Introduction to Set Theory

1. Basic concepts.

(1) A SET is a collection of objects.
(2) An object is an Element of a set A if that object is a member of the collection A .

Notation: " ϵ " reads as "is an element of" or "belongs to".
(3) A set A is a SUbSET of a set B if all the elements of A are also in B . Notation: " \subseteq " reads as "is a subset of".
(4) The Intersection of two sets A and B ($\mathrm{A} \cap \mathrm{B}$) is the set containing all and only the objects that are elements of both A and B.
(5) The UnIon of two sets A and $B(A \cup B)$ is the set containing all and only the objects that are elements of A , of B , or of both A and B .
(6) The Complement of a set A (A, or A') is the set containing all the individuals in the discourse except for the elements of A .
(7) The PowEr SET of a set $\mathrm{A}(\wp(\mathrm{A}))$ is the set whose members are all the subsets of A .

QUESTION 1: Given the sets under (8) and assuming that the universe of the discourse is $\cup\{\mathrm{A}$, $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$, list the members of the following sets:

$$
\begin{align*}
& A=\{1,2,3,4\} \tag{8}\\
& B=\{a, b, c, d, e, f\} \\
& C=\{1,2\} \\
& D=\{1,3,4, a, b\}
\end{align*}
$$

$$
E=\{\{1\}, 2,\{a, 1\}\}
$$

$$
\mathrm{F}=\{1, \mathrm{c}, \mathrm{~d}\}
$$

$$
\mathrm{G}=\{\mathrm{d}, \mathrm{e}, 2,3\}
$$

(9) a. $\mathrm{C}-\mathrm{D}=$
b. $\mathrm{A} \cap \mathrm{F}=$
c. $\mathrm{A} \cap \mathrm{B}=$
d. $\mathrm{C}^{\prime} \cap \mathrm{F}^{\prime}=$
e. $\mathrm{E} \cap \mathrm{C}=$
f. $(C \cup D)-(C \cap D)=$
g. $\mathrm{F} \cup \mathrm{C}=$
h. $\mathrm{G}^{\prime} \cap \mathrm{C}=$
i. $\mathrm{A} \cap \mathrm{E}=$
j. $(E \cup B) \cup D=$

2. Relations.

Ordered Pairs and Cartesian Product:
(10) Ordered pair/n-tuple: a set with n-elements where order matters.
$\langle\mathrm{a}, \mathrm{b}\rangle={ }_{\operatorname{def}}\{\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$
(11) Cartesian Product:
$\mathrm{A} \times \mathrm{B}={ }_{\operatorname{def}}\{\langle\mathrm{x}, \mathrm{y}\rangle \mid \mathrm{x} \in \mathrm{A}$ and $\mathrm{y} \in \mathrm{B}\}$

■ Relations: a relation is a set of pairs (or, more generally, of n-tuples). E.g., "mother of", "to be sitting to the right of". Relation in A. E.g. "advisor of". Relation from A to B.
(12) A relation from A to B is a subset of $A \times B$.

A relation in A is a subset of $\mathrm{A} \times \mathrm{A}$.
(13) a. Domain of $R:\{a \mid$ there is some b such that $\langle a, b\rangle \in R\}$
b. Range of $R:\{b \mid$ there is some a such that $\langle a, b\rangle \in R\}$
(14) Complement of a relation R from A to B (a relation $R \subseteq A \times B$): R^{\prime}
$\mathrm{R}^{\prime}=$ def $(\mathrm{A} \times \mathrm{B})-\mathrm{R}$
QUESTION 2: Take $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{B}=\{1,2,3\}$ and $\mathrm{C}=\{\mathrm{a}, \mathrm{b}\} . \mathrm{R}=\{\langle\mathrm{a}, 1\rangle,\langle\mathrm{b}, 2\rangle,\langle\mathrm{b}, 3\rangle\}$.
What is the complement of the relation R from A to B ?
What is the complement of the relation R from C to B ?
(15) Inverse of a relation: R^{-1}
$\mathrm{R}^{-1}==_{\text {def }}\{\langle b, a\rangle \mid\langle a, b\rangle \in R\}$

3. Funtions.

Functions:
(16) $\quad \mathrm{A}$ relation R from A to B is a function from A to $\mathrm{B}(\mathrm{F}: \mathrm{A} \rightarrow \mathrm{B})$ iff:
a. The domain of R is A. (except for partial "functions")
\Rightarrow Every member of A appears at least once as first member of a pair.
b. Each element in the domain is paired just with one element in the range
\Rightarrow Every member of A appears at most once as first member of a pair.
(17) Argument and value: $\quad \mathrm{F}(\mathrm{a})=\mathrm{b}$
(18) a. Functions from A to B are called functions into B.
b. Functions from A to B such that the range of the function equals B are called onto B.
a. Functions from A to B where every member of B is assigned at most once to a member of A are called one-to-one.
b. Otherwise, we'll call them many-to-one.
(20) Functions that are at the same time onto and one-to-one are called one-to-one correspondences.

- The characteristic function of a set:
(21) a . Let A be a set. The, char $_{\mathrm{A}}$, the characteristic function of A , is the function F such that, for any $x \in A, F(x)=1$, and for any $x \notin A, F(x)=0$.
b. Let F be a function with range $\{0,1\}$. Then, char $_{\mathrm{F}}$, the set characterized by F, is $\{\mathrm{x} \in \mathrm{D} \mid \mathrm{F}(\mathrm{x})=1\}$
- Schönfinkelization:
(22) $\mathbf{U}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
(23) The relation "fond of":
$\mathrm{R}_{\text {fond-of }}=\{\langle\mathrm{a}, \mathrm{b}\rangle,\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{c}, \mathrm{c}\rangle\}$
(24) The characteristic function of $\mathrm{R}_{\text {fond-of }}$:

Char $_{\text {Rfond-of }}=\quad$| $<\mathrm{a}, \mathrm{a}>$ | \rightarrow | 0 |
| :---: | :---: | :---: |
| $<\mathrm{a}, \mathrm{b}>$ | \rightarrow | 1 |
| $<\mathrm{a}, \mathrm{c}>$ | \rightarrow | 0 |
| $<\mathrm{b}, \mathrm{a}>$ | \rightarrow | 0 |
| $<\mathrm{b}, \mathrm{b}>$ | \rightarrow | 0 |
| $<\mathrm{b}, \mathrm{c}>$ | \rightarrow | 1 |
| $<\mathrm{c}, \mathrm{a}>$ | \rightarrow | 0 |
| $<\mathrm{c}, \mathrm{b}>$ | \rightarrow | 0 |
| $<\mathrm{c}, \mathrm{c}>$ | \rightarrow | 1 |

(25) Turning n-ary functions into multiple embedded 1-ary functions: Schönfinkelization.
a. Left-to-right:
b. Right-to-left:(inverse + left-to-r. shonf.)

$$
\begin{aligned}
& \mathrm{a} \rightarrow 0 \\
& \mathrm{a} \rightarrow \mathrm{~b} \rightarrow 1 \\
& \text { c } \rightarrow 0 \\
& \mathrm{a} \rightarrow 0 \\
& \mathrm{~b} \rightarrow \mathrm{~b} \rightarrow 0 \\
& \text { c } \rightarrow 1 \\
& \mathrm{a} \rightarrow 0 \\
& \mathrm{c} \rightarrow \mathrm{~b} \rightarrow 0 \\
& \text { c } \rightarrow 1
\end{aligned}
$$

$\mathrm{a} \rightarrow 0$
$\mathrm{a} \rightarrow \mathrm{b} \rightarrow 0$
c $\rightarrow 0$
$\mathrm{b} \rightarrow \begin{array}{lll}\mathrm{a} & \rightarrow & 1 \\ \mathrm{~b} & \rightarrow & 0 \\ \mathrm{c} \rightarrow & 0\end{array}$
$\mathrm{c} \rightarrow \begin{array}{lll}\mathrm{a} & \rightarrow 0 \\ \mathrm{~b} & \rightarrow & 1 \\ \mathrm{c} \rightarrow & 1\end{array}$
c $\rightarrow 1$

EXERCISE 1: Given the following Universe, spell out the characteristic function of the set in (27) and schönfinkelize it right-to-left.
(26) $\mathbf{U}=\{\mathrm{d}, \mathrm{e}\}$
(27) $\mathrm{R}=\{\langle\mathrm{d}, \mathrm{d}, \mathrm{d}\rangle,\langle\mathrm{d}, \mathrm{e}, \mathrm{d}\rangle,\langle\mathrm{e}, \mathrm{d}, \mathrm{d}\rangle,\langle\mathrm{e}, \mathrm{e}, \mathrm{e}\rangle,\langle\mathrm{e}, \mathrm{e}, \mathrm{d}\rangle\}$

