Topic 16: Brain and Language

A. Neuroanatomy

A1. Nervous system

- Central Nervous System (CNS)
 - o Brain
 - Spinal cord
- Peripheral Nervous System (PNS)
 - Cranial nerves
 - Spinal nerves

A2. Neuron and neurotransmitter

- Neuron
 - \circ Dendrites
 - o Cell body
 - o Axon

• Neurotransmitter

- o dopamine (DA)
- o gamma-aminobutyric acid (GABA)
- \circ serotonin

Prepared by Jonathan Lee

- Gray matter = cell body and dendrites
- White matter = axon and glial cells

A3. Brain

- Cerebrum
 - Cerebral hemispheres
 - Cerebral cortex
 - Basal ganglia
 - Hippocampus amygdala
 - o Diencephalon
- Cerebellum
- Brainstem

CEREBELLUM BRAINSTEM

CEREBRUM

A4. Cerebrum

- $\sim 70\%$ of the entire nervous system
- Resemble a giant wrinkled walnut
- Can be imaginarily inflate to the size of a basketball
- Gyrus (gyri): the protruding rounded surface
- Sulcus (sulci): enfolded regions appearing as lines and creases
- Fissure: deep sulcus
 - o Rolandic Fissure / Fissure of Rolando / Central Sulcus
 - o Sylvian Fissure / Lateral sulcus

A5. Cerebral hemispheres

- Frontal lobe
 - Motor cortex
 - Executive functions
 - \circ Attention
 - Working memory
 - Broca's area (left hemisphere)
- Temporal lobe
 - Auditory cortex
 - Word recognition
 - Face recognition
 - Wernicke's area (left hemisphere)
- Parietal lobe
 - Somatosensory cortex
 - Spatial processing (right hemisphere)
 - Orthography-phonology mapping
- Occipital lobe
 - o Visual cortex

A6. Section planes

A7. Interactive brain models

- https://www.brainfacts.org/3d-brain#intro=false&focus=Brain
- <u>https://neurotorium.org/tool/brain-atlas/</u>

A8. Language in the brain

- Language functions are *lateralized* to the *left hemisphere*
- **Broca's area** (language production) and **Wernicke's area** (language comprehension) are typically located in the left hemisphere, connected by the white-matter pathway **arcuate fasciculus**
- Motor homunculus is a distorted representation of the human body based on a neurological "map" of the areas and proportions of the human brain dedicated to processing the motor functions for different parts of the body

B. Brain research methods

B1. Lesion methods

- Lesioned brain
 - o Neurosurgery
 - o Epilepsy patients
 - o Stroke
 - o Traumatic head injuries
 - o Tumors
 - Viral infections
- Example: Broca's area
- Broca's aphasia (non-fluent aphasia)
 - Able to understand others
 - Can form ideas but cannot form sentences
 - Ungrammatical utterances
 - Lack of conjunctions and prepositions
 - May experience right facial weakness, hemiparesis, or hemiplegia
- <u>https://www.youtube.com/watch?v=JWC-cVQmEmY&ab_channel=tactustherapy</u>
- Functions of Broca's area: Speech production? Working memory? Hierarchical processing?

- Example: Wernicke's area
- Wernicke's aphasia (fluent aphasia, receptive aphasia)
 - o Can form long, fluent, and grammatical sentences
 - Regular rhythm
 - Nonsense/meaningless content with made-up words
 - Poor word retrieval
 - o Difficulty with repetition in words and sentences
 - Unable to comprehend others
 - Do not realize they are saying nonsense
- <u>https://www.youtube.com/watch?v=3oef68YabD0&ab_channel=tactustherapy</u>

B2. Functional imaging

- Electrocorticography (ECoG)
- Intracranial electroencephalography

- Electroencephalography (EEG) / Event-related Potential (ERP)
 - Record the electrical activities of the brain
 - Very good temporal resolution (ms), very poor spatial resolution (3-4 cm)

- Positron emission tomography (PET)
 - Involved radioactive tracers
 - Poor temporal resolution (30 s), good spatial resolution (10 mm)
 - Sensitive to the whole brain
- Functional Magnetic Resonance Imaging (fMRI)
 - Nobel Prize in Physiology or Medicine in 2003
 - No radioactivity involved
 - Poor temporal resolution (1-4 s), very good spatial resolution (7-10 mm)
 - Some brain regions are hard to image

- Magnetoencephalography (MEG)
 - Good temporal resolution (10 ms) and spatial resolution (2-3 mm)

• Trade-off between time and space

C. Rethinking neurolinguistics

C1. Mind/Brain dichotomy

- Examples: Word frequency and recency
 - Word frequency effects and recency effects (mind)
 - o Localization of language processing and memory (brain)
 - o But how are word frequency and recency effects actually implemented in the brain?
- Ontological Incommensurability Problem (Poeppel & Embick 2005)

Linguistic primitive units	Neural primitive units
Phonetic features	Dendrite
Phonemes	Neuron
Syllables	Synapses
Word	Neuronal ensembles
Phrase	Cortical areas

C2. Towards explanatory neurolinguistics

- Levels of adequacy (Chomsky 1965)
 - Observational adequacy
 - Descriptive adequacy
 - Explanatory adequacy (Universal Grammar)
- Levels of neurolinguistics (Embick & Poeppel 2015)
 - Correlational neurolinguistics
 - Integrated neurolinguistics
 - Explanatory neurolinguistics

C3. Language and memory (Ullman 1997, 2004)

- Declarative memory
 - Memory of facts (e.g., colors of a peach), including lexicon
 - Performing analogies
 - o Hippocampus
- Procedural memory
 - Memory for processes and skills (e.g., riding a bike), including grammar rules
 - Broca's area and basal ganglia (dopamine)

C4. Morpho-phonological learning in Shimakonde (Bantu language)

- Wong et al. (2012), Wong et al. (2013), Ettlinger et al. (2014), Ettlinger et al. (2016)
- Transparent (simple) grammar
 o "dog": vib (sg.) → vib-il (pl.) → ki-vib (dim.) → ki-vib-il (dim. pl.)
- Opaque (complex) grammar
 o "cat": pesh (sg.) → pesh-el (pl.) → ki-pish (dim.) → ki-pish-el (dim. pl.)
- Hypothesis 1 Generative phonologists: rule ordering
 - Step 1: add suffix, vowel harmony (i.e., vib \rightarrow vib-il; pesh \rightarrow pesh-el)
 - Step 2: add prefix, vowel raising (i.e., vib-il \rightarrow ki-vib-il; pesh-el \rightarrow ki-pish-el)
- Hypothesis 2 Functional phonologists: analogical lexicon
 - From other words, "duck" mez (sg.) → ki-miz-el (dim. pl.)
 - Analogically, "cat" pesh (sg.) \rightarrow ki-pish-el (dim. pl.)
- Individual differences between participants (L2 learners)

• Simple grammar correlated with procedural memory (i.e., rules), but complex grammar correlated with declarative memory (i.e., lexicon/analogy)

• Successful learners activate hippocampus (declarative memory) for complex grammar

- Conclusions for complex grammar
 - Analogical grammar (for phonologists)
 - Declarative process (for cognitive psychologists)
 - Hippocampal function (for systems neuroscientists)
- DRD2 polymorphism
 - o A1A1, A1A2, or A2A2
 - Basal ganglia are responsible for releasing dopamine
 - Presence of A1 allele is associated with reduced D2 receptor binding in basal ganglia
 - A2A2 carriers activated basal ganglia and the frontostriatal system "naturally" more than A1 carriers

• "Explanatory" levels

- Neurogenetics
- Neurons and neurotransmitters
- o Systems
- Memory (and memory power)
- Behaviors (e.g., language abilities)