FSA and Regular Language III: Pumping Lemma
Ling 106, Maribel Romero
Nov. 3, 2003

1 What is the Pumping Lemma useful for?

- We know that a language is regular if we can construct a finite state automaton for it.
- Not all languages are regular though. But then how would we know if a language is not regular? Could we simply conclude that a language is not regular if we cannot construct an FSA for it? Not really. It might be because we didn’t think hard enough.
- We need some systematic method for showing that a language is not regular, and therefore, an FSA cannot be constructed for it.
- Pumping Lemma states a deep property that all regular languages share. By showing that a language does not have the property stated by the Pumping Lemma, we are guaranteed that it is not regular.

2 The idea: The Pigeon Hole Principle

- Partee et al. P. 468: "Consider an infinite [regular language] L. By definition, it is accepted by some FSA M, which, again by definition, has a finite number of states. But since L is infinite, there are strings in L which are as long as we please, and certainly L contains strings with more symbols than the number of states in M. Thus, since M accepts every string in L, there must be a loop in M (...)."
- If p number of pigeons are placed into fewer than p holes, some hole has to have more than one pigeon in it. (Pigeon Hole Principle)
- Similarly, if an FSA has n number of states, and this machine accepts strings of length n or greater, it will have to pass through at least one state more than once in order to accept such strings.
 That is, there will be a loop in the machine.
 \[q_1, q_2, q_3, ..., q_k, ..., q_{n-1}, q_n \]
- This means that there is some substring that is read by the sequence of states:
 \[q_k, ..., q_k \]
- Given a string with length n or greater, which has a substring read by looping through \(q_k\), we can construct even longer strings of the language by repeating (pumping) that substring over and over again.
3 What does Pumping Lemma say?

3.1 Theorem 1.37: Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0, xy^iz \in A$,
2. $y \neq \epsilon$, and
3. $|xy| \leq p$.

3.2 Explanation

- The Pumping Lemma says that if a language A is regular, then any string in the language will have a certain property, provided that it is ‘long enough’ (that is, longer than some length p, which is the pumping length).

Inside any string in A that’s longer than p, we can find a piece that can be repeated (pumped) as many times as we want, and the result will always be in A.

Moreover, this piece can be found within the first p letter of our string.

- That is, given any string s in A longer than p, we can find a substring in s that can be pumped. We’ll call this substring y. Then anything before y we’ll call x, and anything after y we’ll call z.

Then the whole string can be rewritten as $x - y - z$. (Remember that these are strings and not letters!)

By repeating y zero or more times, we get:

$$xz, xyz, xyyz, xyyyz, \ldots, xyyyyyyyyyyyzz, \ldots$$

What the Pumping Lemma says is that each of these must be in A.

- Condition 1: “for each $i \geq 0, xy^iz \in A$”

xy^2z is the same as $xyyz$, etc. So this says that sticking in multiple copies of y will give you strings that are still in the language. For $i = 0$, you get no copies of y, i.e., the string xz.

- Condition 2: “$y \neq \epsilon$”, or “$|y| > 0$”

While x or z may have length zero, the length of y is not zero. That is, y is not the empty string. If you allowed y to be the empty string, the theorem would be trivially true. This is because if y was the empty string, you would end up with xz, which is just s, the original string you started with, no matter how many times you pumped y.

2
• Condition 3: “$|xy| \leq p$”

Since x is the piece before y, this says that all of y must come from the first p letters of our string s, so that the combined length of x and y is at most p.

3.3 Examples with regular languages

• Let’s apply the Pumping Lemma to the following language B.

$B = \{ w \mid w$ begins with 1 and ends with 0, with anything in between $\}$.

\[
\begin{array}{c}
\text{q0} \quad 1 \rightarrow \text{q1} \\
\text{q1} \quad 1, 0 \rightarrow \text{q1} \\
\text{q1} \quad \rightarrow \text{q2} \quad 0
\end{array}
\]

Let’s assume that the pumping length p is 3. Let’s take some string of length 3 or longer. How about 10100010? We can then break this string like this:

\[
x = 1, \ y = 01, \ z = 00010
\]

By pumping y, we get:

\[
x y^0 z = 1-00010, \ xy^1 z = 1-01-00010, \ xy^2 z = 1-0101-00010, \ xy^3 z = 1-010101-00010, \ xy^4 z = 1-01010101-00010, \ etc.
\]

All of these strings begin with 1 and end with 0. So, the pumping lemma works for this language and this string.

• Show that the strings 100 and 1100 in language B can also be divided in a way that complies with the Pumping Lemma.

• QUESTION: Apply the Pumping Lemma to the language C recognized by the following FSA. Assume the pumping length is 3 and use the strings indicated below:

\[
\begin{array}{c}
\text{q0} \quad 1 \rightarrow \text{q1} \\
\text{q1} \quad 1, 0 \rightarrow \text{q1} \\
\text{q1} \quad \rightarrow \text{q2} \quad 0
\end{array}
\]
a. 1001
b. 10010
c. 1001001
d. 100
e. 10

• QUESTION: What happens if we apply the Pumping Lemma to the following regular language D, assuming that the pumping length p is 3?

$D = \{01\}$.

• Question for RECI TATION: Apply the Pumping Lemma to the regular languages E and F below. Try at least three different strings for E.

a. $E = \{w : w$ contains the sub-string 101\}, with pumping length 4.
b. $F = \{w : w$ has at most length 4\}, with pumping length 4.

4 How to use the Pumping Lemma to prove that a language is not regular

The pumping lemma is most useful when we want to prove that a language is not regular. We do this by using a proof by contradiction.

To prove that a given language L is not regular:

1. Assume that L is regular.

2. Use the pumping lemma to guarantee the existence of a pumping length p such that all strings of length p or greater in L can be pumped.

3. Find a string s in L that has length p or greater but that cannot be pumped.

4. Demonstrate that s cannot be pumped by considering all ways of dividing s into x, y, and z, and for each division, finding a value i where $xy^iz \not\in L$.

\Rightarrow The existence of s contradicts the pumping lemma if L were regular. Hence L cannot be regular.

4.1 Example 1.38

Let B be the language $\{0^n1^n \mid n \geq 0\}$. Show that B is not regular, using the pumping lemma. We will do this by assuming that B is regular, and showing that contradiction follows. Therefore, the assumption we started out with must be wrong, and thus B is not regular.
Let p be the pumping length given by the pumping lemma. Choose s to be the string $0^{p-1}1^{p-1}$.

Because $s \in B$, and s has length greater than p, the pumping lemma guarantees that we can split s into three pieces, $s = xyz$ in such a way that for any $i \geq 0$, the string xy^iz is in B. We consider three cases to show that this result is impossible.

1. The string y contains only of 0s. In this case, the string $xyyz$ ("pumped up") has more 0s than 1s and so is not a member of B, violating condition 1 of the pumping lemma. This is a contradiction. [Also, the string xz ("pumped down") has more 1s than 0s and hence it is not a member of B. Contradiction.]

2. The string y contains only of 1s. In this case, the string $xyyz$ has more 1s than 0s and so is not a member of B. This is another contradiction.

3. The string y contains both 0s and 1s. In this case, the string $xyyz$ may have the same number of 0s and 1s, but they will be out of order with some 1s before 0s. But in our language B, all the 0s must precede the 1s. Thus, $xyyz$ is not in our language. This is another contradiction.

There is no other way to split up the string s, so a contradiction is unavoidable if we make the assumption that B is regular, and so B is not regular.

4.2 Example 1.39

Let $C = \{w \mid w$ has an equal number of 0s and 1s (in any order)$\}$. We will show that C is not regular using the pumping lemma.

Proof 1

• Assume to the contrary that C is regular. Let p be the pumping length given by the pumping lemma. Let s be the string 0^p1^p.

• With s being a member of C and having length more than p, the pumping lemma guarantees that s can be split into three pieces, $s = xyz$, where for any $i \geq 0$, $xy^iz \in C$.

• We would like to show that this outcome is impossible. But wait, it is possible! If we let x and z be the empty string and y be the string 0^p1^p, then xy^iz always has an equal number of 0s and 1s and hence is in C.

• But notice that condition 3 of the pumping lemma requires that $|xy| \leq p$. Remember that $s = 0^p1^p$, so if $|xy| \leq p$ then y must consist only of 0s. But then $xyyz \notin C$. Therefore, s cannot be pumped.

• This gives us the desired contradiction, and so C is not regular.

Proof 2

Another way of proving that C is not regular follows from our knowledge of the closure properties of the regular languages plus the fact that B is not regular.
• Note first that the language 0*1* is a regular language.

• Recall that when any two languages are intersected, the result is a regular language. That is, regular languages are closed under intersection.

• Suppose C is a regular language. Then $C \cap 0^*1^*$ is a regular language.

• But $C \cap 0^*1^* = 0^n1^n = B$ and we have proved that B is not a regular language.

• Therefore C is not a regular language.

4.3 Example 1.24: Illustration of ‘pumping down’

Let $E = \{0^i1^j \mid i > j\}$. Show that E is not regular using the pumping lemma.

• Assume that E is regular. Let p be the pumping length for E given by the pumping lemma. Let $s = 0^{p+1}1^p$. Then s can be split into xyz satisfying the conditions of the pumping lemma.

• By condition 3, y consists only of 0s. But $xyyx$ is also in E because adding y increases the number of 0s and so this string is guaranteed to have more 0s than 1s. No contradiction obtains. So, we need to try something else.

• The pumping lemma states that $xy^iz \in E$ even when $i = 0$. So let’s consider the string $xy^0z = xz$. Removing y decreases the number of 0s in s. Recall that s has just one more 0 than 1. Therefore xz cannot contain more 0s than 1s. So it cannot be a member of E.

• Thus, we obtain a contradiction, and so E is not a regular language.

• Question for recitation:

 Show that the following languages G, H and I are not regular using the Pumping Lemma (and reasoning about the pumping length p abstractly, as above):

 a. $G = 001^n01^n$, where $n \geq 0$.
 b. $H = 01^n001^n+1$, where $n \geq 0$.
 c. $I = 0^n1^m$, where $n = m + 3$.