences Dozhd’ zalil cherdak and Zalil dozhd’ cherdak constituted one exemplar 

of the abc-bac rule. Exceptions were singletons in the abc base order. For example, Stanut reki 

polny was counted as one exception exemplar.   

To construct our test stimuli, we applied each of the two new test sentences to Rule 1 

(abc-bac) and to Rule 2 (abc-acb).  

For Condition-1 training, the average sentence duration (with base and shifted versions 

measured separately) was 2.88 sec (SD = 0.46) for Rule 1, 2.86 sec (SD = 0.42) for Rule 2, and 

2.48 sec (SD = 0.18) for the exceptions. For Condition-2 training, the average sentence duration 

was 2.91 sec (SD = 0.47) for Rule 1, 2.89 sec (SD = 0.43) for Rule 2, and 2.43 sec (SD = 0.20) 

for the exceptions. The average sentence duration in the test phase was 2.55 sec (SD = 0.09) for 

Rule 1, and 2.55 sec (SD = 0.09) for Rule 2.  

Visual stimuli included animations of colorful moving circles and moving blue geometric 

forms. Between trials, a moving star with the sound of birds singing served as the attention-

getter. During the pre-trial and post-trial, electric sound of a bouncing ball was used. 

2.3 Procedure and apparatus 

The experiment used two IAC sound-attenuated rooms. In the training room the child and the 

parent sat on a sofa before two small TV screens. A box of soft toys was available. The parent 
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wore headphones playing masking music and were asked not to talk. They could play together 

using the toys. Habit 2 software was used to present the stimuli and record the child’s looking 

times (Oakes, Sperka, Debolt & Cantrell, 2019). In an adjacent room, a researcher blind to the 

stimuli launched the experiment and coded the child’s looking to the screens. The training 

stimuli were presented fully in one trial, and repeated in three other trials, regardless of whether 

the child looked at a screen. The order of exemplars was randomized during each trial, with the 

restriction that the pair of sentences within each rule exemplar always occurred together (for 

maintaining the cohesion of a rule exemplar), i.e., the base abc sentence followed immediately 

by its shifted version. The visual display, i.e., the colorful moving circles for the initial three 

training trials and the blue geometric forms for the last trial, appeared on both screens 

simultaneously and were presented together with the speech stimuli.  

 Immediately following training, the parent and the child moved to the other sound-

attenuated room with no toy. The infant sat on the parent’s lap facing a large central screen. The 

parent wore headphones playing masking music. The researcher, blind to all stimuli, launched 

the experiment and coded the infant’s looking through a monitor using Habit 2. The test trials 

were infant-controlled, i.e., initiated by the infant’s looking and terminated when she looked 

away from the screen for at least two seconds. A test trial would also terminate if the maximum 

trial length was reached in case of no lookaway. The presentation of audiovisual stimuli would 

stop if a trial was terminated (either by the child’s lookaway or by the maximum trial length). 

The visual stimuli for every trial of the test phase were the blue geometric forms, which was 

presented together with speech stimuli.  

The inter-stimulus interval was 1200 ms in-between exemplars, and 700 ms separating a 

base sentence from its shifted version within a rule exemplar.  
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2.4 Design 

Within each condition, infants were randomly assigned to one of the two subgroups, either to 

Rule 1 with exceptions, or to Rule 2 with exceptions. This design ensured that subgroups hearing 

different rules (during training) served as each other’s control, such that a particular new test 

exemplar in one rule that was grammatical for one subgroup would be ungrammatical for the 

other subgroup, and vice versa.  

Infants heard four training trials (total duration 412 sec for Condition 1 and 400 sec for 

Condition 2). Each trial contained the 16 exemplars (11 rule cases and 5 exceptions for 

Condition 1; 10 rule cases and 6 exceptions for Condition 2). Table 2 shows the design. Recall 

that each rule exemplar consisted of a base sentence (abc order) and its shifted version (e.g., 

bac), and that each exception exemplar was a singleton sentence without a shifted version. To 

illustrate, Table 3 shows the detailed training exemplars and test stimuli for one of the subgroups 

of Condition 1.  

Table 2. Experimental design 

  

  

Training 

(TP-threshold: e=5.77) 

(Statistical-majority 

threshold: 50%) 

Condition 1: 

11 abc→bac exemplars 

5 exceptions  

Condition 1: 

11 abc→acb exemplars 

5 exceptions 

Condition 2: 

10 abc→bac exemplars 

6 exceptions  

Condition 2: 

10 abc→acb exemplars 

6 exceptions  
Test 

(New exemplars) 

abc→bac (trained rule)  

abc→acb (non-trained rule)  

abc→acb (trained rule)  

abc→bac (non-trained rule) 
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Table 3. Stimuli for one subgroup of Condition 1. 

  Exemplars for the abc→bac word-order shift rule 

(each rule exemplar consisted of a base sentence and its 

shifted version) 

 

Exemplars of exceptions 

(non-shifted; abc) 

Training 

(11  

rule 

exemplars  

&  

5 exemplars 

of 

exceptions) 

Dozhd’ zalil cherdak. → Zalil dozhd’ cherdak. 

Veter gnjot derev’ja. → Gnjot Veter derev’ja. 

Vorona nashla pugovitsy. → Nashla Vorona pugovitsy. 

Machty gnutsja lukom. → Gnutsja machty lukom. 

Zina gladit plat’e. → Gladit zina plat’e. 

Pojte pesnju druzhno. → Pesnju pojte druzhno. 

Dimke snilos’ pole. → Snilos’ dimke pole. 

Chistim tufli vaksoj. → Tufli chistim vaksoj. 

Budesh vilkoj kushat’. → Vilkoj Budesh kushat’. 

Flagi utrom snjali. → Utrom flagi snjali. 

Veter vybil okna. → Vybil veter okna. 

 

Stanut reki polny. 

Otzvuk smekha sladok. 

Seno pahnet volej. 

Skrojut tuchi solntse. 

Obuv’ skinul rezvo. 

Test Vizhu nosik belki. → Nosik vizhu belki. (abc-bac) 

Snova milyj vessel. → Snova vessel milyj. (abc-acb) 

 

 

The test phase started with a pre-trial, followed by two introduction trials, 14 test trials 

and a post-trial. The pre-trial served to familiarize the child with the equipment. The post-trial 

marked the end of the experiment. The two introduction trials presented the two new sentences 

that would be later used in the test trials. One sentence was applied to Rule 1 in one introduction 

trial, and the second sentence was applied to Rule 2 in the other introduction trial. See the 

examples in Table 3. Once initiated, the two introduction trials were presented in full (each 6000 

ms) so that the child could hear and encode both the base and shifted version of each sentence. In 

Conditions 1 and 2, the introduction trials were counterbalanced across babies for the specific 

sentence in which the rules appeared (half heard the first sentence in Rule 1 and the second 

sentence in Rule 2; the other half heard the first sentence in Rule 2 and the second in Rule 1) and 
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for the order of the presentation of the rules (half heard Rule 1 in the first trial, and the other half 

heard Rule 2 in the first trial).  

 The 14 test trials followed the introduction trials, presenting the same two test sentences 

in their respective rules in alternate trials, with the same counterbalancings as the introduction 

trials. For example, if the first sentence in Rule 1 was the first introduction trial, it was also the 

first test trial. The test trials were fully infant-controlled, initiated and terminated by the child’s 

looking. The maximum length for each test trial was 21 s if the child looked till the end of the 

trial, and in this case the rule exemplar in the trial would be repeated and heard for a total of 

three times. Across all counterbalancing subgroups, each infant was received two types of test 

trials according to the training: the trained rule versus the non-trained rule.  

2.5 Predictions 

Our study was designed to test distinct theoretical predictions. Rule exemplars in the input of the 

two conditions were 68.75% versus 62.5%, both greatly surpassing the statistical majority of 

50%. Thus, both should show successful learning if statistical majority determines productivity. 

However, if the onset of productivity is determined by TP, then Condition 1, but not Condition 2, 

should show success, as the exceptions were set just below the TP-threshold in the former (e=5), 

but just above the threshold in the latter (e=6).  

3. Results 

We first analyzed whether productivity was present in Conditions 1 and 2. For each infant, the 

average looking time per trial for each type of test trials (trained rule versus non-trained rule) 

was calculated. Then, we calculated the differential score of the looking times for every infant 

(i.e., non-trained minus trained). Based on the results of our previous studies on rule 
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generalization from the same kind of stimuli in the same task (Koulaguina & Shi, 2013, 2019), 

we predicted a priori that successful generalization should yield a novelty effect (longer looking 

towards the non-trained rule than the trained rule, i.e., differential scores > 0). Specifically, this 

novelty effect was expected for Condition 1, given that the input distribution should lead to 

successful generalization according to both statistical majority and TP theories, whereas this may 

or may not be the outcome of Condition 2 depending on the particular theory. The novelty effect 

was confirmed for Condition 1, with differential scores significantly above the 0 chance level, 

M=2.3 sec, SE=0.82, t(23)=2.816, p=.005. However, the differential scores in Condition 2 did 

not differ significantly from chance (M=0.54 sec, SE=0.55, t(23)=.975, p=.17), suggesting no 

generalization. These results agree with the predictions of TP (Yang, 2016), but much less with 

that of statistical majority. We further predicted that the differential scores in Condition 1 should 

be greater than those in Condition 2, which was confirmed, with respective means being 2.3 sec 

versus 0.54 sec, unpaired t(46) =1.785, p=.04, Cohen’s d = 0.515. See Figure 1. We also 

conducted a Bayes factor analysis of the data of the two conditions to compare the null 

hypothesis (i.e., no difference between the conditions) and an alternative hypothesis (the 

differential scores in Condition 1 greater than those in Condition 2). The analysis was performed 

with a Cauchy distribution prior for the effect size, a standard choice indicating minimal prior 

information. We obtained a Bayes factor of 2.067, indicating that the data were two times more 

likely to occur under the alternative hypothesis than under the null hypothesis. This result was in 

line with that of the t-test.  
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Figure 1. Differential scores (means and standard errors) of looking times in the test trials (i.e., the 

average looking time per trial for the untrained rule minus that for the trained rule). The differential scores 

were significantly above chance in Condition 1 (68.75% rule exemplars (11); the number of exceptions 

e=5 was just below the TP-threshold, θN=N/lnN=16/ln16=5.77), but not in Condition 2 (62.5% rule 

exemplars (10); the number of exceptions e=6 was just above the TP-threshold 5.77).  

 

Next, we analyzed the data of the present study together with those of our previous 

studies (see Figure 2), to determine whether productivity is gradient or quantal. Gradient 

productivity with increasing consistency of regular exemplars is assumed in various models (e.g., 

Bybee, 1995; Baayen, 1993), whereas TP predicts a quantal shift between non-productivity and 

productivity at the tolerance threshold. In one previous experiment we presented 50% regular 

exemplars (e=8, far above the TP-threshold, θN=N/lnN=16/ln16=5.77), and infants showed no 

discrimination of test trials, i.e., no productivity (Koulaguina & Shi, 2019). Condition 2 of the 

present study (62.5% regular exemplars), with exceptions (e=6) just above the TP-threshold 

(5.77), also showed no productivity. The comparison of the differential scores of the previous 

50%-experiment (M=-0.47 sec, SE=0.84) and those of Condition 2 (62.5% regular exemplars: 
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M=0.54 sec, SE=0.55) showed comparable performance (unpaired t(38)=1.046, p=.302, that is, 

no evidence of a gradient difference between these two levels of regularity. Next, we took the 

data from two previous experiments that showed rule productivity, one presenting 100% regular 

exemplars (Koulaguina & Shi, 2013), and another 80% regular exemplars with exceptions (e=2) 

far below the TP-threshold (θN=N/lnN=10/ln10=4.34) (Koulaguina & Shi, 2019). We calculated 

the differential scores of test trials (i.e., non-trained minus trained) of each infant in those 

experiments (100% regular exemplars: M=1.87 sec, SE=0.77; 80% regular exemplars: M=1.64 

sec, SE=0.58), and analyzed them together with the differential scores of Condition 1 of the 

present study (68.75% regular exemplars with exceptions (e=5) just below the TP-threshold 

5.77) in a one-way ANOVA. The scores did not differ across the three conditions (F(2, 53)=.198, 

p=.821), indicating no evidence of gradually decreasing performance, as was already visible in 

the pattern of their means (1.87, 1.64 and 2.3).  Taken together, the lack of difference in the 

above two statistical comparisons suggest that the learning was not gradient.  

We conducted additional analyses of the five experiments to further assess if infants’ 

generalization was gradient-like or quantal-like. First, a linear regression analysis was done, 

using the differential score as the dependent measure and the five levels of training as the 

independent measure. The results revealed that the levels of training significantly predicted the 

differential scores, F(1, 94)=4.16, p=.0442. The regression model explained a small proportion 

of the variance in differential scores (adjusted R²=.032). Notably, each increase of 1% in regular 

exemplars in training was associated with a positive change in the differential score, with a 

coefficient of B=0.043 (β=0.206).  This positive trend was compatible with both gradient and 

quantal performance.  
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Therefore, we subsequently assessed if infants’ performance showed a discrete change 

from 62.5% to 68.75% training. A step function model compared the TP-predicted unlearnable 

conditions, scored 0, and the TP-predicted learnable conditions, scored 1, in the format of a 

regression. This approach allowed us to compare the adjusted R² of the step function model with 

that of the initial linear regression based on the five levels of training as the predictor. The results 

of the step function analysis indicated that the binary learnability index significantly predicted 

the differential scores, F(1, 94)=8.00, p=.0057. The step function model explained still a small 

proportion of the variance in differential scores, although more than twice than was explained by 

the gradually increasing model (adjusted R²=.068 in the step function, compared to 0.032).  

When the predictors based on the above two analyses (i.e., the gradual and the single step 

increase functions) were entered together, the overall fit degraded (F(1,93)= 3.96, p=.0224, 

adjusted R2= .059) relative to the second analysis alone, due to the loss of one degree of freedom. 

Importantly, the test for the step function, once the other predictor is taken into account, still 

approached significance, despite the loss of one degree of freedom (t(93)=1.91, p=.0595), while 

that for the gradual increase predictor, after taking the other predictor into account, indicated a 

total absence of effect (t(93)=0.002, p=.9985).  Overall, the results of the above analyses were 

consistent with quantal rather than gradient performance.  
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Figure 2. Differential scores (means and standard errors) of looking times of the test trials (i.e., the 

average looking time per trial for the untrained rule minus that for the trained rule). The five training 

conditions contained different proportions of rule exemplars relative to exceptions. The 68.75% (i.e., 

11R/16) and 62.5% conditions (i.e., 10R/16) were those of the present study. The other conditions with 

more extreme proportions of rule exemplars were from our previous studies (the 100% condition from 

Koulaguina & Shi, 2013, and the 80% and 50% conditions from Koulaguina & Shi, 2019), i.e., 10R/10, 

8R/10, 8R/16. The 100%, 80% and 68.75% conditions showed successful productive learning, and the 

learning performance across the three conditions was comparable statistically. The 62.5% and 50% 

conditions showed no productive learning, and their performance was also comparable statistically. The 

black dashed line across the columns represents the linear regression. Note that the linear regression line 

is a straight line; however, it has been slightly adjusted due to the uneven spacing between the different 

proportions of rule exemplars across the five training conditions. The orange line contains two horizontal 

lines representing the two values of the step function, with the break points between the 68.75% and 

62.5% conditions. 

 

Finally, we analyzed if infants received the same amount of active exposure during 

training, measured by their looking time to the screens, where the sound source was. Results 
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showed no difference in looking during training in Condition 1 (M=110.73 sec, range=33.23-

273.77) versus Condition 2 (M=112.09 sec, range=31.62-289.44), t(46)=-.07, p=.944. Individual 

infants’ looking times during training did not correlate with their differential scores in the test, 

neither in Condition 1 (r=-.135, n=24, p=.53) nor Condition 2 (r=.008, n=24, p=.972). Infants 

spent more time playing with the toys and with the parent. Their looking times were low (on 

average about 1/4 of the training duration) and variable. However, infants in each subgroup 

received the same full passive exposure of the training input, suggesting that their performance 

during test reflected implicit/unconscious learning.  

4. Discussion 

We examined infants’ generalization from input containing different levels of regular exemplars 

and exceptions. Globally, productivity depended on regular exemplars being high in type 

frequency relative to exceptions, as predicted in all rule/pattern learning theories (e.g., Baayen, 

1993; Bybee, 1995; Yang, 2016). Most theories focus on ranking different patterns with varying 

productivity indices, without specifying a threshold of productivity. TP (Yang, 2016), in 

contrast, specifies an algorithm for the threshold of learning any rule, calculated from the number 

of rule exemplars and exceptions. Our training input was therefore set closed to the TP-threshold, 

with Condition 1 predicting productivity and Condition 2 no productivity. In terms of 

proportions, the regular exemplars were in statistically majority (over 50%) in both conditions 

(68.75%, 62.5%), contrasting with the 50% training in one of our previous experiments (which 

yielded no learning) (Koulaguina & Shi, 2019). If statistical majority is the productivity 

threshold, infants should show generalization in both Conditions 1 and 2 of the present study. 

Therefore, statistical majority was pitted against Yang’s TP-threshold. For these three training 

conditions (68.75%, 62.5%, 50%), the number of total types was equal (N=16) whereas the 
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regular exemplars versus exceptions varied (11+5, 10+6, 8+8). Infants showed productivity only 

in the 11+5 (68.75%) condition, consistent with TP, but not with statistical majority.  

Another novel finding emerged from the combined analysis of our present and previous 

experiments: Infants’ productivity was quantal rather than gradient. As existing theories are often 

concerned with ranking the levels of productivity of regulars and irregulars within a rule/pattern 

or even unrelated rules/patterns (e.g., comparing English affixal rules such as re-, -able, -ness), 

their assumption is that productivity levels are gradient (e.g., Baayen, 1993; Bybee, 1995). In 

contrast, according to TP, productivity is quantal, depending on whether the exceptions to a rule 

sit below or above the TP-threshold (Yang, 2016); a productive rule, once learned, is equally 

productive regardless of the number of exceptions. Our infants showed evidence not only for the 

TP-predicted threshold, but also for the quantal effect. Infants in different learnable conditions 

were equally successful, whether input consistency was 100%, 80%, or 68.75%. Likewise, the 

conditions that yielded no learning did not differ from each other. The linear regression and step 

function analyses indicated that the learning was categorical, rather than gradient. That is, infants 

responded quantally, as did older children in Bjornsdottir (2021). The lack of productivity 

gradience in infants is consistent with the regularization performance (rather than probability 

matching) shown in 5- to 7-year-old children (Austin, et al., 2022; Hudson Kam & Newport, 

2005, 2009).  

Finally, we showed that rule/pattern learning can be implicit. In other studies testing TP 

with older children and adults (Schuler, Yang & Newport, 2016; Bjornsdottir, 2021), training 

required participants to maintain active attention. In our present and previous experiments 

(Koulaguina & Shi, 2013, 2019) infants relied mostly on passive input exposure, suggesting that 

learning can also operate at an unconscious neurocognitive level, at least for certain kinds of 
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knowledge. Similarly, in Saffran, et al. (1997) adults and 6- to 7-year-olds passively tracked 

transitional probabilities in an artificial language while actively performing another task 

unrelated to the background training speech. Since infants and toddlers, who typically have 

limited attention span, receive abundant passive/incidental exposure to various stimuli in daily 

life (e.g., language input), the implicit learning demonstrated by our infants offers insight into 

mechanisms of early cognitive and language development. 

Exceptions used in TP studies are typically overt violation cases (comparable to the 

irregular past-tense form went in English). The exceptions in our input, however, are not direct 

violations of a rule/pattern but absence of evidence, a scenario occurring commonly in natural 

speech and important for language learnability theories. Our results show that such cases 

function equivalently as overt violation cases for learners; for both kinds, it is the number of 

positive data (i.e., attested regular cases) that determines productivity.    

In conclusion, our findings suggest that rules or patterns can be learned from inconsistent 

input implicitly without attention. The evidence supports the threshold and quantalness of 

productivity as defined in TP (Yang, 2016). We demonstrate both success and failure of 

rule/pattern learning and generalization as predicted by the theory in infants as young as 14 

months of age, indicating that the mechanism is available early in life.  
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