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Introduction 

In order to perceive speech and other sounds, the incoming sound 
wave must be transformed into a variety of representations, each 
bringing forth different aspects of the signal, its source, and mean­
ing. Understanding how we perceive and how machines can be made 
to perceive auditory signals means, in part, discovering appropri­
ate representations for the signals and how to compute them. For 
many kinds of sounds, little is known in this respect. What auditory 
features, for example, will distinguish a knock at the door from a 
footstep? 

For speech signals, more is thought to be known. A phonetician 
will tell you, for example, that the lCEI in bad can be distinguished 
from the Iii in bead by the location of characteristic peaks in their 
respective spectra. He could even train you to identify a wide variety 
of phonetic elements by looking at their spectrograms. Formalizing 
this knowledge, however, so that a computer can do this well (in a 
general setting) has proved hard. 
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An analogy may explain why. I could train you to distinguish a 

Mercedes from some other car easily; I would just describe the hood 
ornament. t To train a machine to do this task would be much 
harder. Not only would I have to describe the hood ornament, but 

I would also have to provide all the visual abilities that I take for 

granted with a human - finding edges and boundaries, recognizing 
closed forms, etc. I believe the failure to correctly provide the corre­

sponding auditory abilities - finding spectral "peaks" and temporal 

discontinuites, recognizing continuous forms, etc. - is an important 
reason why the speech recognition problem has been so difficult. 

This problem is in some ways even harder than visual analysis. In 

vision, it is clear that the two-dimensional image is a natural starting 

point. In audition, a similar 2D representation is important, with 
time along one axis and frequency along the other. But how should 
this idea be made precise (the well-known uncertainty principle of 

fourier analysis is one of the thorny issues involved)? Should we use 
the conventional spectrogram, the Wigner distribution, a pseudo~ 
auditory spectrogram, or something entirely new, and how should 
this decision be made? 

In vision, the notion of edges, lines, and so forth obviously are impor­
tant features of an image. In audition, it is harder to decide what are 
the appropriate primitive elements. Can some symbolic description 

summarize the relevant features of a sound's time-frequency repre­
sentation analogous to how a line drawing summarizes an image? 

These questions about the early steps in auditory processing are the 

topic of this book. The emphasis will be on speech signals primar­
ily because the intermediate goals to which the initial computations 
must aim are better understood. I believe, nevertheless, that many 

t I thank Mark Liberman for this example. 
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of the auditory processing issues discussed here are also relevant for 

other kinds of sounds. 

The topic as stated is still too broad. Speech and other signals are 
made up of many different kinds of components. For instance, speech 

has fairly smoothly changing vocalic regions that are quite different 
from the more discontinuous structure of consonantal regions. It is 
unlikely that the same initial representations will be appropriate for 

every kind of signal. The emphasis here will be on signals like those 

found in the more continuous, sonorant regions of speech. 

In the sonorant regions, we find an apparent feature is local spec­
tral energy concentrations that vary in center frequency with time. 
These peaks are due, in part, to the "resonances" of the vocal tract 
- the so-called formants. The formant locations (labelled F1,F2, ... 
in order of increasing frequency) specify the general vowel quality, 
r-coloring and roundness, while the formant transitions between con­
sonants and vowels play an important role in consonant identification 
[see e.g. Chiba & Kajiyama 1941; Fant 1960; Liberman, et al 1954; 
Ladefoged 1975]. A. Liberman, in fact, claims that " ... the second 
formant transition .. .is probably the single most important carrier 
of linguistic information in the speech signal [Liberman, et al 1967]. 
Thus, restricting the discussion to these regions is by no means un­
interesting. 

The initial speech processing envisioned here has been divided into 
two steps. The first step, which produces a joint time-frequency rep­

resentation of the signal energy, is explored in Chapter 2 and Chapter 
3. The second step, which produces a symbolic representation that 

captures the acoustically relevant features present in the joint time­
frequency energy representation, is explored in Chapter 4 (see Figure 
1.1 ). 
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Figure 1.1. The initial speech processing is seen as divided into 
two steps. (a) The first step represents the signal energy as joint 
functions of time and frequency. (b) The second step builds a sym­
bolic representation of the significant features present in the joint 
time-frequency energy representations. At this step, which we call 
the schematic spectrogram, there is no undue commitment to the 
acoustic origin of the features represented; it is a description of the 
signal, not its sources. (c) In subsequent processing, these initial 
descriptions can be used to decompose the signal into its acoustic 
sources. 
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One of the most difficult problems in deriving the form of such rep­
resentations is deciding which properties or axioms to assume at the 
outset. If strong assumptions are made about the received signal, 
then rigorously defined optimal detection can result. For example, 
if we assume that the received signal consists solely of a known sig­
nal in additive Gaussian noise, then we could build a matched filter 
that performs optimal Bayesian detection [e.g., see Van Trees 1968]. 
The disadvantage of such strong assumptions is that they are seldom 

universally valid for natural perceptual signals. 

On the other hand, weaker assumptions made about the received 
signal can be combined with assumptions about the design of the 
representation, things like linearity, continuity, locality, and stability, 
that can result in a solution [cf. Marr & Nishihara]. These design 
criteria are chosen not on the basis of a specific signal model, but 
instead as reasonable choices that should be appropriate for a wide 

range of natural signals. The disadvantage of this approach is that 
the justification of the design decisions is more intuitive and abstract. 

In the best of circumstances, the two approaches would result in the 
same or similar solutions to a problem. Thus the auditory processing 
would perform optimally (in different senses) when both appropriate 
weak and strong assumptions are made about the received signal. 

Chapter 2 derives those joint time-frequency energy representations 

that satisfy a small set of desirable properties; these properties are 

intentionally kept quite general. Chapter 3 re-examines this problem 
in a more specific setting. Given a (time-varying) model of speech 
production, what time-frequency representation of the signal best 
depicts the 'transfer function' of the vocal tract while suppressing 
the excitation. These two approaches, in fact, yield similar solutions. 

In the initial part of Chapter 4, a general, heuristic argument is used 
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to produce a phonetically relevant, symbolic representation of the 
signal. In a later part, these solutions are briefly related to a signal 
detection model. 

In Chapter 5, we look at a wide range of examples using these pro­
posed methods. We examine some traditionally difficult speech cases 
- glides and liquids, nasalized vowels, consonant-vowel transitions, 
female speech, and imperfect transmission channels. 

N.B.: For the ligures in this book, time is in seconds, fre­
quency in hertz, and energy in decibels, unless otherwise 
indicated. 
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The Time-Frequency 
Energy Representation 

This chapter explores the design of joint time-frequency energy rep­
resentations for speech signals. A set of desirable properties for such 
representations to satisfy is proposed, and the relationships among 
these properties is discussed. This includes a general treatment of 
the 'uncertainty' relations that arise. The signal transforms that best 
satisfy these properties are then derived and examined. 

2.1. The stationary case 

We begin with an analysis of the special case of stationary signals. 
There is a large literature for this case; Rabiner & Schafer [1978] and 
Flanagan [1972] provide good reviews. The discussion of it here is 
very condensed and confined to topics that are relevant to the sequel. 

A stationary signal is used here to roughly mean a signal whose fre­
quency content does not vary with time. More precisely, we consider 



8 Ch. 2 The Time-Frequency Energy Representation 

only determinstic signals that are periodic and random signals that 
are correlation-stationary. For both kinds of signals, the power spec­
trum, the fourier transform of the autocorrelation function, captures 
naturally the energy present at each frequency. t Time is removed 
from this representation; the power spectrum is a one-dimensional 
representation of energy as a function of frequency. 

For speech signals there are, of course, no completely stationary sig­
nals. We can, however, deliberately utter vowels so that they are 
steady-state for as long as we like. Figure 2.1 shows the spectrum 
of a long duration, voiced Ii/. We find in the spectrum many of the 
characteristic features of a steady-state vowel. 

Let us examine the spectrum in Figure 2.1. Note the y-axis is loga­
rithmic to compress the wide dynamic range of the speech. At a fine 
scale in this spectrum, there are peaks spaced about every hundred 
Hertz; these are the harmonics of the pitch. The somewhat larger 
scale peaks, of a few hundred Hz bandwidth, are the formant peaks. 
The peak at about 300 Hz is F1 and the peak at about 2300 Hz is F2, 
which is characteristic of an Iii vowel for an adult male. Still larger 
scale shaping of the spectrum, so called spectral balance, is due to 
the formant locations, the nature of the voicing and the transmission 
channel. 

The spectral structure of a vowel, therefore, is due acoustically to 
several factors: (1) the vocal excitation - e.g., voiced; (2) the vocal 
tract transfer function, characterized by its resonant frequencies -
the formants, and (3) the transmission characteristics - e.g., room 
acoustics. Determining these factors from the speech (Le., finding 
the formant frequencies, the pitch, etc.) is an important interme-

t For a deterministic signal x(t), its autocorrelation function is J x(t + 
r)x*(t) dt, and for a stationary random process y(t), its autocorrelation 
function is E[y(t + r)y*(t)). 
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Figure 2.1. Short-time log spectrum of a steady-state Ii/. The 
finest scale structure corresponds to the harmonics of the pitch, 

spaced about every 100 Hz. At an intermediate scale are the for­
mant peaks; e.g., F1 at 300 Hz and F2 at 2300 Hz. At the largest 
scale is the overall spectral balance. 
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Figure 2.2. Spectrum in Figure 2.1 smoothed to suppress the exci-
tation. (a) Log spectrum convolved with gaussian (cepstral smooth­
ing). (b) Power spectrum convolved with gaussian (and then trans­
formed to a log scale). 



10 Ch. 2 The Time-Frequency Energy Representation 

diate step in speech analysis, since they decompose the signal into 
components of nearly independent origin, and are (thus) starting 
points for the phonetician's description of speech signal. 

A key point in separating these factors in the speech signal is that 
they operate at somewhat different scales in its spectrum; the fine 
scale structure is due mostly to the excitation, while the intermediate 
scale structure is due to the vocal tract transfer function. A common 
technique for selecting a scale of interest is to smooth the spectrum 
by linear convolution, or equivalently, to window the fourier trans­
form of the spectrum. The fourier transform of the log spectrum is 
called the cepstrum, its dimension quefrencies, and the smoothing 
performed cepstral smoothing or liftering. [Oppenheim 1969; Op­
penheim & Shafer 1975]. Figure 2.2a shows the spectrum in Figure 
2.1 after it has been cepstrally smoothed at a scale to emphasize the 
formants, and suppress the excitation. We shall see in Chapter 3 that 
this operation, in fact, effectively separates excitation from transfer 
function in certain idealized, stationary cases. 

It is smoothing the power spectrum, not its logarithm, that most 
easily generalizes to the non-stationary case later. We will there­
fore select our scales of interest by smoothing the power spectrum 
instead, or equivalently, by windowing its fourier transform, the au­
tocorrelation function. Figure 2.2b shows the spectrum in Figure 2.1 
after it has been thus smoothed. t 

What should the form of the convolution kernel in this smoothing 
operation be? A desirable smoothing kernel would have good lo­
cality (or resolution) for a given amount of smoothing. In other 
words, it would have small duration for the given duration of its 
transform. These two durations are related by the uncertainty prin-

t Empirically, power and log smoothing often produce similar results. 
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ciple: given a function hex) with fourier transform H(s), if the vari­

ance of Ih(x)12 is (ax? and the variance of IH(s)12 is (as)2, then 
ax as ~ ~ [Bracewell 1978]. Marr & Hildreth [1980] proposed a 
gaussian smoothing kernel (in a vision task) because it is the unique 
shape that meets the uncertainty principle with equality. 

2.2. The quasi-stationary case 

The previous section examined the analysis of stationary speech sig­
nals. No real speech signal, of course, is purely stationary. If the 
frequency content of a signal varies slowly with time, however, there 
is a simple extension of the previous results. The idea is to examine 
the signal over a short duration window. Given a signal x(t) and a 
window get), the short-time power spectrum at time t is 

(2.2.1) 

Considered as a two-dimensional function of time and frequency, this 
signal representation is called a spectrogram. Many different window 
shapes have been used; they typically are symmetric, unimodal, and 
smooth, e.g., a gaussian or a raised single period of a cosine. 

Signals for which a window can be found whose duration is long 
enough to allow adequate frequency resolution, but short enough 
to allow adequate time resolution are called quasi-stationary. The 
example of the previous section was, in fact, a quasi-stationary vowel. 
Virtually all speech analysis methods in the past depend on the quasi­
stationary assumption. 

2.3. Non-stationarity 

There do exist signals for which no window duration is adequate. A 
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very simple such signal is the linear chirp, ei~mt2, whose instanta.­
neous frequency increases linearly with time. The quasi-stationary 
assumption breaks down for sufficently large modulation slope m of 
the signal .. Let us examine this claim. 

By the uncertainty principle, the product of the time duration D..t 
and the frequency duration (bandwidth) D..w of a window is bounded 

below by 1/2. The window duration and bandwidth, in turn, deter­
mine the time and frequency resolution, respectively, in the short­
time spectra. t In other words, if the window duration is too small, 
then the frequency resolution will be poor and if the window du­
ration is too long, the time resolution will be poor. Further, for a 
non-stationary signal, poor time resolution can also mean poor fre­
quency resolution since the frequency content will have changed over 
the duration of the window, blurring the spectrum. 

To illustrate these points, consider the short-time spectrum of a lin­
ear chirp, ei~mt2, using a gaussian window, e-t2/2u2. We can measure 

the the relative bandwidth of the spectrum for different window sizes 
( (1 's) in terms of the standard deviation of the spectrum (::::::.42 the 
half-power bandwidth), which is J(m2(14 + 1)/2(12, where the units 
are seconds and radians. Note that when m =I 0, this grows without 
bound as the window size becomes very small or very large. It has 
a minimum value of y'rri, which occurs when the standard deviation 
of the gaussian is 1/ y'rri. 

We see from this that the minimum possible bandwidth of the short­

time spectrum of a chirp (using a gaussian window) grows with in­
creasing modulation slope. Figure 2.3 shows the short-time spectra 
of chirps of various modulation slopes using windows that give the 
minimum bandwidth. For a slope of 50 Hz/msec, the chirp peak has 

t This is made precise by Theorem D in Section 2.6. 
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Figure 2.3. Short-time spectra of linear chirps of several modulation 

slopes using gaussian windows that give the minimum bandwidth. At 
the largest slope, the chirp peak is significantly broadened. 
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been broadened by several hundred Hz in the spectrum. The point 
here is that, in theory, the usual quasi-stationary spectral analy­
sis methods will give poor resolution for sufficiently non-stationary 
signals. A few examples from natural speech will show that such 
conditions arise in practice. 

Figure 2.4 shows cepstrally smoothed, short-time spectra of various 
/w /,s, uttered first slowly and then increasingly rapidly. The spec­
trogram window used was a gaussian of 4 msec standard deviation, 
which has an effective duration of about a pitch period, the mini­
mum duration that gives a reasonably stable spectral estimate. The 
cepstral window is also chosen as brief as possible, while still remov­
ing the harmonic peaks. Notice that the peak in the spectrum at 
about 1500 Hz, corresponding to F2, grows in bandwidth with the 
increasing slope of F2 as seen in the corresponding spectrograms in 
Figure 2.5. In case (c), where the F2 slope is about 40 Hz/msec, 
F2 is so broadened that its peak (Le., the local maximum) is lost in 
the short-time spectrum. Such an F2 slope is not uncommon for a 
/w/. In /il's, F2 can have large negative slopes, and in /r/ contexts, 
F3 can have very steep slopes; see Figure 2.6. At consonant-vowel 
transistions, where the formant trajectories are considered very im­
portant for stop consonant identification [Liberman, et al 1954], the 
formant motion can also be very rapid; again see Figure.2.6. 

It is worth noting that natural sounds other than the human voice can 
produce non-stationary signals that are "chirped." For instance, bird 
song and bat cries contain many rapid FM chirps [Greenewalt 1968; 
Marler 1979; Neuweiler 1977]. If a sound source is in relative motion 
to the listener then Doppler effects can cause large frequency shifts 
in the received signal across time [e.g., Dudgeon 1984]. t Glissandi 

t Some bats (the so-called CF bats) emit continuous tones, evidently depend­
ing on Doppler shifts for echolocation. 
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Figure 2.4. Cepstrally smoothed, short-time spectra of /w/'s, ut­
tered first very slowly, then increasingly rapidly. In (c), F2 is so 

broadened by the analysis that its peak (i.e., the local maximum) 
disappears. Cf. Figure 2.5. 
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Figure 2.5. Wide-band spectrograms of the /w/'s used in Figure 
2.4. Note that F2 remains clearly visible with increasing slope in the 
two-dimensional display. 

of various musical instuments provide still more examples of signals 

that contain rapidly time-varying spectral content. 

It is also suggestive that neurophysiologists have found that a large 

population of the auditory cells in the mammalian cochear nucleus 
do not respond optimally to continuous tones, but instead to sweep 
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Figure 2.6. Spectrograms of rapid formant motion in various con­
texts. (a) /juj. (b) /araj. (c) /bi/ in the context /tubi/. (d) /du/ 
in the context /tidwj. 
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tones, with different populations responding to different preferred 
modulation slopes ranging over ±15 Hz/msec [Mfliller 1978; Britt & 
Starr 1976]. Further, psychophysical adaptation studies have shown 
similar directional selectivity in the human auditory system [Kay & 
Matthews 1972; Regan & Tansley 1979]. 

The above comments are meant to call into question the validity 
of the quasi-stationary assumption for speech and other auditory 
signals. We have seen that speech is not always quasi-stationary, 
even in the sonorant regions. Assuming so, means that important 
features will be missed, having been blurred by the analysis. It is 
interesting to note that while the individual short-time spectra of 
the non-stationary signals described above give a poor description of 
the signals, their spectrograms are nevertheless quite legible. This is 
because when we look at a spectrogram, we are not confined to ex­
amining them one-dimensionally along single frequency slices, but in­
stead we see a two-dimensional time and frequency surface. In other 
words, time is not used as a parameter that varies over a family of 
spectra, but as one of the intrinsic dimensions of the representation. 

I believe, in fact, that thinking of the initial speech processing as 
consisting of a family of independent one-dimensional spectral anal­
yses parameterized by time is inappropiate. The problem should be 
thought of as a joint time-frequency analysis, with the relationships 
and trade-offs between the two dimensions directly addressed, which 
brings us to the next section. 

2.4. Joint time-frequency representations 

Various ways have been used to express signal energy as a joint func­
tion of time and frequency. Certainly the most popular is the spec-
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trogram, 

S.(t,w) = ~ g(r)x(t + T)e-;~ dT 2, (2.4.1) 

which is just the short-time spectra described above displayed two­
dimensionally. The fact that· the simultaneous time and frequency 
resolution in the spectrogram is bounded by the uncertainty relation 
has led others to seek representations that do not have this limitation. 

This is usually formulated in terms of the marginals (or projections) 
of the signal representation Fx(t,w) [Cohen 1966]. Let 

00 

1l"l(t) = 2~ J Fx(t,w) dw, (2.4.2a) 

-00 

00 

1l"2(W) = J Fx(t,w) dt. (2.4.2b) 

-00 

Perfect time and frequency resolution in this formulation requires 
that 

and (2.4.3) 

An example of a joint time-frequency representation that satisfies 
these requirements is the Wigner distribution, 

00 

Wx(t,w) = J e-iWTx(t + r/2)x*(t - r/2) dr, (2.4.4) 

-00 

which is currently quite popular in the signal processing literature 
[Classen & Mecklenbrauker 1980a,c]. 

The Wigner distribution of an impulse, x(t) = 8(t - to) is Wx(t,w) = 
8(t- to), i.e., the signal energy is taken to lie on the vertical line t = to 
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in the time-frequency plane. Similarly, for a complex exponential, 
y( t) = eiwot , the signal energy lies on the horizontal line at W = Wo 
(Wy(t,w) = 211"6(w - wo», and for a linear chirp, z(t) = ei(wot+~mt2), 
the energy lies on the slanted line w = mt + Wo (Wz(t,w) = 211"6(w­
Wo - mt» (see Figure 2.7a). 

In contrast, the spectrogram of these signals consist of broadened 
lines (see Figure 2.7b). There is, in fact, a simple relation between 
the spectrogram and the Wigner distribution of a signal x(t): 

1 
Sx(t,w) = 211" Wg{t,w) ** Wx(t,w), (2.4.5) 

where ** denotes two-dimensional convolution and Wg is the Wigner 
distribution of the window [Classen & Mecklenbrauker 1980c]. If 
get) is a gaussian, --4=-e-t2/2q2, then its Wigner distribution is 

V27rq 

also simple; it is just a two-dimensional gaussian, Wg(t,w) = 
---'==e-t2 / q2 e-W2q2 • Thus, the two-dimensional convolution of the 
v7rq 

Wigner distributions in Figure 2.7a by a two-dimensional gaussian 
will give the spectrograms in Figure 2.7b. 

If the duration of the gaussian spectrogram window is decreased, 
then the 2-D gaussian that, in essense, convolves the Wigner distri­
bution to give the spectrogram becomes narrower in time, but wider 
in frequency, and vice versa. It should be clear from this example 
that the spectrogram does not meet the marginal requirement. 

On the other hand, the Wigner distribution itself has some un­

desirable properties. In particular, multi-component signals give 
rise to cross terms that cannot be attributed much physical sig­
nificance. For example, the Wigner distribution of x(t) = coswot 
is Wx(t,w) = ~[c(w - wo) + c(w + wo) + c(w)2cos2wot] (see Fig­
ure 2.8a). The last term, which lies on a horizontal line at the 
frequency origin (varying sinusoidily in amplitude), seems spurious. 
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Figure 2.7. Wigner distribution and spectrogram of some mono­
component signals. (a) The Wigner distribution resolves these sig­
nals as perfectly narrow lines in the time-frequency plane. (b) The 
spectrogram is a smoothed version of the Wigner distribution (e.g., 
if the spectrogram window is a gaussian, then the smoothing kernel 
is a 2-D gaussian). The lines are broadened in this representation. 
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The spectrogram of coswot, however, is just two broadened lines at 
W = ±wo, which seems better behaved with respect to superposition, 
since coswot = !(eiwot + e-iwot ) (see Figure 2.8b). The cross term 
is, in effect, smoothed out by the convolution that transforms the 
Wigner distribution into the spectrogram. 

These examples illustrate that there are various (possibly conflict­
ing) properties that we might desire of a time-frequency representa­
tion, e.g., good time and frequency resolution, and superposition for 
multi-component signals. We shall, in fact, approach the problem of 
choosing our time-frequency energy representation by first specifying 
a set of desirable properties that the transform should satisfy, and 
then deriving its form. 

2.5. Design criteria for time-frequency representations 

We will restrict the discussion to the quadratic transforms of the 
signal, which have the form 

00 00 

Fx(t,w) = J J h(Tb T2;t,W)X(Tt)X*(T2)dTl dT2, (2.5.1) 

-00 -00 

where h( Tt, T2; t, w) is an arbitrary function. This condition is im­
posed because it results in a particularly manageable class, and be­
cause the representation of energy as a quadratic function of the sig­
nal seems reasonable by analogy to other definitions of energy. The 
class is quite large and includes many of the joint time-frequency rep­
resentations that have been previously proposed, such as the spec­
trograms, the Wigner distribution, and the Rihaczek distribution 
[ef. Claasen & Mecklenbrauker 1980c]. 

From this class of representations, we seek ones that satisfy the fol­
lowing criteria: 
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Figure 2.8. Wigner distribution and spectrogram for coswot. (a) 
The Wigner distribution of this signal has the 'spurious' cross term 
o( W )2cos 2wot at the origin. (b) The spectrogram does not show this 
term; it has been, in effect, smoothed out. 



24 Ch. 2 The Time-Frequency Energy Representation 

(el) Shift invariance: A shift in time or frequency of the signal 
should result in a corresponding shift in time or frequency in the 
transform. Let yet) = x(t - r) and z(t) = ei<,otx(t). Then we require 
Fy(t,w) = Fx(t - r,w) and Fz(t,w) = Fx(t,w - <p). This property is 
desirable if we want to interpret the two dimensions of the transform 
as time and frequency. 

Transforms satisfying this condition can be put in the forms 

1 
Fx(t,w) = 211' 4>(t,w) ** Wx(t,w) (2.5.2) 

and 
(2.5.3) 

where "**" denotes two-dimensional convolution, Wx is the Wigner 
distribution 

00 

Wx(t,w) = J e-iWTx(t+r/2)x*(t-r/2)dr, (2.5.4) 
-00 

4>(t,w) is an arbitrary kernel function, F is the 2-D fourier transform 
00 00 

in the form F[q(t,w)] = 2~ J J ei(-vt+TW)q(t,w)dtdw, ~(r,lI) = 
-00 -00 

F[4>(t,w)), and Ax is the time-frequency autocorrelation function t 
00 

Ax(r, 11) = F[Wx(t,w)] = J e-ivtx(t+r/2)x*(t-r/2)dt (2.5.5) 
-00 

for x(t) [Claasen & Mecklenbrauker 1980c]. Note that for a spectro­
gram, 4>(t,w) is the Wigner distribution of the spectrogram window, 
by Eq. 2.4.5 and Eq. 2.5.2. 

t Some authors call this the ambiguity function [e.g., Claasen & Meck­
lenbrauker 1980a]; others reserve this term for IAz(r,lI)12 [e.g., Van Trees 
1968]. 
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(C2) Positivity: The signal energy at a given point in time and 
frequency should be real and positive: Fx(t,w) ~ 0 for all x, t, and 
w. This seems appropriate for interpreting the transform as an en­
ergy distribution. Some authors have argued against the positivity 
requirement [e.g. Claasen & Mecklenbrauker 1980c]. We shall exam­
ine the consequences of lifting this condition in the next section. 

(C3) Superposition: This idea is that the time-frequency repre­
sentation of a multi-component signal should be a simple superpo­
sition of its components. The straight-forward linear formulation of 
this, i.e., Fx+cy(t,w) = Fx(t,w) + cFy(t,w), however, is inconsistent 
with the quadratic nature of the transform, and the shift-invariance 
property Cl. This apparent shortcoming is also true, for example, 
of the spectrogram (Eq. 2.4.1). Nevertheless, we usually think of 
the conventional spectrogram as being well-behaved under superpo­
sition. This is because non-overlapping components do superimpose, 
i.e., Sx+y(t,w) = Sx(t,w)+Sy(t,w) when Sx(t,w)Sy(t,w) = O. There 
are no cross terms in this case. On the other hand, the Wigner dis­
tribution does not have this property, suffering from cross terms to 
which there cannot be attributed much physical significance. 

We shall require this property for our time-frequency representation, 
namely 

Fx+y(t,w) = Fx(t,w) + Fy(t,w) when Fx(t,w)Fy(t,w) = O. 
(2.5.6a) 

More generally, we would like Fx+y(t,w) ~ Fx(t,w) + Fy(t,w) when 
Fx(t,w)Fy(t,w) ~ O. Stated more precisely, we require for any € > 0, 
there exists a 8 > 0 such that 

IFx+y(t,w) - [Fx(t,w) + Fy(t,w)]1 < € when IFx(t,w)Fy(t,w)1 < 8. 
(2.5.6b) 

(C4) Locality: Signal energy that is localized in time-frequency 
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should remain localized in time-frequency in the transform. The ad­
vantage of the Wigner distribution is that it is perfectly localized 
according to various criteria, such as preserving the marginal distri­
butions (Eq. 2.4.3) and the finite support properties [see Claasen & 
Mecklenbrauker 1980a]. t The Wigner distribution, however, does 
not satisfy the positivity (C2) or superposition (C3) properties, as 
indicated earlier. In fact, positivity (and thus, as we shall see, su­
perposition) is inconsistent with the time and frequency marginal 
conditions [Claasen & Mecklenbrauker 1980c]. Fortunately, for our 
purposes, we do not require perfect locality, so we can relax the above 
conditions somewhat. 

From Eq. 2.5.2, the transform kernel <t>(t,w) can be viewed as the 
point spread function on the perfectly localized Wigner distribution. 
We can therefore measure the locality of the transform in time and 
frequency in terms of the variances t 

2 J J t21<t>(t,w)1 2 dtdw 
ut = J J 1<t>(t,w)12 dt dw ' 

(2.5.7a) 

t The finite support property states that if a signal has finite extent in time 
or frequency then its representation will have the same extent in the corre­
sponding variable. 

t The generality of this approach depends on the Wigner distribution 
uniquely satisfying 'perfect' locality. Cohen has shown that a quadratic 
transform that satisfies the shift-invariance property (el) will meet the 
time and frequency marginal conditions (Eq. 2.4.3) if c)( T, 0) = 1 for all 
T and C)(O, v) = 1 for all v. These marginal conditions essentially guar­
antee that an impulse and a complex exponential are not 'blurred' by the 
time-frequency representation, but are not strong enough to also guaran­
tee that a linear chirp is not 'blurred' (see Figure 2.7a). This additional 
condition is met uniquely by the Wigner distribution. In other words, we 
interpret perfect locality to mean that the signal transform does not spread 
the signal energy in any direction in time-frequency (not just the horizontal 
and vertical directions). We postpone a more thorough discussion of this 
point until Section 2.8, when the necessary mathematical machinery will 
be introduced. 
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and 
2 ff w2 14>(t,w)j2dtdw 

(Jw = f f 14>(t,w)12 dt dw ' 
(2.5.7b) 

where we assume that the center of mass of 14>(t,w)12 is at the origin. 

* 

In general, these two measures are not enough; an additional locality 
measure is important, the covariance 

f f twl4>( t,W )1 2 dt dw 
(Jtw = f f 14>(t,w)l2dtdw 

(2.5.7c) 

Together, (Jt, (Jw, and (Jtw determine the covariance matrix and the 
associated concentration ellipse in the (t,w) plane, 

(2.5.8) 

When (Jtw = 0, the major and minor axes of the concentration ellipse 
coincide with the time and frequency axes (Figure 2.9a). More gen­
erally, the concentration ellipse may be oriented obliquely relative to 
the co-ordinate axes (Figure 2.9b). We shall call transforms that sat­
isfy the condition (Jtw = ° on their kernel non-directionally localized. 
This name is appropriate since we can rescale the co-ordinate axes 
to make the concentration ellipse a circle under this condition. Thus 
viewed, the transform spreads energy uniformly in all directions in 
time-frequency. On the other hand, if (Jtw =f. 0, then this does not 
hold, and the transform will be directionally localized, always hav­
ing better resolution in some time-frequency directions than others 

regardless of the scaling of the axes. 

* This assumption is not very restrictive on the form of the transform, since 
we can always shift ¢(t,w) in time and frequency to satisfy it. This shift, 
in turn, shifts the transform in time and frequency. 
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Figure 2.9. Concentration ellipses for transform kernels. (a) Non­
directional kernel (Utw = 0): the co-ordinate axes can be re-scaled to 
make the concentration empse a circle. Thus viewed, the correspond­
ing transform spreads the signal energy equally in all time-frequency 
directions. (b) Directional kernel (Utw :/; 0): the co-ordinate axes 
cannot be re-scaled to make the concentration ellipse a circle. The 
corresponding transform always has better resolution in some time­
frequency directions than others. 

The analysis of the non-directional transforms is more straight­
forward. We therefore restrict our attention to this case until Section 
2.8, when we shall examine the more general case. We will see there 
that the principal results are essentially the same as non-directional 
case, suitably generalized. The analysis, however, is more complex, 
and is thus best left until later. 

To summarize, given a non-directional transform (Utw = 0), Ut and 
Uw measure its degree of locality in time and frequency. The smaller 
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Ut and U w are, the better the time and frequency resolution. 

(C5) Smoothness: Similar to the stationary case, different aspects 
of the speech signal can arise at different scales in time-frequency. For 
example, voiced excitation can give rise to fine scale structure on the 
order of the pitch period in the time dimension and the fundamental 
frequency in the frequency dimension. The formant structure, on 
the other hand, arises at a somewhat larger scale. Thus, one of the 
design parameters for our transform is the scale in time-frequency 
we wish to examine. Said differently, we want the transform to be 
smooth in time-frequency to a given degree. 

This notion of scale can be be formalized by measuring the distri­
bution of the spatial frequencies present in Fx( t, w), i.e., the dis­
tribution of energy about the origin of its 2-D fourier transform. 
Since .1'[Fx(t,w)] = ~(T,v)Ax(T,V) (Eq. 2.5.3), the relative amount 
of spread is determined by the choice of ~(T, v), which windows the 
time-frequency autocorrelation function. We can measure this spread 
in terms of the variances 

and 

J JT21~(T,V)12dTdv 
J J 1~(T,V)12dTdv 

J J v21~( T, v)12 dT dv 
J J I~(T, v)12 dTdv ' 

~ _f fTVI~(T,V)12dTdv 
TV - f f 1~(T,V)12dTdv ' 

(2.5.9a) 

(2.5.9b) 

(2.5.9c) 

where we assume that the center of mass of 1~(T,V)12 is at the ori­
gin. t These determine the covariance matrix and the associated 
concentration ellipse in the (T, v) plane, 

(2.5.10) 

t This assumption will be true if the transform is real. 
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When ~TII = 0, we call the transform non-directionally smooth. 
In this case, it is possible to rescale the co-ordinate axes to make 
the concentration ellipse a circle, and thus viewed the transform 
smoothes the signal in time-frequency uniformly in all direction in 

time-frequency. On the other hand, if ~TII =f. 0, then this does not 
hold, and the transform will be directionally smooth, always smooth­
ing more in some time-frequency directions than others regardless of 
the scaling of the axes. Just like the locality condition, we will re­

strict attention now to the non-directional transforms. We consider 
the more general case in Section 2.8. 

To summarize, given a non-directional transform (~TII=O)' ~T and 
~II measure its scale in time and frequency. The smaller ~T and ~II 
are, the larger the selected scales. 

Observe at this point the parallels between the stationary and non­
stationary analyses. If we think of the Wigner distribution as the 
non-stationary analog to the raw power spectrum, then the time­
frequency autocorrelation function (the Wigner distribution's 2-D 
fourier transform) is the 2-D analog to the autocorrelation function 
(the power spectrum's fourier transform). Further, windowing the 
time-frequency autocorrelation function smoothes the Wigner dis­
tribution, just as windowing the autocorrelation smoothes the raw 
spectrum. In both cases, the design decisions for the resulting trans­
form require selecting a convolution kernel that satisfies both locality 
and smoothness requirments. In fact, we shall see in the next chapter 
that the analogy is even closer. 

2.6. Relations among the design criteria 

The various design criteria for our time-frequency energy representa­
tion are not independent. We shall state the important relationships 
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among them in this section. Throughout this section we assume that 
the input signal x(t) is finite energy, (i.e., XfC2) and that Fx(t,w) is a 
quadratic transform of the signal. This means that Fx( t, w) = (Tx, x) 

00 

where (x,y) = J x(a)y*(a)da and Tt,w is a (bounded) linear oper-
-00 

• Shift.invariance &; Positivity: Together these imply that the 
transform can be expressed as a superposition of spectrograms. t 

Theorem A. Let Fx(t,w) be positive and shift-invariant. Then it 
has the form 

00 

Fx(t,w) = J Sx(t,w;gcx)da, (2.6.1) 
-00 

where Sx(t,w;g) is the spectrogram having 9 as its window. 

Proof: The positivity of Fx(t,w) means that Tt,w is a positive oper­
ator and therefore has a square root A, i.e., 

Fx = (A*Ax, x) = (Ax, Ax) = IIAxIl2, (A.1) 

where IIx( a )11 2 = J Ix( a )1 2 da [see Rudin 1973]. Representing the 
linear operator A in terms of its impulse response At,w[x(a)] 

J h(r,a;t,w)x(r)dr and substituting into Eq. A.1 gives 

oolOO 2 
F.(t,w) = -ll h(a,T;t,w)X(T)dT da. (A.2) 

t Bouachache, et al [1979] incorrectly state that a positive and shift-invariant 
quadratic transform is necessarily a spectrogram. Claasen & Meck­
lenbrauker [1984] point out this error, mentioning that linear combinations 
of spectrograms must be included. 
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By time and frequency shift-invariance, 

Setting t = w = ° gives 

or, with gcr(r) = h(a,r;O,O), 

From Eq. 2.4.1, we see the outer integrand is the spectrogram 
Sx(t,Wj gcr), giving Eq. 2.6.1. / / / 

• Positivity & Superposition: The next theorem shows that pos­
itivity implies superposition. In fact, it implies a strong form of 
superposition, as in Eq. 2.5.6b. 

Theorem B. If Fx(t,w) is positive, then 

IFx+y(t,w) - [Fx(t,w) + Fy(t,w)W :5 4F:r;{t,w)Fy(t,w). (2.6.2) 

Proof: From the elementary fact about inner products 
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it follows that 

I lip + qll2 _ [I1pll2 + IIqll2112 = 41Re (p,q)12 

~ 41{p, q)12. 

Since (p,q) ~ IIpllllqll, 

33 

Substituting p = Ax and q = Ay above and using Eq. A.I gives 
Eq. 2.6.2. / / / 

If the transform is real, the converse of this theorem is also true; i.e., 
superposition implies either Fx or -Fx is positive. 

Theorem C. Let Fx( t, w) be real and satisfy superposition 
(Eq.2.5.6a). Then either Fx(t,w) or -Fx(t,w) is positive. 

Proof: Step 1. First we show under the hypotheses of the theorem 
{Tx, x) = 0 ::} Tx = O. 

Superposition says 

(Tx,x)(Ty,y) = 0 ::} (T(x + y),x + y) = (Tx,x) + (Ty,y). (C.I) 

Since the form (Tx,x) is always real, (Tx,y) = (Ty,x)*, so 

(T(x + y),x + y) = (Tx,x) + 2 Re(Tx,y) + (Ty,y). 

Thus, from Eq. C.I, 

(Tx, x)(Ty, y) = 0 ::} Re(Tx, y) = O. (C.2) 

Substituting ix into Eq. C.2 shows that Im(Tx, y) = 0 also, so that 

(Tx, x)(Ty, y) = 0 ::} (Tx, y) = O. (C.3) 
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Suppose that (Tx, x) = O. Then by Eq. C.3, (Tx, y) = 0 for all y. If 
we let y = Tx, then (Tx, Tx) = 0 and thus Tx = 0, as desired. 

Step 2. We now show that (Tz, z) = 0 => Tz = 0 implies ±T is 
positive. Suppose (Tx, x) > 0 and (Ty, y) < O. Let z = kx + y where 

k is real. Then 

(Tz,z) = k2(Tx,x) + 2kRe(Tx,y) + (Ty,y). 

This is a quadratic in k, and since (Tx,x)(Ty,y) < 0, it has two 
distinct real zeroes. However, since Tx :j; 0, Tz = kTx + Ty has at 
most one zero in k. Therefore, there exists a value of k such that 
(Tz, z) = 0 but Tz :j; 0, contradicting the hypothesis, and implying 
±T is positive. / / / 

This last theorem shows that we can replace the positivity condi­
tion (C2) with the sole requirement that the transform be always 
real, and have an equivalent set of properties. In other words, the 
transform will necessarily be positive if superposition holds, and if 
positivity is abandoned, cross terms will necessarily prove a problem 
for multi-component signals such as speech . 

• Positivity & Locality: The positivity condition places a limit on 
the time-frequency locality of the transform. When the transform is 
positive, it is sometimes convenient to measure locality in terms of 
the variances of <I>(t,w) instead of 1<I>(t,w)12. We define 

2 J Jt2<1>(t,w)dt~ 
(7T = J J <I>(t,w) dt ~ (2.6.3a) 

and 
2 J J w2<1>(t,w) dt ~ 

(7n = J J <I>(t,w)dt~ , (2.6.3b) 
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where we assume that the center of mass of </>(t,w) is at the origin. 
t When the transform is positive, we claim that these variances are 
non-negative. To show this, first suppose the transform is a spec­
trogram. Then </>(t,w) is the Wigner distribution of the spectogram 
window get), and using Eq. 2.4.3, it is easy to see that 

o-}=varlg(tW and O"o=varIG(wW, 
t w 

(2.6.4) 

which are clearly non-negative [ef. DeBruin]. More generally, if the 
transform is positive, it follows directly from Theorem A that 

O"f = J cavtrlga(t)12da and O"~ = J cav;rIGa(wWda 

(2.6.5) 
where 

-00 (2.6.6). Ca = --=00::-------

J J Iga,(t)12 dt da' 
-00 

These are again non-negative quantities. 

Eq. 2.6.5 shows that O"f is the (weighted) average window variance 
in the representation of Fx(t,w) as a superposition of spectrograms. 
Since a spectrogram's values at a given time depend only on signal 
values under its window, we see that a positive transform at a time 
t effectively depends only on signal values within a few O"T of t. * 

t This assumption is necessary for the term 'variance' to apply. It is not 
necessary, however, for the uncertainty relations presented below to be true 
[cf. DeBruin]. 

* This is a stronger notion of time locality than in the previous section. 
There, time locality essentially measured how the transform spread an im­
pulse. The Wigner distribution is perfectly localized in this sense, because 
it represents the energy of an impulse at time to entirely on the vertical line 
t = to in the time-frequency plane. This does not mean that the Wigner 
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The next theorem states an important uncertainty relation for pos­
itive transforms. It bounds the simultaneous time and frequency 
resolution that can be obtained by such a transform. 

Theorem D. Let Fx(t,w) be positive and shift-invariant. Then 

UTUn ~ !. 

Proof: From Eq. 2.6.5, 

where u; = vfr 19a(t)12 and ~~ = v:r IGa (w)12. By the Schwarz 

Inequality, 

utu5 ~ (J caua~a do: ) 2 

The classical uncertainty relation applied to 9a(t) gives ua~a ~ !, 
so 

utU5 ~ (~J CaUa dO:) 2 - ~, 
since J Ca do: = 1 from Eq. 2.6.6. Taking square roots yiel1s the 
desired result. / / / 

• Locality & Smoothness: Just as in the stationary case, local­
ity and smoothness are conflicting properties. Greater smoothness 
means poorer locality and vice versa, other things being equal. This 

<listribution's values at time to depend only on the signal value at to. Quite 
the opposite is true, they depend on the entire signal. (In fact, the sig­
nal can be recovered from the Wigner distribution's values at any fixed 
time to (up to a multiplicative constant) [see Claasen & Mecklenbrauker 
1980a).) However, when the transform is positive these two notions of lo­
cality coincide. 
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follows formally from a two-dimensional generalization of the classi­
cal uncertainty relation. 

Theorem E. If Fx(t,w) is shift-invariant, then O"T~1I > ! and 
O"W~T ~ !, with equality in both these relations iff 

(2.6.7) 

Proof: First, we show that O"t~1I ~ !, Let ,x(t,r) = 2~ J </>(t,w)eiWT dw. 
Then ~(r,v) = F[</>(t,w)] = J ,x(t,r)e-itll dt. Applying the classical 
uncertainty relation to ,x(t, r) w.r.t. t gives 

1 

~ (1'~(t'T)'2dt_I'4i(T'V)'2dV) , 
1 

~ (l t21~(t'T)'2dtl V214i(T, V)12 dV) ' (E.!) 

Integrating E.1 over r and using the Schwarz Inequality 
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By Parseval's thereom, 

00 00 J IA(t, r)12 dr = 2~ J 14>(t,wWdw (E.3a) 
-00 -00 

and 
00 00 

J IA(t,rWdt = 2~ J 1~(r,IIWdw. (E.3b) 
-00 -00 

Substituting Eq. E.3 into Eq. E.2 yields 

00 00 

~ J J I~(r, IIW dlldr 
-00 -00 

1 

~ (LI t'I4>(t,w)I' dtdw_ll V'I4>(T,V)I' dVdT) , . (E.4) 

Since J J 14>(t,w)12 dtdw = J J 1~(r,IIWdrdll, we have ! ~ O't~II' 
By similar reasoning, ! ~ O'w~'T' 

Direct computation of the variances shows that if 4>(t,w) is a 2-D 
gaussian (Eq. 2.6.7), then these inequalities are satisfied with equal­
ity. Showing the converse is somewhat more involved. If these in­
equalities are satisfied with equality, then from the classical uncer­
tainty relation and the proof above, it follows that ~(r, 11) is Gaussian 
in each of its variables. In other words, 

~(r, 11) = e-[a(lI)r2+b(II)] 

(E.5) 

for all rand 11, where a > 0 and c > O. Thus, a(lI)r2 + b(lI) = 
c( r )112 +d( r). Setting 11 = 0 and r = 0 shows that b( 11) = c( 0 )112 +d( 0) 
and d(r) = a(0)r2 + b(O), respectively, so 

a(lI)r2 + C(0)1I2 + d(O) = c(r)1I2 + a(0)r2 + b(O). (E.6) 
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Twice differentiating this w.r. t. r and v gives a" (v) = e" ( r) for all 

r and Vi thus they are constant. Taylor expanding a(v) and e(r), 
substituting into Eq. E.6, and equating terms shows that 

By the symmetry of the two domains, 4>(t,w) must have the same 
form. Together, these imply that 

-X(t,r) = e-[alt2+t11r2+'Ylt2/r2+511 

= e-[a2t2+t12r2+'Y2r2 /t2+521, (E.8) 

for all t and r. Taking the logarithm of Eq. E.8, clearing offractions, 

and equating terms shows that '}'1 = '}'2 = O. Thus, a"(O) = 0 in 
Eq. E.7, which implies Eq. 2.6.7, as desired. / / / 

2.7. Satisfying the design criteria 

From the last theorem, we see that a two-dimensional gaussian trans­
form kernel gives the best time-frequency locality for a given smooth­
ness. The resulting representation will be called the Gaussian trans­
form of the signal. t By specifying o'f (= 2o"l) and O"fi (= 20"~) for 
this kernel we are, in effect, selecting a particular time and frequency 
scale for the transform. We may choose any values we wish provided 

O"TO"O ~ ~ (positivity), and the resulting transform will best satisfy 
all our design properties. The result is clearly a generalization of the 
solution in the stationary case, where a gaussian convolution kernel 
of different sizes selected different spectral scales. 

t We have chosen this name for obvious reasons. This risks, however, con­
fusion with the Gauss-Weierstrass transformation [see. Hille 1948]. In fact, 
the Gaussian transform of the signal z(t) is the two-dimensional Gauss­
Weierstrass transformation of the Wigner distribution Wx(t) [see De Bruijn 
1967]. 
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When (1T(1n = !, this transform is equivalent to a spectrogram using 
a gaussian window. For larger values of (1T(1n, this transform is 
equivalent to convolving such a spectrogram with a 2-D gaussian. 

As a note on its implementation, this last fact was used to compute 
the figures below. A more direct method would be to compute the 
Wigner distribution and then perform the 2-D convolution specified 
in Eq. 2.5.2. This is not very efficient in a digital implementation, 
however, since the Wigner distribution has to be computed at high 
sampling rates to avoid aliasing. * 

By performing a convolution on a spectrogram, far fewer time and 
frequency samples need to be computed, since the spectrogram is 
already a smoothed version of the Wigner distribution. Further, 
since the gaussian kernel is uncorrelated in time and frequency, the 
2-D convolution is separable, and can be performed as separate 1-
D convolutions in the time and frequency directions, resulting in a 
relatively inexpensive computation. 

2.8. Directional time-frequency transforms 

So far, we have assumed that the time-frequency energy representa­
tion was non-directional in the sense that the covariances (1tw and 
:E'TV of the transform kernel were both zero. We shall now examine 
the consequences of lifting this condition. We begin with an example. 
Consider the two transforms specified by the kernels 

</>l(t,W) = e-(t2 +2tw+w2 ) 

and 

* In general, the Wigner distribution must be sampled in time at twice the 
Nyquist rate of the signal [Claasen & Mecklenbrauker 1980b]. 
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These transforms have identical Ut and uw , but differ in the sign of 

O:tw' Figure 2.10 shows their concentration ellipses, and Figure 2.11 
gives the transform of the chirp eiit~ for these two cases. Notice 

that the second transform broadens the chirp much more than the 
first, which should be evident from the concentration ellipses. The 
opposite would be true for the chirp e-iit~. These transforms are 
directionally sensitive, and using Ut and U w as the sole measures of 
time-frequency resolution is obviously inadequate in such cases. 

Why consider transforms with such behavior? One answer is to pro­
vide a general treatment of time-frequency locality. Another answer 
is that it is evidently possible to obtain better time-frequency res­
olution for some signals if the transform is directionally 'tuned' to 
them than otherwise. This would mean that, in general, we would 
need a family of transforms each tuned to a preferred time-frequency 
orientation. 

The theory of directional transforms is greatly simplified by a rota­
tion of co-ordinates. Let 

Re(t,w) = (
COS () sin ()) ( t ) 

-sin () cos () w 
(2.8.1) 

be the operator that rotates a point () radians in the time-frequency 
plane. Given a time-frequency representation Fx(t,w) of a signal 
x( t), we can consider the rotated representation formed by the com­
position FxRe(t,w). Is this the time-frequency representation of an 
actual signal? The answer is yes; if 

00 

( ) 1 ij~j .. ,,' J X( ) i(..,~j""8+~) dw Xe t = e ~ w e ~ coo 8 , 

27rJcos () 
(2.8.2) 

-00 

then WX8 = WxRe [see Van Trees 1971]. So if Fx has the kernel 
¢>(t,w) and if Gx has the kernel ¢>(t,w)Rq, then Gx, = FxRq. In other 
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(a) (b) 

... \ ::! 
!I go 
~ 

~ ~ 

time time 

Figure 2.10. Concentration ellipses for transform kernels with 
complementary orientation selectivity. (a) Concentration ellipse for 
(l>I(t,w) = e-(t l +2tw+w l

). (b) Concentration ellipse for <P2(t,W) = 
e-(t2 -2tw+w2 ) • 

time tim. 

Figure 2.11. Directional transforms for a linear chirp ei~t2. (a) 
Transform has kernel in Figure 2.lOa. (b) Transform has kernel in 
Figure 2.lOb. The second transform broadens this chirp much more 
than the first, which should be evident from their concentration el­
lipses. 
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words, Eq. 2.8.2 rotates the signal by () radians in time-frequency, 

thus the transform with the rotated kernel applied to this signal will 
give the desired effect. 

Relative to these new co-ordinates we can generalize some of the 
measures of the previous sections. For example, consider 

00 

1I'o(t) = 2- J F:I!Ro(t,w),dw. 
211' 

-00 

(2.8.3) 

This is the marginal of the rotated transform along w. It follows 
that the time and frequency marginals (Eq. 2.4.2) of F:I!(t,w) satisfy 

11'1 = 11'0=0 and 11'2 = 211' 11' 0=1r /2' 

If 1I'o(t) = Ixo(t)12, then we will say that the transform preserves 
the marginal relative to the direction () in time-frequency. Inter­
estingly, the Wigner distribution uniquely meets this requirement 
for all (J. The proof is a simple generalization of Cohen's result. 
He showed that a shift-invariant quadratic transform perserves the 
time marginal, i.e., 1I'1(t) = Ix(t)12, iff ~(T, 0) = 1 for all T. Using 
F[4>Ro] = ~Ro, which is easily verified, it follows that 1I'o(t) = Ixo(t)12 
iff~Ro(T,O) = 1 for all T. This implies that ~(T,lI) = 1, which corre­
sponds to the Wigner distribution by Eq. 2.5.3. This is the reason for 
considering the Wigner distribution 'perfectly localized' and 4>(t,w) 
the 'point spread function' in time-frequency. 

The amount of spread in time-frequency direction (J can be measured 
by the variance 

00 00 

J J t214>R81(t,w)12 dt dw 
O'~ = _-oo~-_oo-:-:-_______ _ 

u 00 00 
(2.8.4 ) 

J J I4>R81(t,w)12 dt dw 
-00 -00 
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In the notation of the previous sections, Ut = U(J=O, Uw = U(J=1r/2, and 

2 ( (J . (J) (u; Utw) (cos (J) u(J = cos stn 2' (J . 
Utw Uw stn 

(2.8.5) 

Let u~ be the maximum value and u~ be the minimum value u~. 
which corresponds to the eigenvalues of the covariance matrix in 
Eq. 2.8.5. Further, let (J* be the maximum direction, which corre-

sponds to the eigenvector (~~:::) of the eigenvalue u;. In other 

words, U1 and U2 are the maximum and minimum dimensions of the 
concentration ellipse of4>(t,w), and (J* is angle of the major axis of 
concentration ellipse relative to the time axis. These three quantities 
conveniently specify the time-frequency locality of the transform. 

In an analogous manner, we can measure the smoothness of the trans­
form in time-frequency direction (J by 

00 00 

J J r21~R91(r,v)12 drdv 
~2 _ -00 -00 

,(,J(J - 00 00 (2.8.6) 
J J I~R91(r,v)12drdv 

-00 -00 

In the notation of the previous sections, l:T = l:(J=o, l:1I = l:(J=1r/2, 

and 

( 
~2 

~~ = ( cos (J sin (J ) ~:II ~TII) (cos (J ) 
~~ sin(J' 

(2.8.7) 

Let ~~ be the maximum value and ~~ be the minimum value of 
l:~, and let (J** be the maximum direction. These three quantities 
conveniently specify the time-frequency smoothness of the transform. 

We are now in a position to generalize Theorem E. 
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Theorem F. If Fx(t,w) is shift-invariant, then 0'1~2 ~ ! and 0'2~1 ~ 
!, with equality in both these relations iff 

(2.8.8) 

Proof: Applying Theorem E to the transform with kernel </JRfi} , 
we have ! S 0'2~'T S 0'2~1' Similarly, with the kernel </JRe", ! s 
O't~2 S 0'1~2' The right hand inequalities are satisfied with equality 
iff (J* = (J**. It follows from Theorem E that Eq. 2.8.8 is a necessary 

and sufficient condition that all these inequalites are satisfied with 

equality. / / / 

Generalizing Theorem D requires that we use the directional variance 
of </J(t,w) not 1</J(t,w)j2, i.e., 

00 00 

J J t2</JR;1(t,w) dt dw 
-00 -00 

00 00 
(2.8.9) 

J J </JRfil(t,w)dtdw 
-00 -00 

We define O'~ and O'J[ as the maximum and minimum values of this 
variance, and 0* as the maximum direction. 

Theorem G. Let Fx(t,w) be positive and shift-invariant. Then 

O'[O'JI ~ !. 

Proof: Apply Theorem D to the signal x_e.(t) and the transform 

with kernel </JRe!. / / / 

Corollary. If Fx(t,w) is positive and shift-invariant, then 

1
0'; O't21 ~!. 

O'tw O'w 2 
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From Theorem F, we see that a two-dimensional gaussian transform 
kernel gives the best time-frequency locality for a given smoothness. 
In this general case, however, the gaussian kernel may be correlated 
in time and frequency, i.e. its concentration ellipse may be oriented 
obliquely in the time-frequency plane. By specifying 0'1 (= 20'i), O'il 

(= 20'~), and ()* for this kernel we are, in effect, selecting a particular 
time-frequency scale for the transform. By Theorem G, we may 
choose any values we wish provided O'IO'n ~ ~, and the resulting 
transform will best satisfy all our design properties. 

When O'IO'n = !, this transform is equivalent to a spectrogram with 
a rotated gaussian window goo(t) [cf. Riley 1983, Dungeon 1984]. 
For larger values of O'IO'n, this transform is equivalent to convolving 
such a spectrogram with a 2-D gaussian. 

2.9. A speech example 

In this section we examine a particular utterance, comparing the var­
ious signal representations discussed above. The utterance is /wioi/ 
taken from "We owe Eve a dollar", as produced by an adult" male. 
This utterance has some rapid F2 motion, which makes it useful as 
an example of non-stationary behavior in speech. 

Figure 2.12a,b show the traditional wideband and narrowband spec­
trograms for this utterance. These are spectrograms computed with 
gaussian windows of standard deviation 1 msec and 15 msecs, respec­
tively. The wideband spectrogram shows vertical striations spaced 
at the pitch period. The narrowband spectrogram shows horizontal 
striations spaced at the fundamental frequency. They are both due to 
the voiced excitation. Figure 2.12c shows a spectrogram whose win-
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2111 

1111 -hill/-,!·;·.+II:;', 

'" 

I 1.15 1.1 I.IS 1.2 I.U I.' I.J5 I.~ I 1.15 1.1 I. IS I.J .,U I.J I.U 1.4 

I I.IS 1 . 1 1 . 1S 1.2 1.15 I.] I.U 1.4 

Figure 2.12. Log magnitude spectrograms of the utterance /wioij. 
(a) Wideband (gaussian window standard deviation of 1 msec). (b) 

Narrowband (standard deviation of 15 msec). (c) Intermediate band 
(standard deviation of 4 msec). 
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dow duration is 4 msec, which is intermediate between the previous 
two. This window size is matched to the excitation in the following 
sense. The 2-D gaussian kernel (Eq. 2.6.7) that corresponds to this 
spectrogram has standard deviations of 2 msec by 20 Hz. These are 
in the same ratio as 10 msec and 100 Hz, the pitch period and the 
fundmental frequency, respectively. This choice gives rise to rows 

and columns of sharp peaks and valleys spaced at the pitch period 
and the fundamental frequency. We will see in the next chapter why 
the excitation produces this particular structure. 

Figure 2.13 shows the Wigner distribution for this utterance. Com­
pared to Figure 2.12 it looks almost as if the vertical scale has 
changed, but it has not. This representation is dominated by cross­
terms that give 'echoes' of the formants in initially suprising places. 
But remember that the sum of two complex exponetials at differ­
ent frequencies gave rise to a cross-term half-way between them that 

had greater amplitude than the original terms (Figure 2.8). Ev­
idently, the Wigner distribution itself gives a confusing picture of 
multi-component signals such as speech. 

Figure 2.14 shows the time-frequency autocorrelation function, the 
2-D fourier transform of the Wigner distribution, for this utterance 
in the neighborhood of the origin. Notice the repeated pattern in 
rows and columns spaced at the pitch period and the fundmental 
frequency. In Chapter 3 we will see that this pattern can be exploited 
in understanding how to suppress the excitation. 

Figure 2.15 shows the Gaussian transform of this signal using a kernel 
of a scale chosen to suppress the excitation. The pitch striations are 
removed, leaving smooth time-frequency ridges that correspond to 
the formants. The ridges are quite sharp, although it is somewhat 
difficult to appreciate this in the half-toned picture, Figure 2.15a. 
The 3-D plot in Figure 2.15b gives a different perspective on this 
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'J/; ; ll! :' i' ,~C:~l, _-:. :---.. "1 
!.1..·t·.·:····i· .. · " H~ • 

• '.IS '.1 1.15 '.Z I,Z5 '.J ' .35 '.4 

Figure 2.13. Log magnitude ofWigner distribution. (This is imple­
mented as a pseudo-Wigner distribution using a gaussian window of 

standard deviation 40 msec [see Claasen & Mecklenbriiuker 1980b].) 

Figure 2.14. Log magnitude of time-frequency autocorrelation 
function in the vicinity of the origin. 
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(a) 

• . ., ' . 1 ' . IS ' .2 ' .n •. , '.35 • . 4 

(b) 

Figure 2.15. Gaussian transform with kernel scales chosen to sup­
press the excitation, (Tt = 10 msec and (Tw = 100 Hz. (a) 2-D plot. 
(b) 3-D plot. 
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surface. It shows F1 and parts of F2 quite nicely, although most 
everything above 2 kHz is considerably distorted in this presentation. 

Finally, Figure 2.16 shows directional transforms of this utterance 
using oriented Gaussian kernels matched to different aspects of the 
signal. In Figure 2.16a, the kernel orientation is matched to the 

rising F2. In Figure 2.16b, the kernel orientation is matched to the 
falling F2. These choices bring out the selected formant peak with 
high resolution. 

In this chapter, we have found that a particular time-frequency en­
ergy representation, the Gaussian transform, best satifies a set of 
properties deemed desirable. There are several free parameters for 
this representation (O't, O'w, and 8*), which determine the scale and 
directional selectivity of the transform. Deciding what scales are of 
interest requires a more specific model of the signal. In the next 
chapter, we adopt such a model. 
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Figure 2.16. Directional transforms using oriented Gaussian kernels 
matched to different aspects of the signal. (aJ Kernel orientation 
matched to rising F2. (b J Kernel orientation matched to falling F2. 
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Time-frequency filtering 

In this chapter, we continue the discussion of joint time-frequency en­
ergy representations for speech signals. Here we shall make stronger 

assumptions about the form of the signals. We will introduce a par­
ticular model of the time-varying vocal tract, and define its 'transfer 
function', H(t,w). We will show that time-frequency filtering can 
be used to estimate I H (t, w W, a technique that is essentially a two­
dimensional generalization of straight-forward, stationary methods. 

Further, we will see that IH(t,wW is closely related to the time­
frequency representations of the previous chapter. 

3.1. The stationary case 

First, let us re-examine the stationary case. If we adopt a more de­
tailed model of the generation of a stationary speech signal, we can 

say much more about the cepstral methods discussed in the previous 
chapter. The linear model [Fant 1960; Flanagan 1972] of vowel pro­
duction begins by decomposing the speech signal into a vocal source 
component (e.g. periodic vocal fold vibration) and a vocal tract 
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component, which are treated as independent. The vocal tract is 
modelled as a linear and quasi-time-invariant filter with excess pres­
sure and volume velocity (of assumed one-dimensional wave motion) 
being analogous to voltage and current in circuit theory. The dis­
tribution of the poles of the filter's system function constitutes the 
formant description of the vocal tract. 

In other words, H( iw), the transfer function of the stationary vocal 
tract, can be approximated by [Flanagan 1972] t 

N 

H(iw) = L [znHn(iw) + z~H_n(iw)], (3.1.1) 
n=l 

where Hn(s) consists of a simple pole at Sn = an + iwn, 

(3.1.2) 

and Zn is the residue at the nth pole, 

Ilk SkSk 
Zn = 2iwn Ilk#n [(ak - an)2 + (w~ - w;) + 2iwn(ak - an)]· 

(3.1.3) 
We associate a formant with each pole, or more precisely, with each 
pair of poles, since they occur in conjugate pairs, i.e., S_n = S~, given 
the impulse response of the vocal tract is real. The impulse response 
of the stationary vocal tract, in fact, is 

N 

h(t) = L [Znhn(t) + z~h_n(t)], (3.1.4) 
n=l 

where 
(3.1.5) 

t This is the parallel formulation. The serial formulation, H(iw) = 
k TIn Hn(iw)H_n(iw) is also often used. The former is the partial fraction 
expansion of the latter. 
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In this linear time-invariant model, it follows that the spectrum of 
the excitation and the vocal tract transfer function combine by mul­
tiplication in the power spectrum and addition in the log spectrum. 
This fact leads to a simple procedure for separating the excitation 
and the vocal tract transfer function in certain (idealized) cases. 

Suppose the the excitation is an impulse train, which is a very sim­
ple model of constant pitch, voiced excitation. In this case, the 
spectrum of the excitation is also an impulse train, and thus, the 
speech spectrum is a uniformly sampled version of the vocal tract 
transfer function. If the sampling were unaliased (i.e., the pitch is 
low enough relative to the highest transfer function quefrencies) the 
original transfer function can be exactly recovered by ideal low-pass 
filtering the spectrum, by the sampling theorem [Bracewell 1978]. 
But this is just cepstral smoothing using, in this very idealized case, a 
rectangular cepstral window [Oppenheim 1969; Oppenheim & Shafer 
1975]. 

Let us examine this result more closely. The formulation here will 
be in terms of the power spectrum and its transform, the autocor­
relation function, instead of the more usual log spectrum and its 
transform, the cepstrum, since the former generalizes more easily to 
the time-varying case. Since the term 'cepstral filtering' is, properly 
speaking, reserved for filtering operations on the log magnitude spec­
trum, we shall refer to analogous operations on the power spectrum 
as autocorrelation filtering. The results in the stationary case are 
similar in either formulation. t 

Cepstral and autocorrelation filtering can both be used to separate signal 
components that arise at different scales in the frequency domain. Cepstral 
filtering is most appropriate when the signal components combine by con­
volution in the time domain, autocorrelation filtering when they combine 
by addition. Both approaches can be used for speech, since we can use 
either a serial or parallel formulation of the vocal tract model. 



56 Ch. 3. Time-frequency filtering 

If x(t) represents the excitation, h(t) the impulse response of the 
vocal tract, and yet) the output speech signal, then in terms of 
power spectra and transfer function, IY(w)12 = IH(iw)12IX(w)12, or 
in terms of autocorrelation functions, 

00 

Ay(r) = J Ax(t)Ah(r - t)dt. (3.1.6) 

-00 

Let the excitation be an impulse train, let; T) = L:k get - kT). Then 

(3.1.7) 

Thus from Eq. 3.1.6, we have 

(3.1.8) 

Provided the duration of Ah(r) is small enough that the terms in 
Eq. 3.1.8 do not overlap, Ah(t) and thus IH(iw)12 can be recovered by 
windowing Ay( r) with a rectangular window centered on the origin 
and of duration T (see Figure 3.1). 

Let us examine the form of Ah(r). Assume for now that the vocal 
tract transfer function consists of only a single pole, i.e., its impulse 
response has the form of Eq. 3.1.5. Then 

00 

Ah..(r) = J eS .. (T+t)u(r+t)es;,tu(t)dt 

-00 

00 

=eS .. T J e2a .. tu(r+t)u(t)dt 
-00 
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Figure 3.1. Recovering the transfer function by autocorrelation 

filtering. (a) Spectrum of the excitation modelled as an impulse train 
(10 msec period). (b) Square magnitude of the transfer function, 
which in this simple example is a single pole of 300 hz bandwidth. 
(c) Power spectrum, the product of '(a)' and '(b) '. Cepstral filtering 
uses the log spectrum instead. The approach here generalizes more 
easily to the time-varying case. (continued ... ) 
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Figure 3.1 (continued). Recovering the transfer function byauto­
correlation filtering. (d) Magnitude of the autocorrelation function, 

the (inverse) fourier transform of '(c)'. Dashed lines show the rectan­
gular window. (e) Fourier transform of the windowed autocorrelation 
function, which very nearly recovers the transfer function '(b)' in this 
idealized case (the effect of the sligh t overlap of the terms in '(d)' is 
negligible). 
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00 

= es"t J e 2a"t dt 

max(-T,O) 

= ~ea"ITleiw"T, 
(3n 

59 

(3.1.9) 

where (3n = -2an is the (half-power) bandwidth of the pole. Thus, 
provided this bandwidth is large enough, the overlap in the terms 
in Eq. 3.1.8 will be negligible, and windowing Ay ( r) will very nearly 
recover Ah(r) and hence IH(iw)12. t 

The analysis of the multiple pole case follows from superposition. 

Provided the poles are not closely spaced relative to their band­
widths, t 

N 

IH(iw)12 ~ L IZnl2 [I Hn(iw)12 + IH_n(iwW] , (3.1.11) 
n=l 

from Eq. 3.1.1 and Eq. 3.1.2, hence 

A (r) ~ ~ IZnl2 ea"ITlcosw r 
h L 2(3n n , 

n=l 

(3.1.12) 

from Eq. 3.1.9. From this equation and Eq. 3.1.8, we see that win­
dowing the autocorrelation function of the output speech signal can 
still be used to recover the transfer function when the bandwidths 
are large enough that aliasing is negligible. 

A few changes to this model make it more realistic. First, the spec­
trum of constant voiced excitation is somewhat better modelled as 

t The phase of the transfer function can be found, if desired, from its mag­
nitude, since this model is minimum phase [see Oppenheim & Shafer 1975]. 

t The analysis in terms of log spectra and cepstra does not require this pro­
viso, since convolutions in the time domain transform (exactly) to sums in 
the cepstral domain. This is an advantage of the cepstral approach. 
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an impulse train that drops off at 12DB per octave [Flanagan 1972]. 
This trend can be removed by spectral pre-emphasis. 

Second, the sampling is usually significantly aliased, which is a more 
serious problem. In this case, we can recover only a low-pass version 
of the transfer function. A rectangular window is a poor choice in 
this case, since its transform rings for a considerable duration in the 
frequency domain. The gaussian is a good choice, because it has 
minimal bandwidth for a given window duration, as indicated in the 
previous chapter. (see Figure 3.2). Typically, the standard deviation 
of the gaussian window is selected about equal to the pitch period. 

3.2. Non-stationary vocal tract 

Let us now consider the case where the vocal tract configuration 
is not necessarily static. The goal is to recover the "time-varying 
transfer function" of the vocal tract from the signal and remove the 
excitation, as we did in the stationary case. 

Unfortunately, there is no widely accepted, satisfactory definition of 
the transfer function for a time-varying linear filter, although there 
have been many proposals [e.g., see Lui 1971; Loynes 1968; Page 
1952; Saleh & Subotic 1985; Zadeh 1950]. We shall avoid this diffi­
culty by constraining the form of the transfer function; we shall allow 
non-stationarity, but only in certain well-behaved ways. 

The vocal tract, of course, is not an arbitrary time-varying fil­
ter; it is constrained by the physical properties of the articulators. 
Jospa[1982,1984] has investigated the physics of the non-stationary 
vocal tract analytically, and found that under certain reasonable 
physical assumptions it is possible to generalize the notion of a for­
mant to the time-varying case. Essentially, he replaces the assump­
tion of a static vocal tract configuration by the assumption that the 
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Figure 3.2. Estimating 'aHased' transfer function. (a) Spectrum 
of excitation modelled as an impulse train (10 msec period). (b) 
Square magnitude of the transfer function, a single pole of 150 Hz 
bandwidth. This has higher 'quefrencies' than the previous example; 
'(a)' undersamples it in this case. (c) Power spectrum, the product 
of '(a)' and '(b)'. (continued ... ) 

-
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Figure 3.2 (continued). Estimating 'aliased' transfer function. 
(d) Magnitude of the autocorrelation function, the (inverse) fourier 

transform of '(c) '. Dotted line show the gaussian window. (e) Fourier 
transform of the windowed autocorrelation function, which recovers 
a low-pass version of the transfer function '(b) '. 

deformations are slow enough to satisfy the condition of adiabatic ap­
proximation, which he indicates appears to be generally valid from 
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cine X-ray measurements. 

We can thus define the impulse response, h(t,a), for a time-varying 
"resonance" of the vocal tract to an impulse, h(t - a), at time a as: 

h(t ) - {[-2,Bo+i(wo+-y(r»] dr (t _ ) ,a-e.. u a, (3.2.1) 

where we assume the formant bandwidth f30 is fixed, and the formant 
center frequency is Wo at t = o. Note that Eq. 3.2.1 reduces to the 
usual definition of the impulse response of a formant if the time­
varying modulation frequency, ,(t), is zero. 

In Jospa's model, the bandwidth varies somewhat with rate of change 
of vocal tract area, which we shall treat as negligible. Regarding these 
bandwidth variations, Fant [1980] believes they " ... are of academic 
rather practical significance. Of greater importance is probably the 
mere fact that a rapid transition of a formant creates a special per­
ceptual 'chirp' effect." 

It will be convenient to examine a more general class of impulse 
responses than in Eq. 3.2.1. Consider the impulse response 

h(t, a) = hoCt - a)ei I,,' -y(r) dr, (3.2.2) 

where hoCt) is the impulse response of a linear time-invariant CLTI) 
system and ,(0) = O. Eq. 3.2.1 has this form with hoCt) = 
e(-2,6o+iwo)tu(t). We call this a frequency-modulated filter. We shall 

study this kind of filter in the next several sections, since it is possible 
to generalize the notion of a transfer function for it and it is possible 
to estimate this transfer function by generalizing the autocorrelation 
filtering methods described above. Of course, an FM filter models 
only a single pole; we shall take up the multiple pole model of the 
complete vocal tract transfer function in a later section. 
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How then can we represent the time-varying transfer function of an 

FM filter? An intuitively appealing candidate is 

H(t,w) = Ho[i(w - ,(t))], (3.2.3) 

where Ho( iw) is the transfer function of the corresponding stationary 
filter with impulse response ho(t) (Eq. 3.2.2). In terms of how we 
might want to visualize the transfer function of an FM filter, this 
seems attractive; it is just the stationary transfer function shifted 

at each time by the local modulation frequency ,(t). For a time­
varying formant pole, H(t,w) would have the form of a stationary 
pole in each frequency cross-section with center frequency Wo + ,(t) 
and fixed bandwidth (30. 

For our purposes, the most important properties that the definition 
of the time-varying transfer function of a formant should satisfy are 
practical ones - it should provide phonetically relevant information 
about the signal, and it should be computable from the signal. The 
representation in Eq. 3.2.3 satisfies these properties since it is a sim­
ple generalization of the stationary case, which is already understood, 
and it can be estimated from the signal by methods we will describe 
shortly. 

The transfer function of an LTI filter, however, also has some nice 
theoretical properties that would be desirable when generalized to 
the time-varying case. In particular, the transfer function Ho( iw ) 
of an LTI filter, y(x) = To[x(t)]: (1) specifies the eigenvalues for the 
filter's eigenfunctions, i.e., 

(3.2.4) 

and (2) is the ratio of the spectrum of the output over the spectum 
of the input, i.e., 

. Yew) 
Ho(zw) = X(w)" (3.2.5) 
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The first property does generalize to the FM case. Consider the 
functions 

(t) - i f[W+"Y(T)] dT <Pw - eo. (3.2.6) 

These are the eigenfunctions for an FM filter T, with impulse re­
sponse defined by Eq. 3.2.2. This follows from 

00 

T[<Pw(t)] = J h(t,a)<pw(a)da 
-00 

00 

J h (t ) if' "Y(T) dT i J." (W+"Y(T» dT d = 0 -ae.. eo a 

-00 

00 

iJ.' "Y(T)dT J h (t ) iwa d =e 0 0 -ae a 
-00 

i J.' "Y( T ) dT IT (. ) iwt = e 0 no tw e 

(3.2.7) 

Further, we see from Eq. 3.2.7 that H o( iw) specifies the eigenvalues 
for the eigenfunctions <Pw{t). The value of Ho{iw), however, depends 
on the choice of the time origin. More generally, 

(3.2.8) 

is time shift-invariant, where H(t,w) is defined by Eq. 3.2.3. t 

By comparison, some authors have used 
00 

iI(t,w) = J h(t,a)e-iw(t-a) da (3.2.9) 

-00 

t I.e., suppose £ = t - T. Let H(£,w) and Ho(iw) be the time-varying transfer 
function and the corresponding LTI transfer function, respectively, in the 
new time co-ordinate. Then, H(£,w) = H(£ +T,W) and Ho(iw) = Ho[i(w­
I(T))) = H(T,w) = H(O,w). 
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as their definition of the time-varying transfer function [e.g., Zadeh 
1950]. The filter's response to a complex exponential eiwt is 
if (t, w )eiwt• However, eiwt is not, in general, an eigenfunction of 
a time-varying system, consequently if (t, w) has limited use. 

Saleh & Subotic [1985] have explored generalizing the second prop­
erty (Eq. 3.2.5) to the time-varying case. They suggest using 

H-( )_Fy(t,w) 
t,w - ) Fx(t,w 

(3.2.10) 

as the definition of the time-varying transfer function where Fx(t,w) 
and Fy(t,w) are joint time-frequency representations of the input 
and output signals, respectively. The difficulty with their approach 
is that the ratio in Eq. 3.2.10, in general, will have different values for 
different inputs x(t) for a given filter, unlike the LTI case (Eq. 3.2.5). 
This second property evidently does not generalize well to the time­
varying case. 

3.3. Time-frequency filtering 

The remainder of this chapter is used to show that time-frequency 
filtering can be used to estimate the transfer function of FM filters 
and, more generally, ofthe time-varying vocal tract. Time-frequency 
filtering consists of multiplying the time-frequency autocorrelation 
function AxCr,v) (Eq. 2.5.5) of the signal x(t) with a 2-D window 
~(r, v). The 2-D in verse fourier transform ofthis windowed function, 

;:-1 [~(r,v)Ax(r,v)], (3.3.1) 

becomes the filtered time-frequency representation. The shape of 
the window, of course, determines what energy is kept and what is 
removed in the filtered representation [ef. Flandrin 1984]. 
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This technique is in many ways the time-varying generalization of 
the autocorrelation filtering methods presented in Section 3.1. The 
time-frequency autocorrelation takes the place of the autocorrelation 

function, a 2-D window the place of a 1-D window, and a 2-D inverse 

fourier transform of a 1-D fourier transform in this generalization. 

The representation in Eq. 3.3.1 also specifies a general member of the 
quadratic transforms presented in the previous chapter, indicating 
that the two chapters are related. In this chapter, our goal is to 
show that a member of this class can give a good estimate of the 
time-varying "transfer function" of the vocal tract. Happily, it turns 
out that the form of time-frequency window ~(T, v) that gives a 
good estimate is a 2-D gaussian, which is the same as Eq. 2.6.7. 
In other words, we end up with the same kind of time-frequency 
representation as in the previous chapter, which was based there on 
weaker, but more general goals. 

The results of this chapter, then, reinforce and reinterpret those of 
the previous chapter. Further, the analysis here suggests which scales 
to choose, decisions that were free parameters of Chapter 2. In par­
ticular, for voiced speech, (Jt is matched to the pitch period, and (Jw 

is matched to the fundamental frequency. 

We have just given the basic result of this chapter. It remains to 
demonstrate its validity, i.e., that this kind of filtering will give a 
good estimate of the time-varying vocal tract "transfer function". 
This requires several steps in which we gradually generalize the form 
of the filter that models the vocal tract. In Section 3.4, we re-examine 
the stationary case, this time in terms of the time-frequency auto­
correlation function. In Section 3.5, we consider FM filters that have 
a linearly varying modulation frequency. In Section 3.6, we use a 
locality argument to generalize these results for quasi-stationary fil­
ters and for FM filters that have a smoothly varying modulation 



68 Ch. 3. Time-frequency filtering 

frequency, respectively. In Section 3.7, we use a superposition argu­

ment to treat the multiple pole case. 

3.4. The stationary case - re-examined 

So let us assume for now we want to estimate the transfer function of 
a filter that is time-invariant. We will show how the time-frequency 
autocorrelation function can be used to produce this estimate. 

This will really just be recapitulation of the stationary argument 
presented in Section 3.1. In fact, Ah(r,O) = Ah(r), so we see the 
correspondence is very close. But with the time-frequency autocor­
relation function we will be in a position to generalize these results 
to the time-varying case, so it is worth the effort. 

Letting x(t) represent the filter input, h(t) the filter's impulse re­
sponse, and yet) the output, we have 

00 

Ay(r,v) = J Ax(t,v)Ah(r-t,v)dt. (3.4.1) 

-00 

In other words, the time-frequency autocorrelation function Ay( r, v) 

consists of the convolution of Ax(r,v) and Ah(r,v) along the r di­
mension. This is analogous to Eq. 3.1.6. 

Let the filter input be an impulse train I( tj T) = L:n b( t - nT). Then 

00 

AI(r,v) = J e-illt L b(t - nT + r/2) L b(t - mT - r/2)dt. 
-00 n m 

Substituting t' = t - !(m + n)T and r' = r + (m - n)T, 

= L L { 7 e-illt' bet' + r' /2)b(t' - r' /2) dt'} e-ii(m+n)TII. 

n m -00 



§3.4. The stationary case - re-examined 69 

The quantity in braces is the time-frequency autocorrelation func­
tion of an impulse 6(t'), which is AS(T',V) = 6(T') [see Classen & 
Mecklenbrauker 1980a]. Thus, 

Letting k=n-m, 
n m 

= L L 6( T - kT)ei~TII e-inTII 

n k 

The quantity in braces is the fourier transform of an impulse train 

I( tj T), which is itself an impulse train ¥ I( Vj ¥) [see Bracewell 
1978]. Therefore, 

(3.4.2) 

Eq. 3.4.2 shows that the time-frequency autocorrelation function of 
an impulse train is a rectangular grid of impulses spaced T apart 
along T and 211" IT apart along v (see Figure 3.3). t Eq. 3.4.2 is the 
two-dimensional analog of Eq. 3.1.7. 

From Eq. 3.4.1, we have 

t Siebert [1956] has derived the time-frequency autocorrelation function for 
a train of pulses of arbitrary shape, a result that is important in the theory 
of radar. The above result follows formally from this if the pulses are given 
unit area and approach zero width in the limit. 
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Figure 3.3. Magnitude of the time-frequency autocorrelation func­
tion of an impulse train (10 msec period). 
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Figure 3.4. Magnitude of the time-frequency autocorrelation func­
tion of the output of an LTI filter excited by an impulse train. In 
this simple example the filter consists of a single pole of 300 hz band­
width. 
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the two-dimensional analog of Eq. 3.1.8. Ay(r,v) consists of a rect­

angular grid of shifted r slices of Ah(r,v) (see Figure 3.4). 

Provided the terms in Eq. 3.4.3 do not overlap, Ah ( r, 0) can be recov­
ered from Ay(r,v)6(v) by windowing it with a rectangular window 
that is centered on the origin and that has length T, width 211" /T, 
and height T/211" (see Figure 3.5). From Ah(r,0)6(r) we can, in turn, 
recover IH(iw)12, since 

00 00 

F-oo [Ah( r, 0)6(v)] = 2~ J J Ah( r, 0)6(v)ei(vt-TW) dr dv 
-00 -00 

-00 

= IH(iwW· (3.4.4) 

On the other hand, if the terms in Eq. 3.4.3 do overlap somewhat, 
then a low-pass version of IH(iw)12 can still be recovered, since 

F-1 [Cl>(r, v)Ay(r, v)] ~ F-1 [Cl>(r,v)~ Ah(r,0)6(v)] 

= ~4>(t,w) ** IH(iw)12, (3.4.5) 

where Cl>( r, 11) is the time-frequency window, and 4>( r, w) is its two­
dimensional inverse fourier transform. In this case, using a rectangu­
lar window on the time-frequency autocorrelation function is a poor 
choice since its transform rings for a considerable duration away from 
the origin. A gaussian window minimizes this problem. 

Let us examine the form of Ah ( r, 11) assuming for now that the filter 
consists of only a single pole, i.e., its impulse response has the form 
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Figure 3.S. Rectangular window (very nearly) recovers 'unaliased' 
transfer function. (a) Windowed time-frequency autocorrelation 
function in Figure 3.4. (b) Square magnitude of transfer function, 
the 2-D inverse fourier transform of '(a)'. In the 'aliased' case, i.e., 
if the terms in Figure 3.4 were to overlap significan tly, a gaussian 
window would be more appropriate. 
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of Eq. 3.1.5. Then 
00 

Ah..(r,v) = J es .. (t+T/2)u(t + r/2)eS:(t-T/2)u(t - r/2)e-ivt dt 

-00 

00 

= eiW .. T J e2ex .. tu(t - Irl /2)e- ivt dt 
-00 

e(ex .. -iv /2)ITleiw .. T 

f3n + iv 
This last equation is the two dimensional analog of Eq. 3.1.9. 

(3.4.6) 

Thus, provided the pole bandwidth is large enough, windowing 

Ay(r,v) can recover most of Ah(r,v), and, hence, a low-pass ver­
sion of IH(iw)l2. 

3.5. Linearly varying modulation frequency 

We now consider the case where we want to estimate the transfer 
function of an FM filter that has a linearly varying modulation fre­

quency, i.e., 'Y(t) = mt in Eq. 3.2.2. This means 

h(t,a) = ho(t _ a)ei~m(t2-a2). (3.5.1) 

The previous section was the special case m = o. 

Let us find how passing a signal through such a filter modifies its 
time-frequency autocorrelation function. As usual, we let x(t) rep­
resent the input to the filter and yet) the output. Thus, 

00 

yet) = J x(a)h(t,a)da 
-00 

00 

= ei~mt2 J x( a)e -i~ma2 hoe t - a) da. (3.5.2) 

-00 
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Letting x(t) = x(t)e-i~mt2 and yet) = y(t)e-i~mt2, we have from 

Eq. 3.5.2 and Eq. 3.4.1, 

00 

Ay(r,v) = J Ax(t,v)Aho(r - t,v)dt. (3.5.3) 
-00 

In other words, the time-frequency autocorrelation function of yet) 
consists of the convolution of the time-frequency autocorrelation of 
x(t) and ho(t) along the r dimension. 

We are more directly interested in Ax and Ay, than Ax and Ay. 
But this last transformation in simple, since the time-frequency au­
tocorrelation function has the following nice property: if x(t) = 
x(t)e-i~mt2, then [Van Trees 1971) 

Ax(r,v) = Ax(r, v + mr). (3.5.4) 

In other words, multiplying a signal by a linear chirp shears its time­
frequency autocorrelation function along the v dimension (see Figure 
3.6). 

Combining Eq. 3.5.3 and Eq. 3.5.4, we see that 

00 

Ay(r,v) = J Ax(t, v + met - r))Aho(r - t,v- mr)dt. (3.5.5) 
-00 

In words, the time-frequency autocorrelation function of a signal 

passed through the filter in Eq. 3.5.1 can be found by first shearing 
its input time-frequency autocorrelation function, convolving that 
with the time-frequency autocorrelation function of ho(t), and then 
shearing the output time-frequency autocorrelation function in the 
opposite direction, all with respect to the v dimension (see Figure 
3.7). 
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1/ 

D o 

r r 
o o 

Figure 3.6. Multiplying a signal x(t) by e-imt shears its time­
frequency autocorrelation function: Ax( r, v + mr). 

194z When the filter input is an impulse train I(t; T), the filter output 
IS 

2,rn 
X 6(v - m( r - kT) - T ). (3.5.6) 

In other words, Ay ( r, v) consists of a rectangular gri d of shifted r 
slices of Aho(r,v) that have been sheared in the v direction by slope 
m (see Figure 3.8). 

If these terms do not overlap, then we can window Ay(r,v) about 
the origin and recover the single term Aho(r,O)6(v - mr). We can 
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x(t) 

.. 
T-F Autocorrelate 

00 

As(r, v) = / e-ivtX(t + r/2)x*(t - r/2) dt 

.. -00 

Shear 

Ai(r,v) = A s(r, v + mr) 

~,. 

Convolve 

00 

Aj(r,v) = f Ai(t, v}AA,,(r - t, v} dt 

-00 
r 

-Shear 

,. 

A,(r,v) = Aj(r,v - mr) 

Figure 3.7. Obtaining the time-frequency autocorrelation function, 
Ay(t,w), of a signal x(t) passed through the filter in Eq. 3.5.1. 
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Figure 3.8. Magnitude of time-frequency autocorrelation function 
of the output of an FM filter with linearly varying modulation slope 
(10 Hz/msec) excited by an impulse train (10 msec period). In this 
example, the corresponding LTI filter consists of a single pole of 300 

hz bandwidth. 

then take its inverse 2-D fourier transform to obtain IH(t,wW: 

00 00 

;:-1 [Aho(r,O)8(v - mr)] = J J Aho(r,O)8(v - mr)ei(//t-TW) drdv 

-00 -00 
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= IHo(i(w - mt)W, 

and from Eq. 3.2.3, 

= IH(t,w)12 (3.5.7) 

(see Figure 3.9). 

On the other hand, if the terms in Eq. 3.5.7 do overlap somewhat, 

then a low-pass version of IH(t,w)12 can still be recovered, since 

F- 1 [4>(r, v)Ay(r, v)] ~ F- 1 [4>(r,v)~ Aho(r,O)t5(v - mr)] 

= ~4>(t,w) ** IHo(i(w - mt»12 

1 2 
= T4>(t,w) ** IH(t,w)1 , (3.5.8) 

where 4>(r, v) is the time-frequency window, and 4>(t,w) is its inverse 
fourier transform. A 2-D gaussian window is used, and its dimensions 
are matched to the period T and the fundamental frequency 21r IT, 
respectively (see Figure 3.10). 

So far, we have shown that the time-frequency filtering can be used 
to estimate the transfer function of two kinds of linear filters - time­
invariant and FM filters with linearly varying modulation frequency. 
We now show that more general cases will follow from the time lo­

cality of this operation. 

3.6. The quasi-stationary case 

We next consider the quasi-stationary case in which the vocal tract 

changes slowly over time. The traditional way to deal with this 
situation is to extend the stationary arguments (Section 3.1) by sub­

stituting the short-time spectrum for the spectrum of the entire sig­

nal. There are thus two windows involved in this analysis; the spec-
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Figure 3.9. Rectangular window (very nearly) recovers 'unaliased' 

transfer function. (a) Windowed time-frequency autocorrelation 
function in Figure 3.8. (b) Square magnitude of transfer function, 
the 2-D inverse fourier transform of '(a)'. In the 'aliased' case, i.e., 
if the terms in Figure 3.8 were to overlap, a gaussian window would 
be more appropriate. 
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trogram window, ws(t), and the autocorrelation function window, 

wA(r). 

The 'two-dimensional' approach that we have outlined above extends 
directly without the need of an additional window. In fact, the esti­
mate of IH(t,wW is a positive representation of the signal energy 

so from Eq. 2.6.5 we know that IH(to,w)12 effectively depends only 
on signal values within a few Ut of to. t Provided the quasi-stationary 
signal does not change much over this interval, the stationary results 

of Section 3.4 generalize immediately. 

These two approaches for quasi-stationary signals, the former using 
a I-D window, ws(t), on the signal and a I-D window, wA(r) on the 
autocorrelation function, and the latter using a single 2-D window, 
~(r, v) on the time-frequency autocorrelation function, are related. 
In fact, 4>(r,w) = AW1 (r,v)w2(r). The latter approach specifies the 
time and frequency scale of interest independently with each of the 
dimensions of the window ~(r,v), This is somewhat cleaner than 
the former, which selects the time and frequency scales with its two 
windows, ws( t) and WA (r), but not independently. 

3.7. Smoothly varying modulation frequency 

Suppose the modulation frequency 'Y(t) in Eq. 3.2.2 varies smoothly 
as a function of time. In other words, it is approximately linear 
locally, with 'Y"(t) small. For example, a formant with a trajectory 
that does not have sharp bends in it can be modelled this way. By 
comparison, quasi-stationarity requires the trajectory have shallow 
slope, i.e., 1"( t) is small. 

t Provided UTUn ~ ~. 
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The locality argument used in the preceding section to show that the 
estimate of IH(t,w)12 extends to the quasi-stationary case applies 
equally to the case here. If the modulation slope, ,'(r), does not 
change much over an interval of a few (Tt, then the results of Section 
3.5 on filters with a linearly varying modulation frequency generalize 
immediately to the smoothly varying case. This is because IH(t,wW 
depends only locally on the signal. 

3.8. The vocal tract transfer function 

Thus far, we have defined the notion of a frequency modulated filter 
and its time-varying transfer function, and we have shown how to 
estimate this transfer function from the output signal, provided the 
modulation slope varies sufficiently slowly. We did this because we 
modelled each formant pole as an FM filter. The vocal tract is mod­
elled as a weighted sum of formant poles, i.e., its impulse response 

is 
N 

h(t,a) = L [zn(a)hn(t,a) + z:(a)h_n(t, a)] , (3.8.1 ) 
n=l 

where hn(t, a) is the impulse response of each pole, Eq. 3.2.1 (d. Eq. 
3.1.4). 

How can we define the transfer function of such a filter? Extending 
the stationary case (Eq. 3.1.1) would suggest 

N 

H(t,w) = L [zn(t)Hn(t,w) + z:(t)H_n(t,w)]. (3.8.2) 
n=l 

There are two advantages of this definition. First, it is a simple gen­
eralizaton of the stationary case; it allows us to think of transfer func­
tion of the time-varying vocal tract at a given time t as equivalent to 
the transfer function of a stationary vocal tract for the current artic­
ulatory configuration. Second, we shall show that it can be estimated 
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from the speech signal, by the methods we have already presented, 

in fact. These two conditions, which we can call abstractly pho­
netic relevance and computability, are probably the most important 

for any representation to satisfy in the analysis of speech. Unfortu­

nately, there is no simple relation between the system's eigenvalues 
or the time-frequency representations of the input and output signals 
and this definition of time-varying 'transfer function'. These latter 
notions just do not generalize well to this time-varying case. 

Two facts show that the transfer function in Eq. 3.8.2 can be esti­
mated by the time-frequency filtering technique we have described 
above. The first specifies the effect of variable gain at the filter output 

on the transfer function estimate, which is given by Eq. 3.9.4 in the 
next section. The second specifies the effect of adding the output 
of two filters together on the transfer function estimate. Suppose 

that h(t,r) = hl(t,r) + h2(t,r) and that IH1(t,w)IIH2(t,w)1 = o. 
Then IH(t,wW = IH1(t,w)12 + IH2(t,WW. In other words, super­
position holds provided the transfer functions do not overlap. This 
last condition means that we must consider only regions where the 
formants are not too close to each other, as we did in the stationary 
argument in Section 3.1. [d. Eq. 3.1.11]. t This relation holds not 
only for the transfer functions involved, but also for the estimates 
of the transfer functions given by the time-frequency filtering, since 
they are positive representations of the signal. 

Using these two facts, we have 

F-1 [cT>(r, v)Ay(r, v)] 
1 

~ L T<P(t,w) ** Iz(tWIHn(t,wW 
nE{ -N, ... ,-l,l, ... ,N} 

t Of course, formants often come close together, but we ignore such time­
frequency regions for simplicity in this argument. A more thorough treat­
ment would try to deal with these regions also. 
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(3.8.3) 

for the filter in Eq. 3.8.1, as desired. 

3.9. The transmission channel 

It is convenient at this point to consider the effect of the transmis­
sion channel characteristics on the estimate of the transfer function 
IH(t,w)12. The results will prove useful in the next section. We ex­
amine two cases - the transmission channel as an LTI system with 
impulse response ret), and the transmission channel having variable 
gain z(t). 

There are two facts about the Wigner distribution that we need 

[Claasen & Mecklenbdiuker 1980a]. If pet) = ret) * yet), then 

00 

Wp(t,w) = J Wr(r,w)Wy(t - r,w) dr, 
-00 

and if q(t) = z(t)y(t), then 

00 

Wq(t,w) = ~ J Wz(t, a)Wy(t,w - a) da. 
211" 

-00 

(3.9.1) 

(3.9.2) 

In other words, in the first case the Wigner distributions are con­
volved in time, and in the second case they are convolved in fre­
quency. 

If the spectral shaping of the first transmission channel is grad­
ual, i.e., ret) is of short duration, then from Eq. 3.9.1, Wp(t,w) ~ 
IR( iw )1 2Wy (t, w). If the gain variations of the second transmission 
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channel are slow, then from Eq. 3.9.2, Wq(t,w) ~ Iz(t)12Wy (t,w). It 
follows from these equations and Eq. 3.5.8 that 

and 
1 

:F-1 [~(T,")Aq(T,,,)] ~ T4>(t,w) ** Iz(t)12IH(t,wW. (3.9.4) 

Thus, these simple kinds of transmission channels have simple effects 
of the transfer function estimate. The broadband LTI channel essen­
tially shapes the estimate's frequency slices and the slowly varying 

gain channel shapes its time slices. 

3.10. The excitation 

Up to now, we have assumed the filter excitation has been an impulse 
train. We consider more general (and realistic) forms of excitation 
in this section. 

We can create a general periodic excitation from an impulse train by 
passing it through a LTI filter whose impulse response ret) has the 
excitation's pulse shape. The output can then be passed through the 
time-varying filter h( t, a). Provided the spectral shaping by r( t) is 
gradual, i.e., ret) is of short duration, then these two filtering oper­
ations will commute. The assumption is that the time-varying filter 
can be considered quasi-stationary over the duration of ret). This is 
a reasonable assumption for the gradual spectral rolloffs produced in 
speech excitation. Since these two operations commute under these 
circumstances, the effect of the filter ret) on the transfer function 
estimate is given by Eq. 3.9.3. 

Similarly, slowly varying changes in the amplitude z( t) of the exci­
tation will result in corresponding changes in the amplitude of the 
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filter output, with the effect on the transfer function estimate given 
by Eq. 3.9.4. The pitch period need not be constant, either. Using 
the locality arguments again, we only require that the pitch period 
changes slowly. 

Finally, consider the case where the filter is noise-excited. Martin 
& Flandrin [1985] discuss using time-frequency filtering as a general 
approach for analyzing non-stationary random signals. Our model 
here involves not only non-stationarity, but also noise that is not 
additive, and a careful theoretical analysis of this case has not been 
attempted yet. We must be content, for now, with the following 
comment. We have seen in the previous chapter that these methods 
can be used to select time and frequency scales that remove the fine 
structure introduced by the excitation. This, of course, remains true 
for this case. 



4 

The Schematic Spectrogram 

4.1. Rationale 

In the previous chapters we have seen how to obtain a well-behaved 
representation of the the speech energy, with a choice of the time 
and frequency scales of interest. For the next step we are faced with 
a methodological decision. If we are willing to make strong assump­
tions about the signal early on, then we can use those constraints 
in some detection scheme. For example, one can assume the speech 
spectrum is composed of a number of poles, and use analysis-by­
synthesis or linear predictive coding methods to fit these poles to the 
spectrum in a formant analysis. 

In this approach, a synthetic multiple pole spectrum is fit to each 
short-time spectrum. Typically, the pole frequencies can be varied, 
but for tractability the number of poles and their bandwidths are 
held fixed. Stevens & House [1955] and Olive [1971], for example, 
computed mean-square difference between log-magnitude short-time 
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speech spectra and a function of the form: 

N 1 

19 !! (iw _ sn)(iw _ sn*) + k, (4.1.1) 

The poles of the synthetic spectrum that is found to have the least 

RMS error are taken to be the formants. The permissible range for 
each of the poles is often restricted to the typical ranges for the corre­
sponding formants in this method. Different versions of this method 
are identified by the search strategy used to find the best match. 
Some have used exhaustive search [Stevens & House 1955; Bell, 
et al 1961; Matthews, et al 1961], so-called analysis-by-synthesis. 
Olive[1971] used hill-climbing techniques. Linear-predictive coding 
can be viewed as fitting a fixed number of poles to short-time spec­
tra, using a slightly different spectral distance measure than RMS 
distance [Atal 1971; Markel & Gray 1976]. The great advantage of 
LPC is that it provides a simple closed-form solution to the search 
for an optimum fit. 

One problem with this approach, as stated, is that it depends on 
the quasi-stationary assumption. The short-time spectral contribu­
tion of a formant in rapid motion is poorly modelled as a pole with 
a bandwidth appropriate for a stationary formant. Even when the 
bandwidths are variable, as in the LPC technique, the diffuse spec­
tral contribution of the moving formant can cause incorrect formant 

matches. In principle, these methods can be generalized to the time­
varying case. Liporace [1975], in fact, has done so for the LPC tech­
nique. 

This approach, however, suffers from a more general problem. The 
model used to generate the synthetic spectra has little notion of 
the source or transmission channel characteristic, or of nasalization. 
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These effects can contribute significantly to the speech spectrum, 
"competing" for poles that were meant to be fit to the formants, 
and thus often resulting in pole distributions that have poor cor­
respondence to the formant distribution. The degree of the fit to 

a particular point in the spectrum depends on the entire pole dis­
tribution; i.e., on the number of poles used and where each pole is 
positioned in the spectrum. Thus, errors in one part of the spectrum 
are propagated to other parts in the very first stage in the analysis 

For example, Figure 4.1 shows pole locations found by LPC analysis 
using the autocorrelation method. The order of the analysis was 
chosen, as is customary, to allow for two complex poles per 1000 Hz 

plus 4 poles for matching the overall spectral balance (e.g., 12 pole 
analysis for 4KHz filtered speech). A hamming window was used of 
25 msec duration, also a typical choice. In Figure 4.1a, we see that 
this analysis can perform poorly in regions of rapid formant motion. 
In Figure 4.1b,c, it appears that the addition of a nasal resonance 
in the neighborhood of Fl resulted in spurious, unstable behavior 
in the neighborhood of F3. Decreasing the duration of the window 
sometimes gives better performance in non-stationary situations, but 
increases the overall instability of the solution. 

The problem, in general, with making such strong assumptions early 
on in the analysis is that they are seldom universally true. The ex­
citation, the nasal tract, and the transmission channel (e.g. room 
acoustics and noise) all conspire to make formant analysis more dif­
ficult than just fitting poles to a spectrum. 

The approach we take here is more conserative, influenced by a sim­
ilar methodology applied to vision by Marr[1982]. He suggested (1) 
the principle of least commitment: make no decisions that may have 
to be taken back, later in the analysis, and (2) the principle of ex­
plicit naming: produce as rich and useful a symbolic description of 
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Figure 4.1. Examples of problems with 'pole-fitting' approach. (a) 
Poles locations for utterance Iwioil of Section 2.9. Note the poor 
performance in the regions of rapid F2 motion. (b) Spectrogram of 
Icl in the context Icn/. (c) Poles locations for this nasalized vowel. 
Note the spurious behavior in the neighborhood of F3. 
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the input signal as possible, but without any early commitment to 
its physical origin. This description can be then further organized 
and analyzed with the goal of finding its physical correlates. 

Applying these guidelines to speech suggests taking the energy rep­
resentations as in Figure 2.15, and producing rich, symbolic descrip­
tions of the significant features there. There are several features 

(at various scales) that suggest themselves: time discontinuites (up 
and down edges) useful for finding onsets, offsets and bursts; time­
frequency ridges, easily seen in Figure 2.15, useful for finding the 
formants and perhaps channel resonances; and some form of gross 
spectral balance measure, also useful for formant and channel anal­
ysis. We call this composite symbolic representation the schematic 
spectrogram. 

4.2. Spectral Peaks 

To create this representation, we must come up with computations 
that identify these features. This is not as easy as it may seem, since 
the features clearly visible in Figure 2.15 may nevertheless require 
some non-trivial computations to detect reliably. We focus on how 
to find the time-frequency ridges, due primarily to the formants, in 
the next sections. 

An obvious way to try to find these ridges is to identify peaks in ver­
tical slices of the time-frequency energy surfaces. This approach has 
been tried by several authors, with the main difference between the 
various instances being how the smoothing was accomplished. Flana­
gan [1956] used a filter bank whose output was low-pass filtered, 
Schafer&Rabiner used cepstral smoothing [Oppenheim 1969; Op­
penheim & Shafer 1975], while McCandless [1974] used LPC-based 
smoothing [Atal1971; Markel & Gray 1976]. 
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To examine this technique, we will use the smoothed time-frequency 
surfaces of Chapters 2 and 3. Since these surfaces are smooth, the 
spectral peaks can be found by looking for maxima, i.e., (negative) 
zero-crossings in fwF(t,w). Figure 4.2 show these points for the 

time-frequency energy surface in Figure 2.15. While the horizontal 
ridge due to F1 is well captured, the steeply rising F2 is very poorly 
captured. This may seem suprising at first, but the reason is simple. 

Eq. 3.5.8 models the situation with F2. The formant pole Ho[i( w­
mt)] with time-frequency slope m is smoothed by the 2-D gaussian 
¢>(t,w) to give F(t,w). This will produce a time-frequency ridge 
in F( t, w) that has a roughly constant width, independent of slope 
m, when measured perpendicular to the formant trajectory in the 
time-frequency plane. However, the width of the ridge in a vertical 
slice increases with increasing slope; evidently in Figure 2.15, F2 
was sufficiently broadened that its spectral peak is completely lost 
to other effects in the signal, i.e., other formants, noise, the source 
and transmission channel characteristic (cf. Figure 2.4). 

This effect is not an idiosyncrasy of our particular choice of time­
frequency energy representation. It is true, for example, of any repre­
sentation computed with signal windows (e.g., any positive represen­
tation, by Thm. A), since if the formant moves enough in frequency 
over the duration of the window, its spectral representation will be 
significantly broadened. 

One could rethink the design choices for the time-frequency energy 
representation, trying for better spectral resolution at the expense 
of our chosen criteria. However, the problem is not there, as a re­
examination of Figure 2.15 will show. The F2 ridge is clearly visible 
in this representation, it looks no more broadened than the stationary 
Fl. This is because we see both dimensions of time and frequency 
simultaneously, and as the formant ridge broadens in frequency with 
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Figure 4.2. Peaks in spectral cross-sections of the time-frequncy 
energy surface in Figure 2.15. The energy ridge due to F2 is poorly 
captured by this peak computation. 

increasing slope it narrows in time. Its prominence depends on its 
width perpendicular to its trajectory, which does not change much 
with slope. 

Why then did we confine our peak detection methods to vertical 
slices? It was the usual quasi-stationary prejudice of thinking of 
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speech analysis in terms of a family of one-dimensional spectral 
analyses parameterized by time. Just like the energy representa­
tion problem, this problem is inherently two-dimensional and should 
be treated as such. 

4.3. Time-frequency ridges - non-directional kernel 

The approach we will use for detecting time-frequency ridges will 
depend on whether we use an directional or a non-directional kernel 
for the underlying energy representation. If we use a non-directional 
kernel, the problem is simpler, so we shall address this first. In this 
case, we begin with a single time-frequency representation at a given 
time and frequency scale, as in Figure 2.15, and the problem reduces 
to finding the ridges in this smooth, two-dimenional surface. 

How can we find ridges in a smooth, two-dimensional surface? This 
becomes a problem in differential geometry. As such, let us look at 
the gradient and curvature vectors of the surface in the neighborhood 
of a ridge. Figure 4.3 shows them for the time-frequency surface in 
Figure 2.15 in the neighborhood ofthe initial steep F2. In particular, 
the solid vectors are used to depict the direction of the gradient, V' F, 
i.e., the local direction of steepest ascent. The dotted vectors depict 
the direction of greatest downward curvature, gdc F, i.e., the local 
direction in which the surface curves the most downward from the 
tangent plane. 

A precise definition of gdc F is in order. We will use the second 
derivative as the measure of curvature - this is sometimes called 
unnormalized curvature. This is used instead of normalized curvature 
(which has the form ~ / [1 + ( ~ )2] in one dimension) for two reasons. 
First, it is simpler. Second, unnormalized curvature scales linearly 
with a change in the amplitude scaling, normalized curvature does 
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Figure 4.3. Gradient and curvature vectors in the vicinity of the ris­
ing F2 in Figure 2.15. The solid vectors depict the gradient direction, 
and the dotted vectors depict the direction of greatest downward cur­
vature. (The vector lengths are normalized to unity.) 

not. If we use the former, our ridge computation proves invariant 
under changes in the amplitude scaling. 
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Given this, we define gdc F as the direction vector of the minimum 
second directional derivative at a given point. More formally, let 

a~F 

H(t,1) = (~ 
Ft8l 

a~F ) 
~ 
a~F 

ap 
(4.3.1 ) 

denote the Hessian matrix for F(t, I). Let ~ denote the eigenvector 
of H corresponding to the lesser eigenvector K. Then gdc F = ~ / I~I. 

Let us now return to Figure 4.3. As one might expect, the gradient 
points toward the top the the ridge on each side of it, but must 
swing through it as one passes over the top. The direction of greatest 

downward curvature, however, points perpendicular to the ridge in 
its entire neighborhood, since a surface will curve downward more 
sharply as one moves toward and away from the top of a ridge then 
if one moves along it. Note that the two kinds of vectors will become 
perpendicular precisely on the top of the ridge. 

We define the ridge top as the locus of points that satisfy 

V F . gdc F = 0 and K < 0, (4.3.2) 

where K is the minimum second directional derivative. The inner 
product of these vectors is zero precisely when they are perpendicu­
lar, and K < 0 insures that the point is a ridge top and not a trough 
bottom. 

We now show this definition is equivalent to moving along lines of 
curvature on F( t, I) corresponding to the greatest downward curva­
ture and noting passage through a peak on that surface. This gives 
an intuitively simple interpretation of a ridge top, and shows that 
gdc F essentially provides the local ridge direction. 

Let 9 : R _ R2 be a parameterized, differentiable curve with 
g'(s) = gdcF(g(s». In other words, 9 traces out a curve in the 
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time-frequency plane that is always tangent to the direction of max­
imum downward curvature. When Fog goes through a peak, 
iF[g(s)] = O. By the chain rule, this occurs precisely where 
VI F . g'(s) = VI F . gdc F = O. If It < 0, the curve goes through 
a maximum. t But this is just our ridge top definition, Eq. 4.3.2, as 
desired. 

The inner product in Eq. 4.3.2 is easy to compute for each point on 
these time-frequency surfaces (one only needs the first and second 
derivatives of the surface, which are simple to compute for such a 
smooth surface). Since this quantity may vanish in between sample 
points in a digital implementation, we detect zero-crossings between 

adjacent sample points. 

Figure 4.4 shows the zero crossings in this quantity for the time­
frequency energy surface in Figure 2.15. Note that the steep formant 
peaks are now as well traced as the stationary ones by this ridge top 
computation. The only thresholding performed here is the removal 
of points below the signal-to-noise ratio of the analysis. Thus, fairly 
low amplitude structure can appear in addition to the significant 
time-frequency ridges. We will examine in Section 4.6 how we to 
deal with such clutter. 

A few pertinent details have not yet been mentioned. First, to per­
form this computation, an aspect ratio has to be chosen between 
time and frequency, since it is not invariant under different relative 
scalings of time and frequency. The choice is natural; we use the 
scaling inherited from the energy representation: let f = (ut!uw)w. 

'" Thus, we perform our computations in the new co-ordinates, (t, f). 

t This assumes IglI( s)1 is negigible; (F 0 9 )"(8) = g'( 8) . H g'( s) + "V F . g"( s), 
where K equals the first term. 
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Figure 4.4. Two-dimensional ridge computation applied to the 
time-frequency energy surface in Figure 2.15. The contours are those 
points where the gradient direction and direction of greatest down­
ward curvature are perpendicular. This computation captures the 
steep time-frequency ridges, due to rapid formant motion, as well as 
the more horizontal ones. 

Second, very high spatial frequencies have been removed from the en­
ergy representation already. Very low spatial frequencies also appear 
in the vertical direction, due to amplitude variations and formant 
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motion. We find better results when these are also removed by fil­
teringj we thus use a smoothed and flattened energy surface for the 
ridge computation. 

4.4. Time-frequency ridges - directional kernel 

A second approach to the problem of identifying time-frequency en­
ergy ridges uses directional kernels. Let F( t, I j 0) be a family of 

time-frequency representations of the class defined by the kernel in 
Eq. 2.8.8, where 0 gives the preferred direction of the transform (i.e., 
the kernel orientation), and the other free parameters, 0'1 and 0'2, are 
fixed. We would expect in the vicinity of a time-frequency ridge and 
for fixed t and I, F(t, Ij 0) would be maximum when 0 equalled the 
local ridge direction Ooj in other words, when the transform's orien­
tation is tuned to the local direction of the energy ridge. We would 
also expect that F[t( s), I( s), 00] would be maximum at the ridge top, 
where (t( s), I( s)) is a curve that crosses the ridge perpendicular to 
its trajectory. The first case corresponds to a maximum under rota­
tion of the kernelj the second case corresponds to a maximum under 
translation of the kernel along the minor axis of its concentration 
ellipse (see Figure 4.5). 

The locus of points where these two maxima coincide defines a curve 
in the time-frequency plane, which we can take as our ridge top 
definition. That is, we seek the points that satisfy both 

a 
aoF(t,/jO) = 0 (4.4.1a) 

and 

:s F( t, Ij 0) = \1 F . (sin 0, -cos 0) 

aF . 8F 
= -sm (J - -cos 0 

at 81 
= o. (4.4.1b) 
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Figure 4.5. Two conditions for ridge detection: (a) local maximum 
under kernel rotation, and (b) local maximum under kernel transla­
tion along minor axis. 

This computation can be implemented by calculating ¥t, ~~, and 

~~ on a sufficiently fine grid of samples of (t, I, e), and then finding 
the simultaneous zero-crossings in the lefthand sides of Eq. 4.4.1a 
and Eq. 4.4.1b. (The signs of the zero-crossings have to be examined 
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to insure that we have maxima and not minima.) 

We yet have to specify the scale parameters 0'1 and 0'2. Alternatively, 
we can specify 0'2 and r = 0'I/0'2' We can interpret 0'2 as the size 
parameter and r as an eccentricity parameter, since the greater the 

value of r, the greater the eccentricity of the concentration ellipse for 
the kernel (when holding 0'2 constant). 

The choice of r depends on a tradeoff. Clearly, as r increases, time­

frequency locality is sacrificed. In particular, bends in the time­
frequency trajectory of an energy ridge are poorly resolved with 
larger values of r. 

On the other hand, larger values of r have an advantage in separating 
intersecting energy ridges, since the larger values of r give better se­
lectivity to a particular orientation. We can quantify this selectivity 
as follows. 

Consider the response of the transform at a frequency fo to a com­
plex exponential of frequency fo. The value is independent of fo and 
equals the value of Fx(O,O;B,r) when x(t) = 1 (Le., fo = 0). We 
can therefore define a tuning curve r(B,r) = Fx(O,O;B,r) that indi­
cates the selectivity of the transform kernel to different values of the 
orientation and eccentricity parameters. 

It is straight-forward to show that 

1 
r( B, r) (X -r====;~=-==:==;;~ 

}1 + (r2 - l)sin2B 
( 4.4.2) 

In Figure 4.6 this tuning curve is plotted as a function of B for several 
values of r. 

Even greater orientation selectivity can be obtained if we modify 
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Figure 4_6_ Tuning curves showing directional selectivity of gaus­
sian transform kernels. 

this ridge top computation. The idea is simple; instead of max­
imizing the energy, F(t,fj8), for various 8 in Eq. 4.4.1a, we can 
maximize a more directionally selective measure, such as amount of 
curvature. In particular, we minimize the second directional deriva­
tive perpendicular to the kernel orientation. But this is equivalent to 
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Figure 4.7. Transform kernel ¢(t,f) = -IP<I>(t,f), where <I>(t,f) 
is a 2-D gaussian. This new kernel has a central 'excitatory'region 
with 'inhibitory' flanks that give greater orientation selectivity. 

maximizing the energy of the transform that uses the modified kernel 
¢(t, f) = -;P<l>(t, f)j in other words, we use a modified Gaussian 
kernel in the computation specified by Eqs. 4.4.1a,b. This new ker­
nel has a central 'excitatory' region with 'inhibitory' flanks that give 
greater orientation selectivity (see Figure 4.7). 

The tuning curve for this modified kernel has the form 

t(O,r) <X cos20r3(O,r). ( 4.4.3) 

In Figure 4.8 this tuning curve is plotted as a function of () for several 
values of r. These indeed show greater selectivity than the corre­
sponding plots in Figure 4.6. 



104 Ch. 4. The Schematic Spectrogram 

-,. -.. -,. -.. -5. -41 -J' -J. -II • II J. J. 41 S' .. 7. .. ,. 

Figure 4.8. Tuning curves showing directional selectivity of trans­
form kernels of the form in Figure 4.6. 

It turns out that this computation is a generalization of the method 
in Section 4.3. In particular, if r = 1, then the two computations 
are identical; i.e., those points at which the maximum downward 
curvature is perpendicular to the gradient direction are identical to 
those points where the minimum second derivative is parallel to a 
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direction of zero slope. 

We therefore see that this section is a generalization of previous sec­
tion. When r = 1, optimal localization in time-frequency results. As 
r is increased, some of this locality is sacrificed for improved orienta­

tion selectivity. Thus, a non-directional kernel will give better results 
when there is only one ridge in the region, while an directional kernel 
can give better results when two ridges cross. 

Let us examine these results on our example utterance from Section 
2.9. For voiced speech, we choose 0'2 to match the pitch period, 
and we let r ~ 1. Then the pitch will be suppressed in each of the 
F( t, Wj 8), using the results of Chapter 3. In Figure 4.9, we show the 
ridge top analysis on our utterance using the kernel of Figure 4.7 
with r = 2 and r = 3. The case r = 1 was shown in Figure 4.4. We 
see that a less directional kernel (a smaller value of r) gives better 
performance in the neighborhood of isolated formants, while a more 
directional kernel (a larger value of r) gives better performance in 
regions where two formants 'cross' (see Kuhn [1975] for a discussion 
on the 'crossing' of formants in natural speech.). 

4.5. Signal detection and ridge identification 

The preceding sections have been based on heuristic arguments. Can 
ridge identificaton be formulated as a problem in optimal signal de­
tection? We examine this question in this section. Let us begin by 
making some particularly simple assumptions for ease of argument. 
We assume that the received 2-D signal representation F(t,w) con­
sists of a 2-D deterministic function S(t,Wj,(t)), which depends on 
the unknown continuous function ,(t), plus additive white 2-D Gaus­
sian noise. The problem is to estimate ,(t), which models the path of 
an energy concentration in time-frequency. We further simplify the 
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Figure 4.9. Ridge top analysis of /wioi/ using the directional kernel 
of Figure 4.7. (a) r = 2. (b) r = 3. The more directional kernels give 
better performance where ridges intersect, but worse peformance at 
sharp bends. 
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problem by assuming that S(t,w), which models the energy ridge, 

has the form 

S(t,w;,(t» = G(t,w)** \til + [Y'(t»)26(w -,(t». (4.5.1) 

In other words, it is a 2-D smoothed (i.e., broadened) curve (the 

square root factor normalizes the impulse for a unit step in arc 
length). 

In a straight-forward 2-D generalization of the derivation of a 
matched filter [see Van Trees 1968], the maximum log likelilood es­
timate of ,(t) is proportional to 

A[,(t)] = 2 j j F(t,W)S(t,w;,(t»dtdw-j j [S(t,w;,(t»]2 dtdw. 

(4.5.2) 
Substituting Eq. 4.5.1 into Eq. 4.5.2 and changing the order of inte­
gration gives 

A[,(t)] = 2 J VI + [y'(t)]2F(t,,(t»dt - J J [S(t,w;,(t»]2 dtdw, 

(4.5.3) 
where F = F ** G. The first term is essentially a 2-D matched filter 
in which the convolution F ** G is matched to the signal shape. The 
second term takes into account the energy of the deterministic signal. 
The path ,(t) that maximizes Eq. 4.5.3 is the maximum likelihood 
estimate. 

Solving Eq. 4.5.3 for the best path is difficult. In particular, the 
second term is hard to evaluate (although it is proportional to the arc 
length of ,(t) when it is sufficiently smooth). However, an analysis­
by-synthesis procedure could, in principle, be used to compute it 
numerically. Since we have assumed ,(t) is continuous, this becomes 
a global optimization over t and w. This is rather like one pole 
analysis-by-synthesis with a continuity condition imposed on the pole 
trajectory. 
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There is a fundamental problem with this approach, similar to the 
problem with pole-fitting approach discussed in Section 4.1. Because 
of the non-locality of the optimization, errors at one point can prop­
agate throughout the solution path at this very first stage of the 
analysis. If the signal were well modelled by Eq. 4.5.3 and the noise 
well modelled by additive, white Gaussian noise, then this would 
nevertheless be the best we could do. Realistically, this is not the 
case. In particular, the "noise" could include a second ridge; one 
that we shouldn't treat as noise, but as something to detect also. 
The detection scheme, as formulated, is too global. Instead, we need 
to make it more local in the time-frequency plane. 

Consider a small element As of arc length of the curve l(t), which 
we can rotate and translate in the t - w plane. If we hold its position 
constant, then for sufficiently small ~s, Eq. 4.5.3 will be maximized 
for that element if it is oriented perpendicular to the direction of 
greatest downward curvature. If the element's orientation is held 
constant, Eq. 4.5.3 will be maximized for that element if one trans­
lates it in the direction of the gradient. Together these imply that 
elements aligned on the ridge tops defined by Eq. 4.3.2 will locally 
maximize Eq. 4.5.3, in the sense that further maximization requires 
moving along the ridge. These considerations show that the ridge op­
erator of Section 4.3 provides a kind of local solution to the detection 
problem formulated here. 

4.6. Continuity and grouping 

We have seen that the ridge detection methods of the previous sec­
tions produce piecewise continuous contours. This follows formally 
from the Implicit Function Theorem; in particular, the zeroes of a 
continuously differentiable function f : 'R,2 -+ 'R, must form con­
tinuous contours in 'R,2. This continuity is a desirable property of 



§4.6. Continuity and grouping 109 

the description since it reflects a constraint on the underlying acous­
tic events that is nearly always valid - loosely, that their spectral 
content varies (piecewise) continuously as a function of time. For 
example, formant motion is so constrained. We explore several ram­
ifications of continuity in this section. 

First, continuity helps to solve a practical problem in descriptions 
of this kind. The ridge description, as it stands, can be cluttered 
with low amplitude peaks unrelated to significant phonetic events. If 
we try to discard this unwanted structure by setting a threshold, we 
would have to keep it fairly low, otherwise we could throw out the 
baby with the bath water, breaking important contours into frag­
ments. Continuity lets us use thresholding with hysteresis, which 
is often used in such cases [ef. Canny 1983]. The idea is to set 
two thresholds. Points below the lower threshold are first discarded. 
Points that are above the higher threshold are retained, as are any 
points between the two thresholds, provided they lie on a contour 
that crosses the higher threshold. The result is that insignificant 
points are discarded without fragmenting more important contours. 
The technique can be quite effective; Figure 4.10 shows an example. 

One may argue that any kind of thresholding is a mistake, since 
unrecoverable errors can be made. Instead, one should simply carry 
along the relative amplitudes and strengths of the various points in 
the descriptions, and subsequent processing can take these weights 
into account. This is, in principle, safer, but pratically it is much 
harder to think about processing a cluttered, weighted description 
than one that has been first cleaned up. So that the problem does 
not become too unwieldy at this stage, it is best for now to proceed 
with a cleaned up description. 

Continuity plays an important role in another problem - labelling. 
Our goal is to eventually be able to label the points in the descrip-
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Figure 4.10. Hysteresis thresholding applied to utterance /wioi/ 
of Section 2.6. (a) Two-dimensional ridge tops. Amplitude of the 
ridge top is depicted by the width of the contour. (b) Hysteresis 
thresholding of '(a)'. This removes isolated, low amplitude points 
without fragmenting the more significant contours. 
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Figure 4.11. Two contours competing for labelling as F2. (a) One 
of210 possible labellings of 50 msec stretch when a new label can be 
assigned every 5 msec. (b) One of two labellings when whole contours 

receive a single label. 

tion with their acoustic correlates, e.g., formant identification. This 
problem would be greatly simplified if a whole contour could receive 
a single label. For example, suppose points along the two contours 
in Figure 4.11 are competing fot labelling as F2. If the points are 
sampled every 5 msec, then the points in a 50 msec stretch can be 
labelled in 210 different ways. If each of the contours, however, is 
known to have a single acoustic correlate, then there are only two 
possible labelings. 

This is a simple point, but it is almost universally overlooked. The 
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usual approach has been to label individual points in a spectrum, 
and then either ignore continuity altogether, or use it to narrow the 
range of candidate labellings after the fact. The latter approach 
leads to a combinatorial explosion of possible labellings. Algorithms 
such as dynamic programming can be used to make this approach 
more manageable, but then the effect of even a single error can be 
catastrophic. A more direct approach is to first identify stretches of 
contour that will receive a unique label, with each deemed to have a 
single acoustic correlate. 

How can we identify such "atomic" contours? Ideally, our initial 
analysis would only return such contours. Acoustic events would 
never be merged into a single contour, but would always be resolved 
as separate. I do not believe such a "perfect" analysis is possible. 
It is evidently possible to fool our auditory system on this account. 
Consider the spectrum of an Iii in Figure 4.12a. By low pass filtering, 
the spectrum can be tilted to appear as in Figure 4.12b. This will 
be perceived as an lui; the F1 of the Iii is taken as both F1 and 
F2. Conversely, an lui can be high-pass filtered to sound like an Iii, 
with F1+F2 being taken as Fl. 

Listeners seldom make these kind of mistakes with more natural ut­
terances altered by this kind of filtering. This is because they hear 
them in context, with continuity being an important contextual cue. 
For example, consider Figure 4.13, which shows the spectrogram of 
Iwi/. The Iii in Figure 4.12 was taken from this utterance. If the 
entire Iwil is low-pass filtered in the manner of Figure 4.12, it is 
perceived as Iwil, and not as Iwu/. Similarly, a high-pass filtered 

Iyul will not sound like it ends in Iii. 

There are two points to be learned from these examples. The first is 
that it is probably not possible to always separate distinct acoustic 
correlates of nearby energy concentrations locally, i.e., they can be 
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Figure 4.12. Turning an Iii into an lu/. (a) Short-time spectrum 
of an Ii/. (b) Low-pass filtered Ii/. This will be perceived as an lu/. 
In other words, Fl is perceived as Fl + F2. 

merged if heard in isolation. The second point is that more global 
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Figure 4.13. Spectrogram of /wi/. When this utterance is low-pass 
filtered as in Figure 4.12, it is still perceived as /wi/ Continuity of 
the formants allows the correct perception. 

constraints, such as continuity, can resolve these mergers. 

The ridge description will represent sufficiently close formants with a 
single ridge, as in Figure 4.14. When the formants merge, one of the 

contours terminates, and the other continues on. When the formants 
split, a new contour appears, while the old contour continues on. 
Evidently, some contours can change their label along their length. 
For example, the contour in Figure 4.14 that begins as F1+F2 splits 
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into Fl and F2. Obviously, we can not label whole contours with a 
single label always. 

We, can, however, label portions of contours between splits and merg­
ers with a single label. Said differently, if we identify the locations of 
splits and mergers, we can break the contours into a set of "atomic" 
contours, in the sense that each contour will receive a single labelling. 
Since mergers are sparsely distributed in time-frequency, we will still 
have a small, manageable set of contours. 

The idea, then, is to augment our representation to include the loca­
tions of splits, mergers, and crossings of contours. Identifying these 
junctions will serve two purposes. First, contour segments away from 
them can receive single labels along their length. Second, the junc­
tion itself can embody continuity constraints, since the junctions 
must be consistently labelled. For example, if two contours enter a 
junction and one leaves it , we may label the exiting contour with 
the union of the labels of the entering contours. 

This is somewhat reminiscent of the junction labelling problem in 
the blocks world. Perhaps an efficient algorithm to propagate these 
constraints can be found for formant labelling as Waltz [1975] found 
for the blocks world. The problem here is greatly complicated by the 
fact that there can be many kinds of errors, e.g., a formant can be 
"missing". Further, other factors such as spectral balance must be 
taken into account. We will not attempt any labelling here. Instead, 
we provide a description of the signal that is a reasonable step toward 
that goal. 

Provided the ridge description is not too cluttered, which is the rule 
once low amplitude contours have been removed, the identification 
of contour junctions is relatively easy. In fact, using the proximity of 
contour endpoints to other contours is a simple method. Two nearby 
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Figure 4.14. Merged formants. (a) Wideband spectrogram of ut­
terance "why am". (b) Ridge tops. When Fi and F2 approximate, 
their ridges merge. 
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endpoints define a two point junction. Three nearby endpoints or a 

single endpoint near the body of another contour define a three point 
junction and so on. Figure 4.15a shows junctions identified by such 
proximity rules. Contours that both enter and leave a junction are 

broken there, while two point junctions can be bridged provided that 

simple "good continuation" rules are satisfied. The result is a set of 

contours that are likely to have unique labels of their acoustic corre­
lates along their length. Figure 4.15b shows points where contours 
are broken based on these junctions. 

4.7. A perspective 

We have shown that the above analysis in some circumstances can 
produce a more reasonable schematization of the speech signal than, 
for example, LPC analysis. We will give many more examples of this 
analysis in the next chapter. Does this mean that the ridge analysis 
is uniformly better than LPC analysis in speech applications? The 
answer is no. The simplicity and speed of the LPC algorithms make 
them attractive for many applications. Further, such pole-fitting 
models do work well in many cases. Since they embody additional 
constraints compared to the raw ridge analysis, they will usually not 
make the 'mistake' of merging nearby formants together. Further, 
insignificant peaks usually do not affect the pole placements. This 
means that in clean, unnasalized, quasi-stationary male speech LPC 
analysis can be quite good. In such cases, the ridge analysis may nev­

ertheless merge nearby formants together and may include additional 
ridges, making that analysis appear inferior to the LPC analysis. 

This probably means that the ridge analysis will offer no improve­
ment in simple speech engineering applications to the widespread 
LPC methods. Frankly, the power and importance of the ideas pre­
sented here comes only when one asks the question: What methods 
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Figure 4.15. Contour junctions located. (a) Ridge tops of /wioi/ 
with junctions identified by simple proximity rules. (b) Dots show 
points where contours are broken based on these junctions. 
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will be appropriate for speech analysis in general, natural settings? 
Under such circumstances, the transmission channel will often be im­
perfect and varying (e.g., walking down a hallway with open doors), 
there can be environmental sounds and nasalization present, and 
there can be significant non-stationarity. In these cases, the very 
constraints (Le., all-pole, quasi-stationary model with a fixed num­
ber of poles) that make the LPC technique work so well for 'clean' 
speech can cause it to fail in these new circumstances, producing 
bizarre pole positionings. On the other hand, the analysis presented 
here, a more conservative technique that makes no such assumptions, 
will still produce a reasonable schematization of the time-frequency 
surface. A simple demonstration of these ideas is given in Section 5.6 
below. The key idea is that strong commitments to the origin of the 
signal are not made at the level of the schematic spectrogram. It is 
only after features such as ridge tops, time-frequency edges, tempo­
ral discontinuities, and spectral balance information have been made 
explicit should articulatory constraints be brought to bear in this 
more general, least comittment approach. 
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A Catalog of Examples 

In this chapter we will apply the methods of the previous chapters 
to a variety of examples. This will help us evaluate the strong points 
as well as the shortcomings of the ideas presented. The ultimate test 
can come only when these ideas are applied in a recognition scheme. 
This, however, has not been realized because of the many different 
components that need to be added, as indicated earlier. At this 
point, evaluation must be based on any intuitive appeal of the ideas, 
and on the performance on various examples. Given that the goal 
is to essentially 'schematize' the information seen in (the sonorant 
regions of) a spectrogram, an obvious test is to see how reasonable 
the computed description looks when compared to the spectrogram. 
Given that previous approaches perform poorly in specific contexts 
(see Figure 4.1), clear improvements will be apparent. 

This situation is similar to edge detection in image analysis. The typ­
ical way to evaluate an edge finder is to look at its output compared 
to the image and ask how good it looks. Perhaps a better test would 
be to ask how useful an edge finder output is, say, when applied 
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to some scheme for finding surface discontinuities or stereo depth. 

But such a test requires confidence in the validity of the subsequent 
processing, since a bad application of a good idea can perform more 
poorly than a good application of a bad idea. 

In Section 5.1, we will look at some general example sentences. In 
the following sections, we examine several traditional problem cat­
egories in speech analysis: in Section 5.2, we look at liquids and 
glides; Section 5.3 nasalized vowels; in Section 5.4, consonant-vowel 

transitions; in Section 5.5 female speech. In Section 5.6, we look at 
some examples of the effects of different transmission channels on the 
analysis. 

5.1 Some general examples 

The first four figures of this chapter show the sentences, "May we all 
learn a yellow lion roar.", "Are we winning yet?", "We were away a 
year ago.", and "Why am I eager?" spoken by adult males. These 
sentences were chosen because of their high proportion of sonorant 
regions and their variety of formant motion. We show wideband 
spectrograms and the 'ridge' analysis of the previous chapter for 
each of these utterances. First notice the generally good agreement 
between the time-frequency ridges seen in the spectrograms and those 
computed by the ridge analysis; the latter description is a reasonable 
partial 'sketch' of the former. This is true even in the steeper formant 
regions, such as the various /w/'s and Ii/'s in these examples and at 
the velar pinch in Figure 5.4 at .75 seconds. 

It is important to emphasize that these are not formant tracks, but 
ridge locations in the time-frequency surface. For example, when two 
formants come close enough to merge, as in the /wi/ in Figure 5.1 
(between.2 and .3 seconds and about 2100 Hz) or a portion of the /r/ 
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in Figure 5.4 (between .85 and .9 seconds and 2000 Hz), only a single 

ridge is found. (The analysis notes by solid dots the locations that 
contours should be broken because of possible mergers (cf. Figure 
4.15), which can aid in subsequent labelling of the contours.) 

There are also ridges present that are not due to the oral formants. 
For example, the ridge in Figure 5.4 between .15 sec and .55 sec and 
at about 200 Hz is attributed to nasalization from the 1m/. Viewed 
as a formant tracker this is a failure, but viewed as a ridge detector, 

this is a success. The nasal resonance is strongly present in the signal 
in this region and is correctly identified by the analysis. It is prop­
erly left to subsequent processing to sort out which ridges are due 
to formants and which are due to other sources. This is quite differ­
ent from the LPC analysis, where the presence of nasalization often 
causes sporadic and bizarre placement of the pole locations (Fig­
ure 4.1). In that case, subsequent processing would have difficulty 
sorting out the situation. 

Finally, there are various missing formants. This particularly true 
for F3 when F2 is quite low as in the Iwl in Figure 5.1. In these 
circumstances, F3 is driven down by the tail of F2, and is not really 
visible in the spectrograms either. We know where F3 is by context, 
but its time-frequency ridge has essentially been driven into the noise. 
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Figure 5.1. "May we all learn a yellow lion roar." 
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5.2. Liquids and glides 

In this section we show examples of /w/'s, /j/'s, Ie/'s and /1/'s. The 
/w /'s and /j/'s are syllable initial in the context of /wi/ and /ju/ in 
Figure 5.5 and Figure 5.6, respectively. A range of speech rates from 

slow to rapid is shown that gives a range of F2 formant slopes from 
gradual to steep. Note the ridge analysis is fairly insensitive to this 
parameter. 

The /1/'s in Figure 5.7 are syllable initial, with one example for each 

of the cardinal vowels, Iii, /ae/, /a/, and /ul- The Ie/'s in Figure 
5.8 are in the context V Ie/V, where V ranges over Iii, /ae/, /a/, 
and /ul- These too show some rapid formant motion that is well 

captured. 

5.3. Nasalized vowels 

Figure 5.9 shows syllable initial nasalized vowels in the context V /n/. 
The vowels range over Iii, /ae/, /a/, and /ul- The main feature of 
this analysis is that additional ridges are introduced due to the nasal 

'formants'. As mentioned earlier, this contrasts with the pole-fitting 
methods, which produce erratic results in nasalized vowels (Figure 
4.1). 
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Figure 5.5. /w/'s at various speech rates. (a-b) /uwij. (c-e) Sylla­
ble initial /wij. (continued ... ) 
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Figure 5.5 (continued). /w/'s at various speech rates. (a-b) 
/uwi/. (c-e) Syllable initial /wij. 



131 

• '.1 '.2 '.3 • '.1 1.2 '.3 

4 ... . ... ~ ................................ -- 4 ... ......... : ...... ... : ........ : ..... . 

3 ... · ·······~·········r ········r···-· · 

· . . · . . · . . +=: ; · . . · . . 
2 ... :·········f········r······· 

I ... 

. ~~~~~~~~ 
I 1.1 '.2 '.J • 1.1 '.2 '.3 

Figure 5.6. 
(cont'd ... ) 

Syllable initial /ju/'s at various speech rates. 
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Figure 5.9. Nasalized vowels. 
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5.4. Consonant-vowel transitions 

In this section we show examples of consonant-vowel transitions. Fig­
ure 5.10 through Figure 5.12 show syllable initial consontaitt-vowel 
transitions. The consonants range over the voiced stops fbi, /d/, and 

/g/ and the vowels range over Iii, /ae/, /a/, and jul. The analysis 
is shown only after the consonantal burst since the ridge analysis 
is inappropriate and peculiar in the burst region. The bursts were 
located by hand in these examples. Figure 5.13 shows more rapid 
formant motion with the examples /bi/ in the context /tubi/ and 
/dw/ in the context /tidwf. 

The ridge analysis brings out formant motions consistent with the 
locus theory of consonant perception. This theory states that one 
of the cues to the perception of consonants is the trajectories of the 
formants at the transitions [Liberman, et al 1954]. For example, 
in many vowel contexts for adult males, F2 will have a trajectory 
out the consonant that has a locus near about 1200 Hz for labials 
(e.g., /b/), about 1800 Hz for alveolars (e.g., /d/), and above 2000 
Hz for velars (e.g., /g/). This cue is used in spectrogram reading, 
but has been hard to exploit in automatic speech analysis, because 
of unreliable formant detection at the often highly non-stationary 
consonant-vowel transitions. 

The analysis here is better behaved, capturing rapid formant ridges 
as well as shallow ones at the transitions. As noted earlier, however, 
when the formants approximate a single ridge is produced. The F3 
ridge is also sometimes lost near the transition for this speaker; in 
these cases, F3 appears somewhat diffuse and hard to locate in the 
spectrograms also. These issues, as well as how to locate the burst, 
will present difficulties for automatic consonant detection. 
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Figure 5.13. Rapid formant transistions. (a) /bi/ in the context 
/tubif. (b) /du/ in the context /tiduf. 
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5.5. Female speech 

Higher pitched speech, such as female and children's speech, present 
the problem that the harmonics of the (voiced) excitation are fairly 
widely spaced, viz. a few hundred Hertz or more. This means that in 

a quasi-stationary analysis, the spectrum is less frequently sampled 
than for lower pitched speech, resulting in poorer estimates of the vo­
cal tract transfer function (cf. Figure 3.2). Viewed two-dimensionally, 
the situation is more symmetric. For example, as the frequency of an 
impulse train is increased, the frequency spacing of the impulses in 
its time-frequency autocorrelation function (Figure 3.3) will increase, 
but their time spacing will decrease. Thus one will have poorer fre­

quency 'sampling' of a time-varying transfer function excited by this 
impulse train, but better time 'sampling'. 

The analysis presented in Chapter 3 exploits this fact by match­
ing the time-frequency window to the pitch. Higher pitched speech 
requires a window at a larger frequency scale but at a lower time 
scale than lower pitched speech. The remaining analysis proceeds as 
before. Figure 5.14 gives an example with rapid F2 motion. Fig­
ure 5.14a shows a wideband spectrogram of the nonsense utterance 
/uiuiui/ from an adult female, Figure 5.14b shows the ridge analysis 
using a time-frequency window matched to a 200 Hz pitch. 

Note that the Fl ridge and the steep F2 ridge are well resolved. 
Where F2 and F3 approximate, however, only a single ridge is found. 
Such mergers in the analysis are more common in higher pitched 
speech due to the greater frequency smoothing required. However, 
since less time smoothing is required than for lower pitched speech, 

transient effects should, in principle, be better resolved. 
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5.6 Transmission channel effects 

Finally, we consider the effects of imperfect transmission channels on 
the analysis. In particular, we will consider the effects of passing the 
speech signal through some simple LTI filters. While the examples 

we give are idealized, natural environments can give rise to many 
kinds of transmission channel characteristics. In general, human lis­
teners can tolerate a wide variety of alterations to a speech signal 
and have it remain intelligible [see Licklider & Miller 1951 for a good 
review]. That is not to say one is unaware of the modification; e.g., 
a pronounced room resonance adds a 'hollow' quality to the speech, 
but it does not destroy its intelligibility. 

Figure 5.15 shows the frequency response of the transmission chan­
nels we consider. Figure 5.15a consists of a single pole at 1500 Hz 
of 750 Hz bandwidth, Figure 5.15b consists of a single pole at 1500 
Hz of 150 Hz bandwidth, and Figure 5.15c consists of a pole-zero 
pair - both are at 1500 Hz, the pole has 1000 Hz bandwidth while 
the zero has 150 Hz bandwidth. Thus, the first channel consists of a 
fairly broadband, but non-uniform channel; the second channel em­
phasizes the signal energy in the neighborhood of 1500 Hz; and the 
third channel removes signal energy in the neighborhood of 1500. 

We show the effects of these transmission channels on the analy­
sis of the utterance /wioi/ from Section 2.9. Figure 5.16a shows 
the wide band spectrogram of this utterance passed through the first 
channel, and Figure 5.16b shows the corresponding ridge analysis. 
The effect of this broadband channel is minor when compared to the 
original analysis in Figure 4.10. Figure 5.17a shows the wideband 
spectrogram of the utterance passed through the second channel, 
and Figure 5.17b shows the corresponding ridge analysis. The effect 
of this narrowband channel is to add an additional ridge at 1500 Hz. 
Finally, Figure 5.18a shows the wideband spectrogram of the utter-
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ance passed through the third channel, and Figure 5.18b shows the 
corresponding ridge analysis. The effect of this narrowband 'notch' 
is to put an energy trough in the time-frequency surface, with the F2 
ridge being partially cancelled in the vicinity of this notch. Compare 
this analysis with the LPC analysis of this filtered utterance shown 
in Figure 5.18c (using the same analysis parameters as in Figure 4.1). 
We see there that the notch filter plays havoc with the LPC analy­
sis, since the zero lies outside the scope of its all-pole model. This is 
analogous to the effects of nasalization on LPC analysis. 
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Figure 5.14. /uiuiui/ uttered by an adult female. (a) Wideband 
spectrogram. (b) Ridge analysis. 
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Figure 5.15. Transmission channels. (a) 750 Hz bandwidth pole at 
1500 Hz (b) 150 Hz bandwidth pole at 1500 Hz. (c) Pole-zero pair 

at 1500 Hz of 1000 Hz and 150 Hz bandwidth, respectively. 
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Figure 5.16. /wioi/ passed through tranmission channel in Figure 
5.15a (broadband filter). (a) Wideband spectrogram. (b) Ridge 
analysis. 
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Figure 5.17. /wioi/ passed through tranmission channel in Figure 
5.15b (narrowband filter). (a) Wideband spectrogram. (b) Ridge 
analysis. 
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