Sprouting: A key to unifying Japanese sluicing

Yoshiki Fujiwara, University of Connecticut

Introduction: There are two subtypes of sluicing, merger (1) and sprouting (2) (Chung et al. 1995).

(1) A: John-ga nanika-o tabeteru yo. B: Nani-o?
 John-nom something-acc is.eating prt what-acc
 ‘John is eating something.’
 ‘What?’

 John-nom is.eating prt what-acc John-nom cry-be-Pres prt where-at
 ‘John is eating.’
 ‘What?’
 ‘John is crying.’
 ‘Where?’

Merger has an overt correlate like something in the antecedent clause, while sprouting does not. This paper investigates the structure of matrix sprouting in Japanese, which has not been studied in literature. The previous studies of matrix sluicing have looked at only merger-type sluicing and argue that matrix sluicing is derived differently from embedded sluicing in Japanese because matrix sluicing is island-insensitive in contrast to embedded sluicing (Abe 2015; Hasegawa 2006). However, this study shows that matrix sprouting is island-sensitive, and it is derived by clefts like embedded sluicing. Furthermore, I argue that Japanese sprouting is derived by PF-deletion, not by LF-copying (Chung et al. 1995, 2010; Oku 1998; Saito 2007; Sakamoto 2017) based on the novel finding that the remnant wh-phrase in sprouting cannot drop its morphological case.

Previous studies: A cleft-based approach was proposed in the literature (Hiraiwa and Ishihara 2012; Kizu 2005; Kuwabara 1996; Saito 2004) though only for embedded sluicing such as (3).

 John-nom something-acc eat-past but I-top what-acc cop Q not.know
 ‘John ate something, but I don’t know what.’

Under the cleft approach, sluicing is analyzed as having a structure like (4), where the embedded clause is a cleft and its presupposed CP undergoes deletion. This approach can explain the optionality of copula in (3) because it is also optional in cleft.

(4) ... boku-wa [CP John-ga t tabetano] ga nani-o (da) ka siranai.
 I-top John-nom ate C-nom what-acc cop Q not.know
 ‘I don’t know what it is that John ate.’

According to Hiraiwa and Ishihara (2002), the pivot of clefts moves out of the presupposed CP. (5) illustrates that clefts exhibit island sensitivity (Fukaya and Hoji 1999; Hiraiwa and Ishihara 2002; Takahashi 1994). Importantly, embedded sluicing is also sensitive to islands as shown in (6).

(5) *[CP]Hanko-ga [CP Taro-ga t tabeta kara] okotta no]-wa keeki-o (desu).
 Hanko-nom Taro-nom ate because got.angry C-top cake-acc cop.polite
 ‘It is a cake that Hanko got angry because Taro ate.’

(6) *Hanko-wa Taro-ga nanika-o tabeta kara okotta kedo, [nani-o (da) ka] siranai.
 Hanko-top Taro-nom something-acc ate because got.angry but what-acc cop Q not.know
 ‘Hanko got angry because Taro ate something, but I don’t know what.’

However, Hasegawa (2006) observes that matrix sluicing is not sensitive to islands as shown in (7).

(7) A: Hanko-wa [Taro-ga nanika-o tabeteru kara] okotteru yo. B:Nani-o?
 Hanko-top Taro-nom something-acc is.eating because is.angry prt what-acc
 ‘Hanko is angry because Taro is eating something.’
 ‘What?’

Based on this, she argues that Japanese matrix sluicing is derived in the same way as English sluicing because English sluicing ameliorates the island-violation as can be seen in (8) (Merchant 2001).

(8) They want to hire someone who speaks a Balkan language, but I don’t remember which (*they want to hire someone who speaks).

Abe (2015), on the other hand, pursues the in-situ deletion approach, where TP undergoes deletion except for the remnant wh-phrase, which carries a focus feature. Under his approach, the island insensitivity in (7) is expected since the remnant does not move out of the adjunct-island. Their proposals are summarized in (9).

(9) a. English-type sluicing: [CP What, [CP Hanko [CP Taro t, ate] because [angry] C₀]
 b. in-situ approach: [CP [CP Hanko [CP Taro WHAT[FOC] ate] because [angry] C₀]

Matrix sprouting: In contrast to the previous studies, I argue that matrix sprouting and even merger is derived from clefts. Compare sprouting in (10) with merger in (7). The former exhibits island sensitivity, which is consistent with the cleft approach since cleft is also island sensitive (cf. 5).

(10) A: Hanko-wa [Taro-ga tabeteru kara] okotteru yo. B:*Nani-o?
 Hanko-top Taro-nom is.eating because is.angry prt what-acc
 ‘Hanko is angry because Taro is eating.’
 ‘What?’

Moreover, as shown in (11), copula can optionally appear in sprouting. This suggests that matrix sprouting is also derived from clefts because copula is also optional in clefts (cf. 4).

"... and its presupposed CP undergoes deletion. This approach can explain the optionality of copula in (3) because it is also optional in cleft."

"According to Hiraiwa and Ishihara (2002), the pivot of clefts moves out of the presupposed CP. (5) illustrates that clefts exhibit island sensitivity (Fukaya and Hoji 1999; Hiraiwa and Ishihara 2002; Takahashi 1994). Importantly, embedded sluicing is also sensitive to islands as shown in (6)."

"*Hanko-wa Taro-ga nanika-o tabeta kara okotta kedo, [nani-o (da) ka] siranai.
 Hanko-top Taro-nom something-acc ate because got.angry but what-acc cop Q not.know
 ‘Hanko got angry because Taro ate something, but I don’t know what.’

"However, Hasegawa (2006) observes that matrix sluicing is not sensitive to islands as shown in (7)."

"Based on this, she argues that Japanese matrix sluicing is derived in the same way as English sluicing because English sluicing ameliorates the island-violation as can be seen in (8) (Merchant 2001)."

"They want to hire someone who speaks a Balkan language, but I don’t remember which (*they want to hire someone who speaks)."

"Abe (2015), on the other hand, pursues the in-situ deletion approach, where TP undergoes deletion except for the remnant wh-phrase, which carries a focus feature. Under his approach, the island insensitivity in (7) is expected since the remnant does not move out of the adjunct-island. Their proposals are summarized in (9)."

"In contrast to the previous studies, I argue that matrix sprouting and even merger is derived from clefts. Compare sprouting in (10) with merger in (7). The former exhibits island sensitivity, which is consistent with the cleft approach since cleft is also island sensitive (cf. 5)."

"Moreover, as shown in (11), copula can optionally appear in sprouting. This suggests that matrix sprouting is also derived from clefts because copula is also optional in clefts (cf. 4)."
(11) A: John-ga tabeteru yo. B: Nani-o (desu ka)? [sprouting]
 John-nom is.eating prt what-acc cop.polete Q
 ‘John is eating.’ ‘What?’

This is not unique to sprouting. Copula can also appear in matrix merger as shown in (12).

(12) A: John-ga nanika-o tabeteru yo. B: Nani-o (desu ka)? [merger]
 ‘John is eating something.’ ‘What?’

The previous approaches cannot explain the presence of the copula in matrix sluicing.

In addition, both subtypes of sluicing disallow the NPI sika as a remnant as shown in (13).

(13) A: John-wa {dareka-ni-sika / Ø} awanakatta yo. B: *Dare-ni-sika? [merger/ sprouting]
 John-top someone-dat-NPI not.met prt who-dat-NPI
 ‘John met (nobody except someone).’ ‘Except who?’

Note that the NPI sika also cannot appear in the pivot of cleft sentences (Hiraiwa and Ishihara 2012).

(14) *[CP John-ga ti awanakatta no]-wa Mary-ni-sika, desu. [cleft]
 John-nom not.met C-top Mary-dat-NPI cop
 ‘John met nobody except Mary.’

This is also problematic for the previous approaches since the wh-NPI can be licensed in non-cleft sentences like (15) regardless of whether it undergoes movement or not.

(15) {Dare-ni-sika} John-wa {dare-ni-sika} awanakatta no?
 Who-dat-NPI John-top who-dat-NPI not.met Q
 ‘John met nobody except who?’

From the data above, I conclude that matrix sluicing is derived from cleft like embedded sluicing.

One may wonder why the wh-remnant in matrix merger (7) is insensitive to islands. I argue that matrix merger can avoid island-violation with a copula structure like (16). In (16), a null pronoun occupies the subject position and it refers to the overt correlate “nanika” in A’s utterance. However, crucially, when there is no overt correlate in A’s utterance like sprouting, the structure in (16) cannot be used because pro ends up being unspecified. (17) illustrates this point with an overt pronoun. The unacceptability of (17B) shows that the overt pronoun in (17B) cannot refer to the implicit object in the antecedent clause in (17A).

 pro what-acc Taro-nom is.eating prt it-top what-acc
 ‘What was it?’ ‘Taro is eating.’ ‘What is it?’

Thus, matrix merger can avoid island-violation with a structure like (16), whereas sprouting cannot.

PF-deletion vs LF-copy: A question that I will address is whether ellipsis in sluicing involves PF-deletion (Merchant 2001) or LF-copying (Chung et al. 1995, 2010). Particularly interesting in this regard is the fact that case-drop is disallowed in sprouting as shown in (18).

(18) A: John-ga tabeta. B: Nani*(-o)?
 John-nom ate what-acc

It has been well-known since Saito (1983) that the same constraint applies to overtly moved items as in (19). If the wh-phrase moves, its case cannot be dropped (19a), if it stays in situ, it can be (19b).

Saito (2014) argues that movement itself raises a problem for case drop in (19a), i.e. he attributes the unacceptability of (19a) to a general constraint on movement.

 what-acc John-nom ate Q John-nom what-acc ate Q

Under the LF copy approach, it is difficult to explain the impossibility of case drop in sprouting. Since this approach assumes that the wh-remnant is base-generated and there is no relevant internal structure in the ellipsis site in overt syntax, we cannot attribute the unacceptability in (18B) to the general constraint on overt movement, as in Saito’s approach. It appears that in order to account for (18) under the LF copy approach, one would have to assume some LF operation which is sensitive to the presence/absence of case markers, which is undesirable given that morphological cases like -o are semantically vacuous. On the other hand, under the PF-deletion approach, the wh-remnant has moved in overt syntax so that it is possible to attribute the impossibility of case drop in sprouting to the general constraint on overt movement, as in Saito’s analysis. Thus, the impossibility of case-drop in sprouting favors the PF-deletion approach over the LF copy approach.

Implication: The current study has shown that matrix sluicing is derived from cleft like embedded sluicing. Under the cleft approach to sluicing, sluicing in Japanese involves CP-deletion, not TP-deletion. This is a desirable result given that it has been independently shown that argument ellipsis, an ellipsis process which targets arguments and is allowed in Japanese (Oku 1998; Saito 2007), can target CPs (Shinohara 2006). Thus, the cleft approach opens the possibility to unify sluicing with argument ellipsis, a possibility which will be discussed in more detail in the talk.
ADJECTIVAL SLUICES IN HUNGARIAN: AN ARGUMENT FOR ISOMORPHIC SOURCES

Eszter Ronai & Laura Stigliano (The University of Chicago)

Hungarian adjectival sluices show agreement characteristics of predicative adjectives, even though the correlate of the adjective is in attributive position (1):

(1) János ismer néhány magas lány-t, de nem tudom milyen magas-*(ak).
 John knows some tall girl-ACC, but not know.I how tall-*(PL)
 ‘John knows some tall girls, but I don’t know how tall.’

This has been taken as evidence for the existence of non-isomorphic sources for the ellipsis site (i.e. copular/cleft sources) (e.g. Barros, 2016). We show, however, that due to case-matching effects, this line of analysis would necessitate positing copular sources for only a subset of Hungarian sluices --a conceptually unappealing state of affairs. Instead we provide a more parsimonious analysis, which captures the data without needing to posit exceptional sources. We argue for the existence of two different configurations: 1) one involving isomorphic wh-sources followed by ellipsis (i.a. Ross, 1969), and 2) one that does not involve ellipsis at all, but is rather a case of pseudosluicing (in its original formulation, Merchant, 2001). In particular, examples such as (1) involve the combination of pro-drop and copula-drop, operations independently available in the language, whose restricted distribution explains constraints we observe on the distribution of pseudosluicing. Thus, on our analysis, there is only one possible source for Hungarian sluicing structures.

1. BASIC FACTS. In Hungarian, predicative adjectives show number agreement with the subject (2a), but attributive adjectives do not show number agreement with the noun they modify (2b):

(2) a. A lány-ok magas-*(ak).
 The girl-PL tall-*(PL)
 ‘The girls are tall.’

b. János ismer magas-*(ak) lány-ok-at
 John knows tall-*(PL) girl-PL-ACC
 ‘John knows tall girls.’

In adjectival sluices, the remnant must bear number marking, agreeing with the number of the correlate (Elliott, 2013); that is, (1) patterns with (2a). This was taken as evidence for a copular source analysis of sluicing in general, and adjectival sluices in particular, based on the sentence’s English counterpart (3):

(3) John knows some tall girls, but I don’t know how tall, the girls that John knows are t.

2. CASE MISMATCHES ARE DISALLOWED IN HUNGARIAN. As mentioned, examples like (1) led some authors (e.g. Barros, 2016) to propose an optionality between isomorphic (wh-questions) and non-isomorphic (copular/cleft) sources. However, if copular sources were always available as a source for ellipsis in Hungarian, then case mismatches in regular sluicing should be allowed. As (4a) shows, this is not the case: (non-adjectival) sluices prohibit case-mismatches, in compliance with Merchant’s (2001) Case-Matching Generalization: The sluiced wh-phrase must bear the case that its correlate bears. This is despite the fact that copular continuations are possible with a nominative wh-phrase (4b):

(4) a. János ismer valaki-t, de nem tudom ki-*(t).
 John knows someone-ACC, but not know.I who-*(ACC)
 ‘John knows someone, but I don’t know who.’

b. János ismer valaki-t, de nem tudom ki-*(t) az/ő.
 John knows someone-ACC, but not know.I who-*(ACC) that/(s)he
 ‘John knows someone, but I don’t know who they are.’

A possible, but conceptually unappealing explanation is to propose that copular sources are allowed only in one type of clausal ellipsis (i.e. adjectival sluices, (1)), but not in others (i.e. regular sluices, (4a)). On the contrary, our proposal explains the facts without appealing to construction-specific mechanisms or constraints, and is rather independently motivated by properties of the language.

3. AN ISOMORPHIC SOURCE FOR ADJECTIVAL SLUICES. In addition, what seems to have gone unnoticed in prior literature is the fact that the remnant in an adjectival sluice can also be marked with case, matching the case of the noun its correlate modifies (see Merchant, 2001 for similar facts in Greek):

(5) János ismer néhány magas lány-t, de nem tudom milyen magas-ak-at. (cf. (1))
 John knows some tall girls-ACC, but not know.I how tall-PL-ACC
 ‘John knows some tall girls, but I don’t know how tall.’
We argue that for (5), the only possible source is an isomorphic wh-question (6a) followed by NP-ellipsis (NPE), as shown in (6b). Note that in Hungarian, number and case marking in non-elliptical sentences only shows up on the noun, yet they obligatorily occur on the last remnant of the elliptical site (i.e. the adjective) when NPE applies (Saab & Lipták, 2016):

(6) a. ...milyen magas lány-ok-at (ismer)? b. ...milyen magas-ak-at ∅ (ismer)?
 how tall girl-PL-ACC he.knows how tall-PL-ACC he.knows
 (lit.) ‘How tall girls does he know?’ (lit.) ‘How tall (girls) does he know?’
 ‘... how tall are the girls that he knows.’ ‘... how tall are the girls that he knows.’

Further evidence for this comes from the fact that (6a) is perfectly grammatical (even without sluicing), making it unnecessary to posit a derivation that involves a violation of the Left Branch Condition.

4. APPARENT CASE MISMATCHES ARE NOT ELLIPTICAL. We argue that cases like (1) arise from the combination of a null subject (Dalmi, 2014) and a null copula, giving the illusion of an ellipsis configuration:

(7) J. ismer néhány magas lány-t, de nem tudom milyen magas-ak pro NULL-COPULA.

J knows some tall girl-ACC, but not know.I how tall-PL

Further support for our analysis comes from structures in which the copula needs to be spelled out. Hungarian copula drop is known to be restricted to 3rd person and present tense (see i.a. É. Kiss, 2002). Thus, as can be seen in e.g. adjectival questions, copulas are absent in the present tense (8a), but obligatory in the past tense (8b) and other persons (we omit these latter examples because of space restrictions):

(8) a. Milyen magas-ak *(van-nak) a lány-ok? b. Milyen magas-ak *(volt-ak) a lány-ok?
 how tall-PL be.PRES-PL the girl-PL how tall-PL be.PAST-PL the girl-PL
 ‘How tall are the girls?’ ‘How tall were the girls?’

The presence/absence of the copula in the non-elliptical wh-question determines whether apparent adjectival sluices without case-matching are allowed. This correctly predicts that patterns change when a past reading is enforced: either accusative marking (9a) or the copula (9b) is obligatory (contrasting with 1):

(9) a. J. megölt néhány magas lány-t 1945-ben, de nem tudom milyen magas-ak-at.
 J killed some tall girl-ACC 1945-INESSIVE, but not know.I how tall-PL-ACC
 b. J. megölt néhány magas lány-t 1945-ben, de nem tudom milyen magas-ak *(voltak).
 J killed some tall girl-ACC 1945-INESS., but not know.I how tall-PL be.PAST.PL
 ‘John killed some tall girls in 1945 but I don’t know how tall.’

Similarly, a null copula is not allowed in some other cases such as possessed locatives (10a). Crucially, this correlates with the availability of the pseudosluicing configuration, which is not possible in this context (10b). Null copulas in pseudosluicing configurations are only allowed if they are allowed in regular questions:

(10) a. Hol *(van) János ház-a?
 where is John house.POSS ‘Where is John’s house?’
 b. János ház-á-hoz megyünk, de nem tudom hol *(van).
 John house.POSS-ALL we.go, but not know.I where is
 ‘We’re going to John’s house, but I don’t know where it is.’

5. CONCLUSIONS. In this paper we show that non-isomorphic sources are not possible in Hungarian ellipsis. (Apparent) adjectival sluices can arise from two different configurations, yielding different number and case marking. On the one hand, true cases of clausal ellipsis arise only from isomorphic wh-questions (see 5 and 6b). These show case-matching and number/case marking on the adjective, as is predicted by properties of NPE in Hungarian. On the other hand, apparent mismatching sluices are not in fact derived from ellipsis, but from the combination of two independent properties of the language: pro drop and copula drop (see 7). Thus our proposal dispenses with the need to posit two different sources of ellipsis within the same language, and contributes to the discussion about the structure inside the ellipsis site, showing that copular sources cannot be sources for ellipsis.
Observation: Our typological survey shows that a nominal (N) cannot intervene between a numeral (#) and an ordinal marker (Ord). The main observation is summarized in (1). There are six mathematically possible combinations of three items (factorial $3 = 3 \times 2 \times 1 = 6$). However, the last two combinations in (1) are not attested in our sample.

<table>
<thead>
<tr>
<th>Order</th>
<th>Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ #-ORD-N</td>
<td>English, Italian, Spanish, English, Italian, Spanish, Greek, Turkish, Breton, Hindi, Russian, Serbian, Kana, Lezgian, Dutch, Basque, Itzaj, Boko, Eastern Khanty, Bilua, Meithei, Kashmiri, Welsh, Turkish, Mam</td>
</tr>
<tr>
<td>✓ N-#-ORD</td>
<td>Wutun (mixed Mandarin-Bonan), Sumerian (Isolate), Kove (Austronesian), Koromfe, Kurmanji, Persian</td>
</tr>
<tr>
<td>✓ N-ORD-#</td>
<td>Abui (Papuan), Amanuban, Sawu, Crow, Gikuyu, Tobelo, Western Pantar, Sawila, Helong, Choctaw, Indonesian</td>
</tr>
<tr>
<td>✓ ORD-#-N</td>
<td>Belep (Austronesian), Ahan (Niger-Congo, Yoruboid)</td>
</tr>
<tr>
<td>* #N-ORD</td>
<td>None</td>
</tr>
<tr>
<td>* ORD-N-#</td>
<td>None</td>
</tr>
</tbody>
</table>

Importantly, the last two combinations correspond to Greenberg’s (1972) unattested constituent orders of N, #, and Cls (classifier) (i.e. *#-N-CL and *CL-N-#).

Previous analysis: Her (2017) argues that Greenberg’s (1972) unattested constituent orders can be captured by assuming that Cls and # form a constituent, before combining with N. However, this assumption seems to be incompatible with other data about classifier constructions. First of all, classifiers can appear without a numeral in some classifier languages (Simpson 2005). Moreover, classifiers in Vietnamese can be elided along with the modified noun phrase while leaving a numeral, as shown in (2b).

(2) a. Nguyễn có năm con trâu, còn Khánh có [ba con trâu] .
Nguyen have five CLS buffaloes, but Khanh have three CLS buffaloes
‘Nguyen has five buffaloes, but Khanh has three buffaloes’ [Vietnamese]

b. Nguyễn có năm con trâu, còn Khánh có [ba Δ] .
Nguyen have five CLS buffaloes, but Khanh have three
‘Nguyen has five buffaloes, but Khanh has three buffaloes’ [Vietnamese]

The acceptability of (2b) is not expected if # and Cls form a constituent, excluding N. Based on the acceptability of (2b), Nguyen (2004) argues that the numeral projects its own projection taking the classifier phrase (ClsP) as its complement. If we adopt Her’s (2017) assumption about constituency of # and Cls, we will face a problem regarding the nominal ellipsis in Vietnamese. On the other hand, if we adopt Nguyen’s (2004) analysis, a constituent consisting of N and Cls should be available, and we fail to derive Greenberg’s observation about constituent order of N, # and Cls. The same is true for our observation in (1).
Proposal: I argue that our observation in (1) and Greenberg’s observation about constituent order of N, # and Cls can be captured by assuming a modified version of Sheehan et.al. (2017) analysis. Following previous analyses, I make the assumptions in (3). Importantly, I adopt the anti-locality condition proposed by Abels (2003) (see also Babaljik & Thráinsson (1998)).

(3) a. all (relevant) movements move a subtree containing \(\sqrt{N} \);
 b. all movements target a c-commanding position;
 c. all movements are to the left;
 d. a complement phrase cannot recombine with a projection of its selecting head.

As for the underlying structure of numeral classifier constructions, I propose that there are four possibilities, as illustrated in (4).

(4) a. \([QP \{nP \#P \{n' \{Clsln [\sqrt{NP} \sqrt{N}] \}\}\}\]\)
 b. \([QP \#P \{Q' \{nP [Clsln \{\sqrt{NP} \sqrt{N}] \}\}\}\]\)
 c. \([QP [ClslQ \{nP \#P \{n' [\sqrt{NP} \sqrt{N}] \}\}\]\)
 d. \([QP \#P \{Q' [ClslQ \{nP [\sqrt{NP} \sqrt{N}] \}\}\]\)

Following Sheehan et.al. (2017) suggestion, I assume here that classifiers can occur in two different positions. In (4a,b), the classifier is in the head of nP. In (4c,d), the classifier appears in the head of QP. I also assume that numerals can occur in Spec,QP or in Spec,nP. Without movement, these structures result in the constituent order #-Cls-N and Cls-#-N. Moreover, the anti-locality condition in (3d) rules out the unattested constituent orders (i.e. #-N-Cls and Cls-N-#). The anti-locality condition allows for NP-movement to Spec,QP, and the resulting structures will be N-#-Cls and N-Cls-#. Importantly, our observation in (1) that ordinal markers behave like classifiers with respect to their possible constituent orders can be accounted for if I assume that ordinal markers can appear in the same position as classifiers.

Ordinal markers in classifier languages: A question will immediately arise concerning ordinal numerals in classifier languages. I found five combinations of N, #, Ord, and Cls, as in (5).

(5)	Order	Languages
✓ | #-Cls-Ord-N | Japanese, Korean, Chontal, Chol |
✓ | Ord-#-Cls-N | Chinese, Xong |
✓ | N-Cls-Ord-# | Thai, Abun |
✓ | N-Ord-#-Cls | Mokilese |
✓ | N-Cls-#-Ord | Atong |

These attested constituent orders can be captured under the current analysis, in which there are two available positions for ordinal markers and classifiers. The attested combinations in (5) can be derived from one of the following underlying structures.

(6) a. \([QP [Ord]Q \{nP \#P \{n' \{Clsln [\sqrt{NP} \sqrt{N}] \}\}\}\]\)
 b. \([QP \#P \{Q' [Ord]Q \{nP [Clsln \{\sqrt{NP} \sqrt{N}] \}\}\}\]\)
 c. \([QP [ClslQ \{nP \#P \{n' [Ord]n \{\sqrt{NP} \sqrt{N}] \}\}\]\)
 d. \([QP \#P \{Q' [ClslQ \{nP [Ord]n \{\sqrt{NP} \sqrt{N}] \}\}\}\]\)

Pseudo-sluicing in Turkish: A pro-form Analysis
Bilge Palaz
University of Delaware

Pseudo-sluicing is a type of sluicing attested in wh-in-situ languages (Kizu, 1998; Merchant, 1998). I argue that Turkish has both genuine sluicing (1) and pseudo-sluicing (2).

(1) Cem-Ø biri-nden kaç-iyor-du ama KİM-DEN(-Ø-di) bil-mi-yor-um.
 Cem-Nom s.o-Abl escape-Prs-Pst.3sg but who-Abl(-Cop-Pst) know-Neg-Prs-1sg
 ‘Cem was escaping from someone, but I don’t know who (Cem was escaping from).’

(2) Cem-Ø biri-nden kaç-iyor-du ama KİM-Ø-Ø(-di) bil-mi-yor-um.
 Cem-Nom s.o-Abl escape-Prs-Pst.3sg but who-Nom-Cop(-Pst) know-Neg-Prs-1sg
 ‘Cem was escaping from someone, but I don’t know who (that was).’

Even though certain TAM (Tense-Aspect-Modality) markers can attach to the remnant in both (1) and (2), these two are fundamentally different. İnce (2006) investigates pseudo-sluicing in Turkish and considers examples as in (1) as pseudo-sluicing without discussing structures like (2). Contra İnce, I propose that all structures where wh-remnant carries the same case as its correlate should be categorized as genuine sluicing (1), whereas the lack of case connectivity is the indication of pseudo-sluicing (2). I focus on the structure of pseudo-sluicing in Turkish (as in (2)) in this study¹ and claim that it can be best accounted for by a pro-form analysis as proposed in Adams (2004) and Adams and Tomioka (2012) for Chinese.

Properties of Pseudo-sluicing in Turkish. Pseudo-sluicing in Turkish differs from sluicing structures. First, the remnant exhibits case connectivity in sluicing (1), yet the wh-word is always nominative in pseudo-sluicing as in (2) and further illustrated with a dative correlate in (3).

(3) Cem-Ø biri-ne kız-muş ama KİM-Ø-Ø sor-ma-di-m.
 Cem-Nom s.o-Dat get.angry-Ev.3sg but who-Nom-Cop ask-Neg-Pst-1sg
 ‘Cem got angry at someone, but I didn’t ask who (that is).’

Another difference is observed with sprouting. Sluicing structures allow sprouting (4-a), but it is ungrammatical with pseudo-sluicing (4-b).

 Ali-Nom love be-Ev.3sg but Ece-Nom who-DAT know-Neg-Prs.3sg
 ‘Ali fell in love, but Ece doesn’t know with who.’

 Ali-Nom love be-Ev.3sg but Ece-Nom who-Nom-Cop know-Neg-Prs.3sg
 Int: ‘Ali fell in love, but Ece doesn’t know with who.’

Pseudo-sluicing ≠ Reduced Clefts. Pseudo-sluicing in Japanese, a structurally similar language to Turkish, is analyzed as reduced cleft (Kizu, 1998; Merchant, 1998, Hiraiwa and Ishihara, 2012). One can argue that a cleft analysis also applies to Turkish. The pivots in clefts are always nominative in Turkish (5) like the wh-word in pseudo-sluicing (2, 3), and both are followed by a copula² and (optional) TAM markers.

(5) Pelin-in e₁ hediye al-diğ-Jı Ece-Ø₁-y-di.
 Pelin-Gen present buy-Rel-Poss Ece-Nom-Cop-Pst.3sg
 ‘That was Ece who Pelin bought a present for.’

Accordingly, a reduced cleft analysis of pseudo-sluicing (2) would look like (6).

(6) Cem-Ø biri-nden kaç-iyor-du ama [CP Cem in e₂ kaç-iyor-du] KİM-Ø-Ø(-di)
 Cem-Nom s.o-Abl escape-Prs-Pst.3sg but who-Nom-Cop(-Pst)
 hatırla-mi-yor-um.
 remember-Neg-Prs-1sg
 ‘Cem was escaping from someone, but I don’t remember who (that was).’

¹ Discussion of the genuine sluicing as in (2) is beyond the scope of this study. See İnce (2009), Şener (2013) and Palaz (to appear) for different accounts of sluicing in Turkish.
² The copula -i is realized as either -y or -Ø when it is a suffix in Turkish depending on the preceding sound (Kelepir, 2007).
However, I argue that pseudo-sluicing cannot be analyzed as reduced clefts in Turkish as pseudo-sluicing is not island sensitive (7) whereas clefts are (8).

(7) Cem-Ø Peg-in biri-nden hošlan-diğ-I söylentisi-ni duy-muş ama KlM-Ø-Ø
Cem-Nom Peg-Gen s.o-Abh like-Nmlz-Poss rumor-Acc hear-Ev.3sg but who-Nom-Cop bil-mi-yor-um.
know-Neg-Prs-1sg
‘Cem heard the rumor that Peg likes someone, but I don’t know who (that is).’

(8) * Cem-in Peg-in e1 hošlan-diğ-I söylentisi-ni duy-duğ-u KlM-I-Ø-Ø?
Cem-Gen Peg-Gen like-Nmlz-Poss rumor-Acc hear-Rel-Poss who-Nom-Cop
Int: ‘Who is it that Cem heard the rumor that Peg likes?’

Impossibility of sprouting (4-b) would also need further stipulation since a cleft analysis cannot rule it out; pronouncing the presuppositional part of a cleft makes sprouting grammatical.

Ali-Nom love be-Ev.3sg but Ece-Nom Ali-Gen love be-Rel-Poss who-Nom-Cop
bil-mi-yor.
know-Neg-Prs.3sg
‘Ali fell in love, but Ece doesn’t know who is it that Ali fell in love with.’

Proposal. I suggest that a pro-form analysis can account for the Turkish facts without stipulation. Pseudo-sluicing in Turkish behaves more like Chinese in that sprouting is ungrammatical and there is no island effect. Adams (2004) and Adams and Tomioka (2012) suggest pro-form analysis for Chinese for similar reasons, and I argue that Turkish facts also follow naturally if we adopt their analysis as opposed to reduced clefts. Such an analysis assumes the existence of a null pronoun which is coreferential with the indefinite in the antecedent clause (10-a). Note that pro can also be phonologically realized as in (10-b).

Cem-Nom s.o-Abh escape-Prs-Pst.3sg but who-Nom-Cop(-Pst) know-Neg-Prs-1sg
‘Cem was escaping from someone, but I don’t know who (that was).’

b. Cem-Ø biri-nden1 kaça-yor-du ama o, KlM-Ø-Ø(-di) bil-mi-yor-um.
Cem-Nom s.o-Abh escape-Prs-Pst.3sg but that who-Nom-Cop(-Pst) know-Neg-Prs-1sg
‘Cem was escaping from someone, but I don’t know who (that was).’

Island insensitivity of pseudo-sluicing (7) no longer requires assuming extra mechanisms in this approach as nothing moves out of the island. As for the ungrammaticality of sprouting, it is independently shown that pro or an overt pronoun cannot be coreferential with an implicit argument in the previous clause (cf. Adams, 2004; Adams and Tomioka, 2012). This is true for Turkish as well.

Ali-Nom love be-Ev.3sg. She/pro doctor-Cop-Ev.3sg
Int: ‘Ali fell in love. She is a doctor.’

Hence, it is truly predicted that sprouting will be ungrammatical with pseudo-sluicing as in (4-b), repeated below for convenience with pro and an overt pronoun.

Ali-Nom love be-Ev.3sg but Ece-Nom pro / that who-Nom-Cop know-Neg-Prs.3sg
Int: ‘Ali fell in love, but Ece doesn’t know who.’

Implications. I have discussed that a pro-form analysis can naturally explain the facts in Turkish as it is argued to do so in Chinese. This suggests that pseudo-sluicing cannot be captured by a reduced cleft analysis in all wh-in-situ/pro-drop languages. Further research is needed to examine what strategy other languages use, and why different strategies are implemented in structurally similar languages.