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Abstract

Recovering discrete words from continuous speech is one of the first challenges facing language learners. Infants and adults
can make use of the statistical structure of utterances to learn the forms of words from unsegmented input, suggesting that
this ability may be useful for bootstrapping language-specific cues to segmentation. It is unknown, however, whether
performance shown in small-scale laboratory demonstrations of ‘‘statistical learning’’ can scale up to allow learning of the
lexicons of natural languages, which are orders of magnitude larger. Artificial language experiments with adults can be used
to test whether the mechanisms of statistical learning are in principle scalable to larger lexicons. We report data from a
large-scale learning experiment that demonstrates that adults can learn words from unsegmented input in much larger
languages than previously documented and that they retain the words they learn for years. These results suggest that
statistical word segmentation could be scalable to the challenges of lexical acquisition in natural language learning.
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Introduction

Spoken speech is a continuous acoustic waveform without
consistent breaks at the boundaries between words. Although
acoustic, phonetic, and prosodic features give partial evidence for
where words begin and end, these cues vary widely between
languages [1]. One source of information that is consistent across
languages, however, is the statistical structure of the utterance itself
[2]. Because utterances are generated by combining words from a
finite lexicon, some sound sequences will be much more likely to
appear than others. Hence, a learner can in principle work
backwards from the distribution of sound sequences in a corpus of
utterances to make an informed guess about the generating
lexicon.

A variety of computational systems are now able to recover
word boundaries with relative accuracy from an unsegmented
corpus [3,4], and laboratory experiments show that–at least under
certain conditions–human learners can do the same thing. These
experimental demonstrations (often referred to as ‘‘statistical
learning’’ experiments) have used artificial languages with no
prosody to show that both infants and adults are able to use the
distribution of sound sequences to extract words from continuous
speech [5,6]. In a typical statistical learning experiment, infants or
adults listen to a stream of unsegmented speech, generated by
randomly concatenating words from a language containing 4–6
different word forms. After a very short exposure–sometimes as
little as 2 minutes–listeners are then able to distinguish frequent
sequences from less frequent distractors [5]. Infants in this type of
experiment can even distinguish between strings that are matched
for overall frequency but vary in their statistical coherence on

measures like transitional probability (the probability of one
syllable given the observation of another) [7].

What is the role that this kind of statistical learning plays in
children’s language acquisition? Some authors have suggested that
it is an important part of the broader process of language
acquisition [8–10], but others have questioned whether perfor-
mance shown in short lab studies can scale up to the challenges of
lexical acquisition [11–13]. In particular, it is unknown whether a
mechanism that has only been demonstrated to operate over
highly restricted artificial languages with homogeneous lexicons
can nevertheless be applied successfully to the complex and
heterogeneous lexicons of natural languages.

Recent work has found that learners can map meanings to the
outputs of statistical segmentation tasks [14–16] and that statistical
learning effects can be found using natural language stimuli
[17,18]. In addition, statistical learning effects are robust to
variation in word and sentence lengths [19] and to Zipfian
frequency distributions (the ‘‘heavy-tailed’’ distributions that are
ubiquitous in natural languages, in which a few words appear with
very high frequency while many others appear much more rarely
[20]). But although the results of these tests have been positive,
they do not fully address concerns regarding whether statistical
learning can scale to larger languages and longer retention
intervals, because they still use small-scale experimental tasks.

The goal of the current study is to address this concern about
the scalability of statistical learning. We used adult learners to
address this question, for two reasons. First, statistical learning
abilities generally appear to be conserved across development
[5,6,21], making adults a viable population for studying these
abilities using large-scale and psychophysical paradigms not suited
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for infants and children. Second, although children learning new
languages eventually reach higher levels of performance on
complex syntactic and morphological regularities [22], they do
not learn words faster or better than adults. In fact, memory for
new lexical items increases considerably across development
[23,24], consistent with the increasing rate of vocabulary growth
over the course of language acquisition [25,26] and with general
processes of maturation [27]. Our previous work has suggested
that the major bottleneck in statistical learning tasks is memory for
individual lexical items [19]. Thus, if adults are unable to learn
words from a particular language via statistical learning, this
failure should place an upper bound on children’s abilities as well.
Nevertheless, we note that a success by adults in learning a scaled-
up language does not imply that statistical learning is used by
children–only that negative arguments regarding scalability are
invalid. Our current study was designed to evaluate these negative
arguments.

In our study, four individuals listened to large corpora of
synthesized speech, each over the course of a continuous ten-day
period. Each participant listened for an hour a day on their iPod
while they exercised, commuted to work, or relaxed, with the
constraint that they did not read, speak, or otherwise use language
during listening. The unique language that each participant heard
was comprised of 1000 different words, which had the character-
istic Zipfian frequency distribution of natural language, such that a
few words were highly frequent while most others appeared only
occasionally. The lengths of words and sentences were Poisson
distributed, also as in natural language. Words were concatenated
randomly without immediate repetitions so there was no syntactic
structure available, but all sentences had a minimum of two words
and a mean of four. Each of these factors has been studied in
isolation [19,20]; our intention here was to combine them on a
much larger scale than previously attempted.

Because we wanted to test the scalability of statistical learning
mechanisms, we chose to stay close in our paradigm to the original
artificial language design pioneered by Saffran and colleagues [6],
rather than adding additional cues like prosody [28]. In addition,
because of the scope of our project, the use of natural language
stimuli (as in [18]) would have been quite difficult. As a
consequence, the only information that was present in our
language but not in the initial experiments came from the
boundaries between utterances. Although utterance boundaries
are not necessary for learning (as shown by [6]), they are a
pervasive feature of natural language, and our own previous data
show that they facilitate segmentation performance [19]. Different
accounts of segmentation treat utterance boundaries differently:
while some treat them as merely another aspect of distributional
structure (e.g., [3]), others have given them special status (e.g.,
[29]). For our purposes here we include these boundaries but note
that they likely serve to make our languages easier to learn–though
also more natural–than they would have been otherwise.

Materials and Methods

In order to obtain a group of participants who would have a
commitment to this relatively demanding experiment, we recruit-
ed from the population of research assistants in the MIT Brain and
Cognitive Sciences Department. All participants gave written
consent to participate in this research, and the details of this
consent procedure were approved by the MIT Committee on the
Use of Humans as Experimental Subjects. The final sample for the
learning study consisted of four naı̈ve members of the Brain and
Cognitive Sciences community (1 MIT undergraduate, 1 student
at another local institution, and 2 employees). They were matched

with four yoked control participants. After three years, three of the
four participants in the experimental condition were located for
followup testing. One additional participant (a fifth) was excluded
for using an explicit strategy during the initial test phase (placing a
segment boundary every two syllables without variation through-
out the entire test, rendering the initial test data uninterpretable).

A unique artificial language was generated for each participant.
Each language had 1000 word types and 60,000 word tokens (for
*10 hours of speech). Frequencies of words were distributed via a
Zipfian frequency distribution: f (x)!1=r(x), where f (x) is the
frequency of word x and r(x) is its rank, such that there were a few
highly frequent words and many more with lower frequencies
(max =*8000, min = 10 tokens) [30]. Word lengths (in syllables)
were generated by drawing from a Poisson distribution with mean
2 and adding 1 to avoid lengths of zero (mean = 3). The length and
frequency of individual words were chosen independently: There
was no bias to choose short words to be the highest frequency
words in a language.

Words were created by combining 24 consonants and 14 vowels
into 336 CV syllables and concatenating randomly. Sentences
were then created by randomly concatenating words according to
the frequency distribution of word types, with no word repeated
immediately after itself (as in the initial work on statistical learning,
which imposed this constraint to avoid the extra salience given by
immediate repetitions [5,6]). Following our previous work [19,20],
we synthesized our languages as a sequence of sentences.
Sentences were distinguished from one another via a short but
highly perceptible (200 ms) silence between them. Sentence
lengths (in words) were generated by drawing from a Poisson
with mean 2 and adding 2 to avoid sentences of length 1; the mean
sentence length was 4 words (hence, 12 syllables).

Each training sentence was synthesized with no prosodic
variations and no word boundaries using the MBROLA speech
synthesis package with the us3 diphone database, with a duration
of 250 ms per syllable and a constant F0 of 100 Hz [31]. The
synthesizer was provided with unsegmented sequences and hence
produced no temporal or coarticulation boundaries to distinguish
between word-internal syllable transitions and word boundaries.
Test materials were synthesized with the same settings.

Materials were generated as a series of 5 minute WAV files and
loaded directly onto participants’ personal iPod music players.
Participants then listened to their language over headphones for
approximately one hour each day over 10 days. They were
instructed that they did not need to pay attention while listening
but could not read, talk, or otherwise use language during the
experiment; instead they were encouraged to listen while
exercising or walking from place to place. To improve compliance,
participants kept journals of listening activity; responses varied but
the modal activities during listening were transportation and
exercise.

Because two-alternative forced choice (2 AFC) trials impart
information to participants about what the correct answers are
(e.g. one of the two possibilities), it is not possible to conduct
multiple testing sessions using a 2 AFC paradigm. To probe
performance immediately after training [20,32], we used an
orthographic segmentation paradigm that tested participants’
performance in making explicit word segmentation decisions In
the first interim test session (‘‘immediate test’’), which occurred the
day after they finished listening (the 11th day of the experiment),
participants were tested on their ability to segment 400 tokens
(*100 novel sentences). Orthographically glossed sentences–
sentences written out as a string of syllables, as in ‘‘go lah bu pa
doh ti’’–were presented on a computer screen; participants were
instructed to listen to the sentence as many times as they wanted
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and to click between syllables where they thought there was a
break between words. Each of the four yoked control participants
completed the same initial test as one participant in the study, but
without completing the training session.

The second interim test (‘‘1–2 month test’’) was identical to the
first and was administered after one month (3 participants) or 2
months (1 participant, labeled LB in Figures 1 and 3). Participants
had no further exposure to the corpus after the initial 10 day
training session.

To provide measures comparable to those collected in previous
work on statistical learning, the final test was a 2 AFC,
administered approximately 3 years after the initial testing session
(36–37 months). Participants listened to 64 MP3 files of pairs of
words, synthesized as above. They were informed that one word
was from the lexicon of the language they had initially heard
during training, and that their job was to choose that word. Target
words were sampled uniformly across the log frequency range
spanned by the training sample, but all words above frequency
1000 were tested. Distractors were frequency-matched words from
the lexicon of another participants’ language (and contained
syllables that were present in both languages). In order to avoid
incentives for explicit study, participants were not notified that
there would be a second interim test or a final test until several
days beforehand, when they were contacted for scheduling.

Results

All participants were able to segment novel sentences into their
component words. Following the methods commonly used to
evaluate computational studies of segmentation [3,33], we
compared participants’ responses to the correct segmentation
and computed precision, recall, and F-score. Precision and recall are
signal detection-based measures that allow a set of responses to be
evaluated independently from the decision threshold that is used.
In our study, a ‘‘hit’’ was when a participant marked a boundary at
a location where one existed, a ‘‘miss’’ was when a boundary was
not marked by the participant, and a ‘‘false alarm’’ was when the
participant marked a boundary in a location where there was not
one. Precision was defined as hits/(hits+false alarms): the

proportion of reported segmentation decisions that were correct.
Recall was defined as hits/(hits+misses): the proportion of all
correct segmentation decisions that were reported by the
participants. It is common in the literature on computational
linguistics to combine these two numbers for easy comparison by
taking their harmonic mean, giving an F-score, a single number
that is easily compared across conditions. Figure 1 shows these
measures, both immediately after exposure and in a surprise 1–2
month followup test session.

Performance was relatively high, with F-scores generally above
.5 and precision and recall relatively close to one another.
Precision was higher than recall in all cases, suggesting that
participants placed fewer boundaries than was appropriate, but
that the boundaries they did place were accurate (in some cases
over 80% correct). In addition, performance increased slightly
from the first test to the 1–2 month followup. Although our small
sample precludes making any inferences on the basis of this
numerical increase, it could be due to a potential memory
consolidation effect [34]. Alternatively, participants might have re-
encoded the training materials during and after the first testing
session, due to their presentation in the visual modality. In any
case, we observed no decline in performance over the delay.

To create chance baselines for the F-score measure, we
randomly permuted participants’ own segmentation decisions.
We created 10,000 simulated segmentations of each sentence for
each participant: we took their initial segmentation of the sentence
and shuffled the positions of the boundaries while keeping the
number of boundaries constant. We then computed F-scores for
each of these random segmentations and empirical 95% confi-
dence intervals on these permuted F-scores. Using these baselines,
we found that both immediately and 1–2 months later, partici-
pants performed considerably above chance (empirical pv:0001).
This result suggests that participants learned and retained the
forms of the words and were able to apply this knowledge to make
sensible decisions about how to segment speech in the language. In
addition, because the baselines randomize individual participants’
decisions within each sentence, they ensure that participants’
accuracy was not due to guessing based on assumptions about the
distribution of word lengths (as opposed to actual knowledge of
word forms).

Performance was also well above the performance of the yoked
controls, who received testing but no training. Although some of
the yoked controls’ performance was higher than baseline, even
the most successful was still well below the performance of the least
successful trained participant. This result suggests that perfor-
mance in the initial segmentation task was not due to learning only
the most frequent words (those that could be learned during the
test session alone).

Further evidence that participants gained partial knowledge of
many words–rather than learning just a few high frequency
words–comes from an analysis of participants’ boundary decisions
at individual locations in sentences (Figure 2). We examined each
decision on the basis of whether there was actually a word
boundary at that location. Most words were longer than two
syllables, so over all possible locations, more fell within words than
between words. (If all words were two syllables, every other
location would be a boundary, but since some words were three,
four, or more syllables long, there were fewer boundaries than
word-internal locations). Because participants were likely sensitive
to this fact, there were more instances of correct rejections at
word-internal locations, and overall performance on word-internal
locations was higher than performance in finding boundaries.

To analyze the effects of frequency on segmentation perfor-
mance, we classified decisions by the frequency of the word about

Figure 1. Results of the interim tests. Bars show F-scores (the
harmonic mean of precision and recall) for the immediate and 1–2
month test sessions, along with permuted baseline and yoked control
scores. Blue and red lines give precision and recall scores respectively
for each participant and condition (means for permuted baseline). Error
bars show 95% confidence intervals.
doi:10.1371/journal.pone.0052500.g001
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which the decision was being made. For boundary locations, we
used the higher frequency of the two words adjacent to the
boundary. Overall, we saw a strong relationship between word
frequency and segmentation performance. A linear mixed-effects
model [35] confirmed this conclusion, finding effects of log
frequency (b~:34, pv:001), boundary presence (b~2:51,
pv:0001), and their interaction (b~:25, p~:001). The formula
used was corr.seg*log(freq)* bound+(log(freq) * bound | subject),
where corr.seg was an indicator variable for a correct segmenta-
tion decision, bound was an indicator variable for whether a
boundary was present, and log(freq) was the natural logarithm of
word frequency, described above. Significance was computed via

the z-approximation due to the large number of observations and
the relatively small anti-conservativity of this approach when a
maximal random effects structure is used [36].

Three years after the initial experiment, we located three of four
participants and administered a surprise test, asking them to
distinguish words from novel length-matched distractors. A logistic
mixed-effects model showed a highly significant effect of log
frequency on performance (b~1:33, pv:0001), congruent with
previous work on Zipfian frequency distributions showing that
word frequency was the strongest predictor of accuracy at test
[20]. Overall, while there was no evidence for retention of low-
frequency words, retention of the high-frequency words was close
to perfect despite the long period between training and test
(Figure 3).

Discussion

Our experiment was designed to test whether the abilities
demonstrated in ‘‘statistical learning’’ tasks can be applied to large-
scale lexicons. The evidence presented here suggests that they can.
After ten days of exposure, learners acquired partial knowledge
about many words in a massive artificial language, and retained
the most frequent words across a three-year delay.

How does the scale of our experiment compare to natural
language learning? Children hear *250,000–1,000,000 word
tokens per month, for a total of *3–12 million words by their first
birthday. If these tokens are produced in a Zipfian distribution
over 20,000–60,000 word types, then the most frequent word will
then be heard around 250,000–3,000,000 times, and the
hundredth most frequent will still be heard several thousand
times. (Sources for these figures: Hart and Risley [37] give an input
range of 10–35 million words by age 3. The Human Speechome
Corpus [38] contains approximately 16 million words in 15
months, for *1 million words per month, again 36 million words
by age 3. Average English vocabulary is around 60,000 words
[39], though this may be significantly limited in child-directed

Figure 2. Probability of making a correct segmentation decision at a particular location in a sentence, plotted by whether there was
a boundary at that location. Results are averaged across participants, and binned by the logarithm of the highest frequency word at the
boundary (e.g., at the boundary between two words, the higher of the two word frequencies). Points show means, intervals show binomial 95%
confidence intervals with a non-informative Beta prior, and lines show a loess smoother.
doi:10.1371/journal.pone.0052500.g002

Figure 3. Percent correct performance on a set of 2 AFC test
trials administered three years after training. Dots show
individual participants’ performance in one frequency range and are
jittered slightly on the horizontal to avoid overplotting. Lines show best
fitting half-logit regression models for individual participants.
doi:10.1371/journal.pone.0052500.g003
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speech.) Thus our data provide an in-principle demonstration that
ambiguous contexts can lead to learning within both a frequency
range and a retention interval comparable to natural language
learning. Nevertheless, developmental experiments will be neces-
sary to test whether statistical learning is a viable route to large-
scale word learning for infants and children.

Exposure frequency (the number of times a string of sounds was
heard) was the primary determinant of retention in our data.
Previous work on word segmentation has suggested that learners
succeed in statistical learning tasks by computing transitional
probabilities (the probability P(BDA) that some syllable B follows
syllable A [5,6]). Nevertheless the experimental data from
statistical learning experiments are consistent with many possible
psychological mechanisms, not just the transition probability
computation [19,20,40]. One class of ‘‘chunking’’ models relies on
memory mechanisms to extract and retain an internally-consistent
segmentation of the input into frequent chunks [3,41,42].
Chunking models that have interference effects or parsimony
biases could provide a good explanation for the frequency
dependence of learners’ performance, while also capturing
transitional probability effects. Thus, ‘‘frequency or transitional
probability’’ may be the wrong question. Instead, future research
should investigate proposed mechanisms that capture both
smaller-scale transitional probability effects and large-scale
frequency dependence.

Although our experiments were not directly designed to test the
connection between memory mechanisms and statistical learning,
there are nevertheless similarities between our results and several
studies of language learning and long-term memory. First, the
dependence of performance on log word frequency parallels the

relationship found by Anderson [43] and others. Second, the scale
of learning is consistent with previous work on long-term lexical
memory [44]. Third, many models of language learning assume
that only the highest-frequency forms are retained and used for
inferences [45,46]. Finally, although comparable studies have not
been performed, children’s retention of novel word forms and
meanings over intervals of weeks or months has been well-
documented [47,48].

Despite limited experimental evidence, the utility of exposure to
language input without direct interaction–via television, radio,
podcast, or overheard speech–is widely debated in informal
discussions of second language learning. Our results show that for
adults, this kind of exposure can promote the long-term retention
of high-frequency, statistically-coherent chunks of language, albeit
without any links to meaning. This kind of exposure may create a
baseline competence for future comprehension in meaningful
settings, useful both for prelinguistic infants who hear large
amounts of speech before they begin producing or comprehending
language and for adults learning to parse an unfamiliar language.
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