1 Some Properties of Pushdown Automata

- Pushdown Automata (PDA) recognize context free languages.
- These automata are like nondeterministic finite state automata but have an extra component called a stack.
 It is this extra component that provides the automaton with memory (in principle, an infinite amount of memory), and allows it to recognize some nonregular languages.
- A PDA can write (push) a symbol on the top of the stack or remove (pop) a symbol from the top of the stack.
 The stack is, in principle, unlimited, and it works as a last in, first out storage device.
- Recall that \(\{0^n1^n \mid n \geq 0\} \) cannot be recognized by a finite state automaton (FSA). But a PDA can recognize this language with the help of the stack.

 1. As the machine reads a 0 from the input string, push it on top of the stack.
 2. As soon as 1s are encountered from the input string, pop a 0 off the stack for each 1 read.
 3. If reading the input string is finished exactly when the stack becomes empty of 0s, accept the input.
 Reject otherwise.

- Conditions under which the input string is accepted or rejected by a PDA:

 1. ACCEPT the input string if the stack is empty when the last symbol is read.
 2. REJECT otherwise.

2 Formal Definition of Pushdown Automata

A pushdown automaton is a 6-tuple \(< Q, \Sigma, \Gamma, \delta, q_0, F > \), where \(Q, \Sigma, \Gamma, \) and \(F \) are all finite sets and:

 1. \(Q \) is the set of states,
 2. \(\Sigma \) is the input alphabet,
 3. \(\Gamma \) is the stack alphabet,
4. \(\delta : Q \times \Sigma_e \times \Gamma_e \rightarrow \varphi(Q \times \Gamma_e) \) is the transition function,

5. \(q_0 \in Q \) is the start state, and

6. \(F \subseteq Q \) is the set of accept states.

A PDA \(M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle \) computes a string \(w \) as follows. It accepts an input string \(w \):

- if \(w \) can be written as \(w = w_1 w_2 ... w_m \), where each \(w_i \in \Sigma_e \), and

- there is a sequence of states \(r_0, r_1, ..., r_m \in Q \) and strings \(s_0 s_1, ..., s_m \in \Gamma^* \) that satisfy the following conditions:

 1. \(r_0 = q_0 \) and \(s_0 = \epsilon \). This condition requires that \(M \) start out in its start state and with an empty stack.

 2. For \(i = 0, ... m - 1 \), we have \((r_{i+1}, b) \in \delta(r_i, w_{i+1}, a) \), where:

 - \(s_i = at \)
 - \(s_{i+1} = bt \)

 for some \(a, b \in \Gamma_e \) and \(t \in \Gamma^* \).

 That is, each move of \(M \) is performed according to the state, the contents of the stack and the next input symbol.

 3. \(r_m \in F \).

This tells us that the last state in the computation must be an accept state.

3 Examples of Pushdown Automata

- PDA that recognizes the language \(\{0^n1^n \mid n \geq 0\} \).

Let \(M_1 = \langle Q, \Sigma, \Gamma, \delta, q_1, F \rangle \), where

\(Q = \{q_1, q_2, q_3, q_4\} \),

\(\Sigma = \{0, 1\} \),

\(\Gamma = \{0, \$\} \),

\(F = \{q_1, q_4\} \), and

\(\delta \) is given by the following table:

<table>
<thead>
<tr>
<th>Input</th>
<th>Stack</th>
<th>0</th>
<th>$</th>
<th>\epsilon</th>
<th>1</th>
<th>0</th>
<th>$</th>
<th>\epsilon</th>
<th>\epsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td>q1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{(q2,$)}</td>
</tr>
<tr>
<td>q2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{(q2,0)}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>q3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{(q3,\epsilon)}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{(q4,\epsilon)}</td>
<td>-</td>
</tr>
<tr>
<td>q4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\delta \) is given by the following table:

- **Input:** 0, \(e \rightarrow 0 \)
- **Input:** 1, \(e \rightarrow \epsilon \)
- **Input:** \(e, \epsilon \rightarrow \$ \)
- **Input:** \(e, \epsilon \rightarrow e \)
- **Input:** 1, \(0 \rightarrow e \)
- **Input:** \(e, \$ \rightarrow e \)
Notations:

- \(a, b \rightarrow c \): when the machine is reading an \(a \) from the input, it may replace the symbol \(b \) on the top of the stack with a \(c \) (pop \(b \) and push \(c \)).
 Any of \(a, b \) and \(c \) may be \(\epsilon \):
 - If \(a \) is \(\epsilon \), the machine may make this transition without reading any symbol from the input.
 - If \(b \) is \(\epsilon \), the machine may make this transition without popping a symbol from the stack (pop nothing and push \(c \)).
 - If \(c \) is \(\epsilon \), the machine does not write any symbol on the stack in this transition (pop \(b \) and push nothing).

- \(\epsilon \rightarrow \$ \) places a special symbol \(\$ \) on the stack. This mechanism allows the PDA to test for an empty stack. By initially placing \$ on the stack, the machine knows that the stack is effectively empty when it sees the \$ again.

- **Example 1:** A PDA that recognizes the language \(\{a^ib^jc^k| i, j, k \geq 0 \text{ and } i = j \text{ or } i = k \} \).

The formal description of this machine is given as follows:

Let \(M = \langle Q, \Sigma, \Gamma, \delta, q_1, F \rangle \), where

- \(Q = \{q_1, q_2, q_3, q_4, q_5, q_6, q_7\} \),
- \(\Sigma = \{a, b, c\} \),
- \(\Gamma = \{a, \$\} \),
- \(F = \{q_4, q_7\} \), and
- \(\delta \) is given by the following table:

<table>
<thead>
<tr>
<th>State</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>0</td>
<td>0</td>
<td>$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(q_2)</td>
<td>0</td>
<td>0</td>
<td>{q_2,a}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(q_3)</td>
<td>0</td>
<td>0</td>
<td>{q_3,c}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(q_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{q_4,c}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(q_5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{q_5,c}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(q_6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{q_6,a}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(q_7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{q_7,a}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Example 2: A PDA that recognizes the language \(\{ w w^R | w \in \{ 0, 1 \}^* \} \).

![Diagram of a PDA]

Question: Give a formal description of this machine.

4 Equivalence with Context Free Grammars

Context free grammars (CFGs) and pushdown automata (PDA) are equivalent in power. That is, any CFG can be converted into a PDA that recognizes the same language and vice versa.

Theorem (Sipser’s Theorem 2.12)

A language is context free if and only if some pushdown automaton recognizes it.

5 Closure Properties of Context Free Languages

5.1 Union

Given two CFG’s \(G_1 = \langle V_1, \Sigma, R_1, S_1 \rangle \), and \(G_2 = \langle V_2, \Sigma, R_2, S_2 \rangle \), we form \(G \) (where \(G \) accepts \(L(G_1) \cup L(G_2) \)) in the following way.

- If the variables of \(G_1 \) and \(G_2 \) are not disjoint sets, we make them so (by appending primes to every variable of \(G_2 \)).
• The start symbol of \(G \) we take to be \(S \), and \(G \) contains, in addition to \(R1 \) and \(R2 \), the rules \(S \to S1 \) and \(S \to S2 \).

• \(G \) is context free, and it generates \(L(G1) \cup L(G2) \) since the start symbol may be either rewritten as \(S1 \), whereupon \(G \) behaves like \(G1 \), or as \(S2 \), whereupon \(G \) behaves like \(G2 \).

• Question: Construct \(G \) that generates \(L(G1) \cup L(G2) \), where \(G1 \) and \(G2 \) are as follows:

\[
\begin{align*}
G1 & \\
S & \to BC \\
B & \to aBb \\
B & \to \epsilon \\
C & \to cC \\
C & \to \epsilon \\
\end{align*}
\[
\begin{align*}
G2 & \\
S & \to BC \\
B & \to aB \\
B & \to \epsilon \\
C & \to bCc \\
C & \to \epsilon \\
\end{align*}
\]

5.2 Concatenation

Given two CFG’s \(G1 = \langle V1, \Sigma, R1, S1 \rangle \), and \(G2 = \langle V2, \Sigma, R2, S2 \rangle \), we form \(G \) in the following way.

• If the variables of \(G1 \) and \(G2 \) are not disjoint sets, we make them so (by appending primes to every variable of \(G2 \)).

• The start symbol of \(G \) we take to be \(S \), and \(G \) contains, in addition to \(R1 \) and \(R2 \), the rule \(S \to S1S2 \).

• \(G \) will generate all and only strings of the from \(xy \) such that \(x \in L(G1) \) and \(y \in L(G2) \).

• Question: Construct \(G \) that generates \(L(G1) \circ L(G2) \), where \(G1 \) and \(G2 \) are defined as above.
5.3 Star Operation

Given $G = \langle V, \Sigma, R, S \rangle$, we construct G^* in the following way.

- The start symbol of G^* is S', and G^* contains, in addition to all the rules in R, the rules $S' \rightarrow \epsilon$ and $S' \rightarrow S'S$.

- G^* generates all strings in $(L(G))^*$ since by application of the rules rewriting S', G^* produces strings S^n for all $n \geq 0$. Each such S can be rewritten to produce a string in $L(G)$, and ϵ is produced by the rule $S' \rightarrow \epsilon$.

- Question: Construct $G1^*$ that generates $(L(G1))^*$, where $G1$ is defined as above.

5.4 Intersection

CFLs are NOT closed under intersection.

- To see this, we note that the languages $L1 = \{a^i b^j c^j \mid i, j \geq 0 \}$ and $L2 = \{a^k b^l c^{k+l} \mid k, l \geq 0 \}$ are both context free (see Example 1 above).

$L1$ is generated by the following CFG:

\[
\begin{align*}
S & \rightarrow BC \\
B & \rightarrow aBb \\
B & \rightarrow \epsilon \\
C & \rightarrow cC \\
C & \rightarrow \epsilon
\end{align*}
\]

$L2$ is generated by the following CFG:

\[
\begin{align*}
S & \rightarrow BC \\
B & \rightarrow aB \\
B & \rightarrow \epsilon \\
C & \rightarrow bCc \\
C & \rightarrow \epsilon
\end{align*}
\]

$L1 \cap L2 = \{a^n b^n c^n \mid n \geq 0 \}$.

But this is not a context free language. (We will see why shortly.)
5.5 Complementation

CFLs are not closed under complementation.

- Given two CFLs L_1 and L_2 over some alphabet Σ, if their complements $L_1' = \Sigma^* - L_1$ and $L_2' = \Sigma^* - L_2$ were context free, then so would be the union of those complements, $L_1' \cup L_2'$.

- The complement of this, in turn, $(L_1' \cup L_2')'$ would also be context free. This is equal to $(L_1 \cap L_2)$, by DeMorgan’s Laws.

- But $(L_1 \cap L_2)$ is not necessarily context free (as we saw in the previous section).

6 The Pumping Lemma for Context Free Languages

6.1 Theorem (Sipser’s Theorem 2.10)

If A is a context free language, then there is a number p (pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces $s = uvxyz$ satisfying the following conditions:

1. For each $i \geq 0$, $uv^i xy^i z \in A$,

2. $|vxy| > 0$, and

 Either v or y is not the empty string. Otherwise the theorem would be trivially true.

3. $|vxy| \leq p$.

 The pieces v, x and y together have length at most p.

6.2 An example

- Let’s apply the pumping lemma to the following language A.

 $A = \{0^n1^n \mid n \geq 0\}$.

 Let’s assume that the pumping length is 5. Let’s take some string longer than 5. How about 000111? We can then break this string down as follows:

 $$u = 0, v = 0, x = 01, y = 1, z = 1$$

 By pumping v and y, we get:

 $uv^p xy^p z = 0-01-1$

 $uv^3 xy z = 0-0-01-1-1$

 $uv^2 xy^2 z = 0-00-01-11-1$

 $uv^3 xy^3 z = 0-000-01-111-1$

 etc.
All of these strings are in language A. So, the pumping lemma works for this language and this string.

Important: The pumping lemma says "if a language is context free, then there is a number p such that ...". Let's represent this theorem as $c \rightarrow p$. We use the contrapositive to show that a language is not context free: $\neg p \rightarrow \neg c$. If, on the other hand, we simply show that the pumping lemma works for a language, we cannot conclude on this basis that the language is context free. That is, given $c \rightarrow p$, if we show that p holds we have not thereby demonstrated the truth of c.

6.3 Proving that a language is not context free

See also Partee pages 494-5.

6.3.1 Sipser’s Example 2.20

Use the pumping lemma to show that the language $B = \{a^n b^n c^n | n \geq 0\}$ is not context free.

We will do this by assuming that B is context free, and showing that a contradiction follows from this assumption. Therefore, the assumption we started out with must be wrong, and thus B is not context free.

- Let p be the pumping length given by the pumping lemma. Choose s to be the string $a^p b^p c^p$.

- Because $s \in B$ and s has length greater than p, the pumping lemma guarantees that we can split s into five pieces, $s = uvxyz$ in such a way that for any $i \geq 0$, the string $uv^i xy^i z$ is in B. But no matter how we divide s into $uvxyz$, one of the three conditions of the lemma is violated. We consider two cases to show this:

 1. When both v and y consist of one or more instances of a single symbol of the alphabet, v does not contain both a’s and b’s or both b’s and c’s, and the same holds for y. In this case, the string $uv^2 xy^2 z$ cannot contain equal numbers of a’s, b’s, and c’s. Therefore, it cannot be a member of B. This violates condition 1 of the lemma and is thus a contradiction.

 2. When either v or y contain more than one type of symbol $uv^2 xy^2 z$ may contain equal number of the three alphabet symbols but won’t contain them in the correct order. Hence it cannot be a member of B and a contradiction occurs.

 3. There is no other way to split up the string s, so a contradiction is unavoidable if we make the assumption that B is context free. Thus, B is not context free.

6.3.2 Sipser’s Example 2.22

Use the pumping lemma to show that the language $C = \{ww \mid w \in \{0, 1\}^n\}$ is not context free.

- Assume to the contrary that C is context free. Let p be the pumping length given by the pumping lemma. Let s be the string $0^p 1^p 0^p 1^p p$.
The pumping lemma guarantees that we can pump s by dividing it to $uvxyz$, where the substring $|vxy| \leq p$ according to condition 3 of the pumping lemma.

The substring vxy must straddle the midpoint of s.

If the substring occurs only in the first half of s, pumping s up to uv^2xy^2z moves a 1 into the first position of the second half, and so it cannot be of the form ww.

If vxy occurs in the second half of s, pumping s up to uv^2xy^2z moves a 0 into the last position of the first half, and so it cannot be of the form ww.

But if the substring vxy straddles the midpoint of s, when we try to pump s down to $uv^pxy^pz = uxz$, it has the form $0^i1^j0^p$, where i and j cannot both be p. This string is not of the form ww.

Thus s cannot be pumped, and C is not context free.

7 Are Natural Languages Context Free?

See Partee pages 501-3.

- Dutch and Swiss German have ‘crossing dependency’ structures.

$$x_1x_2x_3\ldots x_n\ldots y_1y_2y_3\ldots y_n$$

- Example: Swiss German

 (1) a. Jan säit das mer em Hans es huus hälfe aastrische
 John said that we$_i$ Hans$_j$ the house helped$_i$ paint$_j$
 ‘John said that we helped Hans paint the house.’

 b. Jan säit das mer d’chind em Hans es huus länd hälfe aastrische
 John said that we$_i$ the-children$_j$ Hans$_k$ the house let$_i$ help$_j$ paint$_k$
 ‘John said that we let the children help Hans paint the house.’

- Crossing dependency structures correspond to the language $\{ww \mid w \in \{0,1\}^*\}$.

 This language is not context free, as was proven using the pumping lemma (see Sipser’s Example 2.22 above).

 \Rightarrow Natural languages are a bit beyond context free languages.
8 The Chomsky Hierarchy

<table>
<thead>
<tr>
<th>Regular Languages, Finite State Automata, Right Linear Grammars</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
</tr>
<tr>
<td>Context Free Languages, Pushdown Automata, Context Free Grammars</td>
</tr>
<tr>
<td>↓</td>
</tr>
<tr>
<td>Context Sensitive Languages, Linear Bounded Automata, Context Sensitive Grammars</td>
</tr>
</tbody>
</table>