Homework Assignment 5
Ling 106, Maribel Romero
Oct. 23, 2002
Due on Oct. 30, 2002 by 1pm

1 Exercise 1

Take M_1, a diagram for a deterministic FSA.

![Diagram of a deterministic FSA]

Give the formal description of M_1, where $M_1 = < Q, \Sigma, \delta, q_0, F >$, where

1. $Q =$
2. $\Sigma =$
3. δ is defined as

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. The start state is
5. $F =$

Which of the following strings does M_1 accept?

- a. 101
- b. ϵ
- c. 111111
- d. 000
- e. 0101
- f. 000011
- g. 10000
- h. 01111
- i. 10101
- j. 00001
2 Exercise 2

i Let M_A have the following state diagram:

![State Diagram](image)

Describe as simply as possible the crucial characteristic of the language recognized by this automaton.

ii Let M_B have the following state diagram:

![State Diagram](image)

Describe as simply as possible the crucial characteristic of the language recognized by this automaton.

iii Construct M' that recognizes $L(M_A) \cap L(M_B)$ following the instructions on page 13 of the Deterministic FSA lecture notes. Spell out the formal description of M', draw its diagram, and describe as simply as possible the characteristic of the language recognized by this automaton.

$M_1 = \langle Q, \Sigma, \delta, \epsilon, F \rangle$, where

1. $Q =$
2. $\Sigma =$
3. δ is defined as

<table>
<thead>
<tr>
<th>$<q0,q3>$</th>
<th>$<q0,q4>$</th>
<th>$<q1,q3>$</th>
<th>$<q1,q4>$</th>
<th>$<q2,q3>$</th>
<th>$<q2,q4>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

4. The start state is
5. $F =$.

2
3 Exercise 3

Show that the following languages are regular. That is, construct state diagrams for (deterministic) FSA that recognize the following languages. For each language, assume that $\Sigma = \{0, 1\}$ and use as few states as possible.

i) $\{11, 111, 1111\}$

ii) $\{w : w \neq \epsilon \text{ and every position that is a multiple of 3 has a 1} \}$

iii) $\{w : w \text{ contains the sub-string 10 at least three times} \}$

iv) $\{w : w \text{ contains the sub-string 001 no more than twice} \}$

v) $\{w : w \neq \epsilon \text{ and } w \text{ starts and ends with the same symbol of the alphabet} \}$

vi) $\{w : w \text{ is any string except for } 11 \text{ and } 111 \}$

4 Exercise 4

Give a state diagram for the deterministic FSA that recognizes the following language:

$L = \{w : w \text{ contains the substring } ab, \text{ or it contains exactly two } a \text{ as (or both)} \}$

Check that the prediction for the following strings is correct:

a. \emptyset Not accepted
b. aaa Not accepted
c. ab Accepted
d. aba Accepted
e. $aabab$ Accepted
f. $bbbaa$ Accepted
g. $bbaaaa$ Not accepted
h. $aaabaa$ Accepted
i. aa Accepted