
Documentation for qtree, a LATEX tree package1

by Jeffrey Mark Siskind,

with a front end by Alexis Dimitriadis

Version 2.20

The qtree package consists of QobiTree, a package of tree-drawing macros
written by Jeff Siskind, and a front end that allows trees to be specified in
bracket notation, using whitespace to separate tokens. Tree nodes, which
can have labels of any size or complexity, are automatically arranged on the
page, usually with quite good results. Provisions exist for fine-tuning the
default layout. The front end also centers trees (by default) and provides
some other nice features.

A simple tree may look like this,

\Tree [.S This [.VP [.V is] \qroof{a simple tree}.NP]]

which produces:
S

This VP

V

is

NP

a simple tree

The node labels in trees may be quite complicated; they may contain
font changes and math-mode text, line breaks introduced with \\ (which
produce centered lines), etc. The trees produced have a maximum depth of
20, with a maximum of five branches at any one node. Unlike many other
tree macros, qtree automatically adjusts for the width and height of tree
labels, and is pretty good at arranging nodes on the page.

Trees are defined using a version of the bracket notation familiar to
linguists. Tree elements are delimited by white space; braces can be used
to create multi-word labels. Qtree does not rely on \catcode changes for
its operation, allowing trees to be included in footnotes and other moving
environments without problems.

1 Invocation

Qtree.sty is a LATEX package designed to be installed in a directory of style
files, and included with the LATEX2ε command \usepackage{qtree}.

1Thanks to Jeff Siskind for permission to distribute the QobiTree code. Please direct

comments to Alexis Dimitriadis, alexis@babel.ling.upenn.edu.

1

Postscript specials Qtree relies on LATEX’s picture environment to draw
the trees. Because this environment is rather limited, the lines used to draw
trees look better if qtree is used with the package eepic.sty, which pro-
vides enhancements to the picture environment. This version of qtree will
automatically include eepic.sty if it can find it, but automatic inclusion
can be suppressed by use of the package option [noeepic]. This may be
necessary if the file will be processed with a driver that does not understand
PostScript specials (e.g., pdflatex). In that case qtree will be included as
follows:

\usepackage[noeepic]{qtree}

Tree centering Trees are centered by default, but you can turn centering
off with the command \qtreecenterfalse. Normally this would be invoked
in the preamble, but it is possible to turn tree centering off and on (with
the corresponding \qtreecentertrue) at any point. These commands obey
normal scoping rules. If used inside, say, an example environment, their
effect will only apply until the end of that environment. There is no provision
for automatically right-adjusted trees.

2 How to convert a tree to brackets

Reading or writing a complex tree in bracket notation is not terribly easy
for humans; it helps to have an editor that can show matching braces as
they are typed in. The procedure described here should allow you to easily
convert a tree to bracket notation. If you don’t have any difficulty with this,
just skip this section and do it any way you want!

1. Draw the tree you want to enter on a piece of paper, so you can look
at it.

2. Imagine that the tree is a large peninsula, and your pencil is a boat
sailing around it. Starting just to the left of the root node, move
downwards, following the outline of the tree until you come back to the
root node (on the right side, having moved counterclockwise around
the tree), without crossing any of the tree’s lines.

3. (a) Every time you are at the left side of a non-terminal node, type
a left bracket, and the label for that node.

(b) Every time you are at a leaf node, type in the contents of that
node.

(c) Finally, every time you are on the right of a non-terminal node,
type a right bracket (and the node name again, if you want to
help keep them straight).

2

It’s difficult to show all this without including a picture, but consider
the following tree; in the variant on the right, the numbered subscripts show
the order in which the brackets and labels are written.

A

B

C

one

D

two

E

three

[1 A]13

[2 B]9

[3 C]5

one4

[6 D]8

two7

[10 E]12

three11

Accordingly, we would generate the tree by typing the following:

\Tree [.A [.B [.C one] [.D two]].B [.E three]].A

3 Usage and features

Syntax The qtree front end reads a tree description written in the familiar
(to linguists) bracket notation. Tree labels are delimited by whitespace. To
make a multi-word node label, enclose it in braces; note also that TEX
discards the spaces immediately after control sequences (commands whose
name consists of a backslash followed by letters), hence if a node label ends
with a control sequence, like \ldots in the following example, you need to
enclose it in braces too.

CP

Spec(CP)

which car

. . .

\Tree [.CP [.{\sc Spec}(CP) {which car}] {\ldots}]

Label matching For convenience, a label for a non-terminal node can be
written either after the left bracket or after the right bracket corresponding
to that node. Thus the following are equivalent:

\Tree [.S when [.NP the cat] sleeps]

\Tree [.S when [the cat].NP sleeps]

To help keep braces matched when editing large trees, the front end allows
the option of writing a label after both the left and the right bracket of the
same node, as shown for the node NP below. In this case the two labels
provided must be identical, token for token.

\Tree [.S when [.NP the cat].NP sleeps]

3

No labels Sometimes we want to draw an abbreviated tree without a label
at every intermediate node. Qtree now draws such trees properly, as in the
following example.

CP

Spec(CP)
C0 Comp(CP)

\Tree [.CP Spec(CP) [C^0 Comp(CP)]]

Roofs It is possible to draw a triangular “roof” above a phrase that is
treated as a unit. (See example on page 4). This is done with the command
\qroof, which can appear anywhere a leaf can appear. The slope of the
roof is equal to the ratio \qroofy / \qroofx (these counters may be reset
to any pair of integers between zero and six; the default is 1/3).

To create a roof labeled NP over the phrase the book, write

\qroof{the book}.NP

If the phrase contains line breaks introduced with \\, the resulting lines
are flush left, not centered. Again, it is possible for the “phrase” to be a
construction of arbitrary complexity; but the roof is implemented as a leaf
node (it is not part of the original QobiTree), and so the syntax of \qroof
does not allow further branches of the tree to appear under the roof.

Subscripts, superscripts and primes Trees are constructed in a spe-
cial environment in which things like NP_i, N^0, automatically format their
subscripts or superscripts in math mode, giving NPi and N0, respectively.
The command that arranges this is called \automath, and can be enabled
outside the tree environment, if desired. (It is turned off with \noautomath).
This feature relies on \catcode changes for its operation; in trees that ap-
pear in footnotes or floats, all sub- or superscripts must be explicitly placed
in math mode, as you would ordinarily do.

As a further convenience, constructions like X$’$, producing X′, can be
abbreviated X\1. (If you simply type X’ you get X’, with an apostrophe
rather than a prime). There is also X\2, producing X′′, and X\0, producing
X0. These commands also arrange for subtle improvements in the centering
of labels that use them.

Here is an example using some of these features:

4

IP

NPi

Roses

I′

I0

are

VP

ti V′

V0

going

PP

out of style

\Tree

[.IP [Roses].NP_i [.I\1 [are].I\0

[.VP t_i [[going].V\0 \qroof{out of style}.PP].V\1].VP

].I\1]

Granted, by the time the examples get this big, the bracketed format isn’t
all that readable, but it’s certainly no worse than any other tree format, and
you can add white space to make it a little better.

4 Tree placement

Numbered examples etc. A tree generated with qtree can be placed
in a numbered example environment, in \parboxes, inside math formulas,
tables, pictures, etc. The tree nodes can also contain arbitrarily complex
material—although, unfortunately, it is not possible to embed a recursive
call to qtree.

For hard-to-explain reasons, trees often appear farther to the right than
is visually appealing; but not to worry, you can move them sideways by
hand. (Note the \hskip in the next example, which moves the tree 0.5
inches to the left).

Side by side trees Multiple trees, or text and trees, can be arranged
side by side. This can generally be done by just arranging commands one
after another; it usually helps to turn off tree centering. If necessary the
positioning can be adjusted with \hskip.

5

(2) a. S

NP

él
he

VP

V

hizo
made

V

decir
say

NP

lo
it

NP

a-mi
me

b. S

A T

B
note

cc

D

\begin{enumerate}

\qtreecenterfalse

\item[(2)] a. \hskip -0.5in\Tree [.S [.NP \’el\\he]

[.VP [.V hizo\\made] [.V decir\\say]

[.NP lo\\it] [.NP a-mi\\me]].VP]

b. \Tree[A [.T {B\\ \em note} cc].T D].S

\end{enumerate}

5 Advanced features

Escaping the parser There is provision for sneaking directives past the
front end. If a word begins with an exclamation mark, the next word (i.e.,
up to the next space) will be passed through unchanged, except for stripping
off the “!”. (Braces should be used to pass through larger groups). This is
mainly useful for the manual width-adjustment directives \faketreewidth
and \qsetw, described below. Note that \qroof should not be preceded by
an exclamation mark.

Fine tuning The command \qsetw{<length>} (where <length> might
be 0.5in, 36pt, etc.) tells QobiTree to override its default calculation of
the width of the just-finished node (that’s the node ending just to the left

of where the directive was issued), and instead consider that width to be
<length>. Similarly, \faketreewidth{<text>} sets the width of the last
node to be equal to the width of <text> (which again can contain ‘\\’
commands etc.) <text> is not actually typeset but is used just to compute
the fake width of the node on the top of the stack.

For example, the default placement rules would produce tree (a) below.
By setting the width of the subtree headed by B to 1cm, we get tree (b).

a. A

B

a b c d

C

b. A

B

a b c d

C

6

\begin{center}

\qtreecenterfalse

a. \Tree [.A [a b c d].B C]

\hfil

b. \Tree [.A [a b c d].B !\qsetw{1cm} C]

\end{center}

When you use \qsetw or \faketreewidth you are on your own. They
can either shrink or enlarge the space taken by the node and may result in
trees with overlapping labels.

The low-level interface The guts of qtree are the tree macros written
by Jeff Siskind, named QobiTree. Using the original interface (which is still
accessible with this package) the example tree shown on page 6 would be
written like this:

S

A T

B
note

cc

D

\begin{center}

\leaf{A}

\leaf{B\\ \em note} \leaf{cc}

\branch{2}{T}

\leaf{D}

\branch{3}{S}

\qobitree

\end{center}

These macros operate like a stack machine. You push TEX boxes onto
the stack of tree nodes, then you pop them off to make branching nodes
which get pushed back on the stack.

6 How do I . . . ?

Make my tree fit in the page? Try one or more of the following: reduce
the surrounding font size with \small or another size command, before you
begin the tree; reduce the amount of space between subtrees with \qsetw

or \faketreewidth; consider placing your tree sideways in the page, with
one of the packages that provide rotation commands.

Draw movement arrows from one node of a tree to another? Use
Emma Pease’s tree-dvips package. Despite its name it is not a very conve-
nient tool for creating trees, but its many line- and arrow-drawing commands
can be used to decorate trees drawn with qtree.

7

Use qtree with pdflatex? Pdflatex does not support the PostScript spe-
cials generated by the package eepic.sty, which qtree loads automatically.
At present, you have the following non-ideal options:

1. Do not use pdflatex; generate a PDF file by using a PostScript-to-PDF
converter. The disadvantage of this solution is that the slideshow and
hypertext capabilities of PDF are not available with the resulting files.

2. Suppress the automatic inclusion of eepic, by using the package option
[noeepic]. This unfortunately results in lower-quality graphics, but
is probably your best option if you need to use pdflatex. (You will also
have to do without tree-dvips if you adopt this option).

The ideal solution would be to develop a PDF driver for eepic, or for some
other extention to the picture environment. Please let me know if you know
of such a thing.

Line up the text from all the leaf nodes on one horizontal line?

As far as I can tell, qtree’s design is incompatible with this style of tree. I’d
love it if there was an easy way to give qtree this capability (or the next
one), but if there is, I haven’t figured it out.

Draw dashed or dotted branches between certain nodes? Again,
I can’t see any way to incorporate this functionality into qtree, given the
syntax of the front end. You can fake it to some extent, by creating lines
that are part of a node as far as qtree is concerned, but which look like
branch lines.

7 Troubleshooting

Disclaimer: This package is distributed in the belief that it is useful in
its present form. I welcome any comments or reports of other problems or
desirable features. But as usual, no guarantees, promises, etc. can be made
about the present or future state of this code.

The following problems are not really the fault of qtree, but fortunately
they have easy solutions.

Some very short lines are not drawn This problem appears to be
caused by the limited inventory of line slopes in the LATEX picture envi-
ronment. For example, the tree fragment [.X a b] will produce invisible
branch lines from X to a and b, but the lines will reappear if the labels are
made wider. Install the picture enhancement styles (eepic.sty), and the
problem will go away.

8

Qtree will not work with journal style X Any number of things could
be going wrong, of course, but start by checking if the journal’s style rede-
fines the tabular environment. Qtree makes internal calls to tabular, so
this is a frequent source of problems. Usually the style’s writer has saved
the original definition of \tabular under a different name, so all you need to
do is arrange for the original definition to be restored for the calls to \Tree.

There is now a hook to make this easier: If you define a command named
\qtreebugfixhook, it will be implicitly called by \Tree, with local scope
(so that any redefinitions it causes are automatically cancelled at the end
of the call to \Tree). For example, the JNLE style (nle.sty) saves the
commands to begin and end a table as \oldtabular and \endoldtabular,
respectively, and the replacement macros result in r e a l l y w i d e trees.
The following will restore the original definitions for calls to \Tree only.

\def\qtreebugfixhook{\let\tabular=\oldtabular

\let\endtabular=\endoldtabular}

Kluwer’s house style saves the original definitions as \klu@tabular and
\klu@endtabular, so to use qtree with it, do the following. (You need the
\makeatletter call to use commands that contain an @-sign).

\makeatletter

\def\qtreebugfixhook{\let\tabular=\klu@tabular

\let\endtabular=\klu@endtabular}

\makeatother

8 Inspiration

Here is a last demo, illustrating some of the things you can do with qtree.

(This example, and parts of the above exposition, were adapted from the
original documentation for QobiTree).

9

The cup slid from John to Mary.

GO(cup, [Path FROM(John), TO(Mary)])
IP

Fracture

The cup

cup

NP

Fracture

The

⊥

Nspec

cup

cup

N

slid from John to Mary

GO(x, [Path FROM(John), TO(Mary)])
IP

Fracture

...
...

\def\CUP{{\bf cup}}

\def\Nspec{N$_{\mbox{\sc spec}}$}

\Tree [.{{\em The cup slid from John to Mary.}\\

{GO(\CUP, $[_{\rm Path}$ FROM({\bf John}), TO({\bf Mary})])}\\IP}

[.\fbox{Fracture}

%

[.{{\em The cup}\\\CUP\\NP}

[{{\em The}\\\bot\\\Nspec} {{\em cup}\\\CUP\\N}].\fbox{Fracture}

]

[.{{\em slid from John to Mary}\\

{GO({\it x}, $[_{\rm Path}$ FROM({\bf John}), TO({\bf Mary})])}\\IP}

[\vdots \vdots !\faketreewidth{WWW}].\fbox{Fracture}

]

].\fbox{Fracture} % repeated label

]

10

