1 Exercise 1

Take M_1, a diagram for a deterministic FSA.

![Diagram](image)

Give the formal description of M_1, where $M_1 = < Q, \Sigma, \delta, q_0, F >$, where

1. $Q = $
2. $\Sigma = $
3. δ is defined as

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. The start state is q_0.

5. $F = $.

Which of the following strings does M_1 accept?

- a. aabbb
- b. baaba
- c. bbba
- d. abab
- e. abaa
- f. a
- g. bab
- h. ϵ
- i. aaaaa
- j. aaabaaa
2 Exercise 2

Draw a diagram for the formal description of \(M_2 \):
\[
M_2 = \langle Q, \Sigma, \delta, q_0, F \rangle, \text{ where}
\]

1. \(Q = \{q_1, q_2, q_3, q_4, q_5\} \)

2. \(\Sigma = \{u, d\} \)

3. \(\delta \) is defined as

<table>
<thead>
<tr>
<th>(q)</th>
<th>(u)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>(q_1)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_1)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(q_2)</td>
<td>(q_4)</td>
</tr>
<tr>
<td>(q_4)</td>
<td>(q_3)</td>
<td>(q_5)</td>
</tr>
<tr>
<td>(q_5)</td>
<td>(q_4)</td>
<td>(q_5)</td>
</tr>
</tbody>
</table>

4. The start state is \(q_3 \).

5. \(F = \{q_3\} \).

Which of the following strings does \(M_2 \) accept?

a. \(d \)
b. \(du \)
c. \(udu \)
d. \(dudu \)
e. \(uuudu \)
f. \(uuudduddduu \)
g. \(duuuuuddu \)
h. \(\epsilon \)
i. \(duduuddudu \)
j. \(uudduddu \)

3 Exercise 3

Exercise 1 in Partee at al., page 480.
4 Exercise 4

Show that the following languages are regular. That is, construct state diagrams for (deterministic) FSA that recognize the following languages. For each language, assume that $\Sigma = \{1, 0\}$ and use as few states as possible.

i) $\{w: \text{the length of } w \text{ is at most 5}\}$

ii) $\{\epsilon, 10, 01\}$

iii) $\{w : w \text{ contains an even number of } 0\text{s, not necessarily consecutive (and any number of } 1\text{s in any order)}\}$

iv) $\{w : w \text{ contains no } 0 \text{ and contains a total of } n \text{ } 1\text{s, where } n = 4m + 1, \text{ for } m=0 \text{ or } m \text{ is a natural number}\}$

v) $\{w : w \text{ contains the sub-string } 0101\}$

vi) $\{w : w \text{ is any string except } 11 \text{ and } 111 \}$