1 Set Theory

1.1 What is a set?

- A set is a collection of objects. It can be finite or infinite.
 \[A = \{a, b, c\} \]
 \[N = \{1, 2, 3, \ldots\} \]

- An object is an element of a set \(A \) if that object is a member of the collection \(A \).
 Notation: “\(\in \)” reads as “is an element of” or “belong to”.
 \[a \in A \]
 \[2 \in N \]

A set can have another set as a member.
Let \(B = \{a, b, c, \{d, e\}\} \), then \(\{d, e\} \in B \)

- A set with only one member is called a **singleton**.

- A set with no members is called the **empty set** or **null set**, \(\emptyset \).

1.2 Specification of sets

- List notation
 A set consists of the objects named, not of the names themselves.
 \[B = \{\text{The Amazon River, George Washington, 3}\} \]
 \[C = \{\text{The Amazon River, ‘George Washington’, 3}\} \]
 A set is unordered.

 Writing the name of a member more than once does not change its membership status. For a given object, either it is a member of a given set or it is not.
 \[\{a, b, c, e, e, e\} \]
 \[\{a, b, c, e\} \]

- Predicate notation
 A better way to describe an infinite set is to indicate a property the members of the set share.
 \[\{x | x \text{ is an even number greater than 3}\} \] is read as
 “the set of all \(x \) such that \(x \) is an even number greater than 3.”

 ‘\(x \)’ is a variable.

Russell’s Paradox:
Let \(U = \{x | x \notin x\} \). Is \(U \) a member of itself? (i) if \(U \) is not a member of itself, then it satisfies the property defined as \(x \notin x \), therefore it must be a member of \(U \).
(ii) if \(U \) is a member of itself, then it does not satisfy the property defined as \(x \notin x \), hence it is
not a member of U.

\Rightarrow Logical Paradox!!!

One solution: Type Theory.

- Recursive rules
 A rule for generating elements ‘recursively’ from a finite basis.
 a) $4 \in E$
 b) if $x \in E$, then $x + 2 \in E$
 c) Nothing else belongs to E.

Question: Give a list notation for the above recursive rules.

1.3 Set-theoretic identity and cardinality

- Two sets are identical if and only if they have exactly the same members.
 \[\{1, 2, 3, 4\} = \{x \mid x \text{ is a positive integer less than 5}\} \]

- The number of members in a set A is called the cardinality of A, written $|A|$.

Let $A = \{1, 3, 5, a, b\}$. $|A| =$

1.4 Subsets

- A set A is a subset of a set B if all the elements of A are also in B (notation: $A \subseteq B$).

- Proper subset (notation: $A \subset B$).

- $A \not\subseteq B$ means that A is not a subset of B.

Question: Fill in the blank with either \subseteq or $\not\subseteq$.

a) \{a, b, c\} \quad \{s, b, a, e, g, i, c\}
b) \{a, b, j\} \quad \{s, b, a, e, g, i, c\}
c) \emptyset \quad \{a\}
d) \{a, \{a\}\} \quad \{a, b, \{a\}\}
e) \{\{a\}\} \quad \{a\}
f) \{a\} \quad \{\{a\}\}
g) \{\emptyset\} \quad \{a\}
h) A \quad A

Question: Are the following statements true or false?

Let $A = \{b, \{c\}\}$.

a) \(c \in A\)
b) \(\{c\} \in A\)
c) \(\{b\} \subseteq A\)
d) \(\{c\} \subseteq A\)
e) \(\{\{c\}\} \subseteq A\)
f) \(\{b\} \not\subseteq A\)
g) \(\{b, \{c\}\} \subset A\)
h) \(\{\{b, \{c\}\}\} \subseteq A\)

- A set A is a subset of itself. $A \subseteq A$.

2
• If $A \subseteq B$, and $B \subseteq C$, then $A \subseteq C$.

1.5 Power sets

• The power set of A, $\mathcal{P}(A)$, is the set whose members are all the subsets of A.
 Let $A = \{a, b\}$.
 $\mathcal{P}(A) = \{\{a\}, \{b\}, \{a, b\}, \emptyset\}$

• $|\mathcal{P}(A)| = 2^n$

Question: Let $B = \{a, b, c\}$. What is $\mathcal{P}(B)$?

1.6 Set-theoretic operations

• $A \cap B$: The intersection of two sets A and B is the set containing all and only the objects that are elements of both A and B.
 $A \cap B \cap C = \bigcap \{A, B, C\}$

• $A \cup B$: The union of two sets A and B is the set containing all and only the objects that are elements of A, or of B, or of both A and B.
 $A \cup B \cup C = \bigcup \{A, B, C\}$

• $A - B$: The difference between two sets A and B subtracts from A all objects which are in B.

• A^c: The complement of a set A is the set of all the individuals in the universe of discourse except for the elements of A (i.e., $U - A$).

Question: Let $K = \{a, b\}$, $L = \{c, d\}$, and $M = \{b, d\}$.
 a) $K \cup L = \{a, b, c, d\}$
 b) $K \cup M = \{a, b, c, d\}$
 c) $(K \cup L) \cup M = \{a, b, c, d\}$
 d) $L \cup \emptyset = \emptyset$
 e) $K \cap L = \emptyset$
 f) $L \cap M = \emptyset$
 g) $K \cap K = K$
 h) $K \cap \emptyset = \emptyset$
 i) $K \cap (L \cap M) = \emptyset$
 j) $K \cap (L \cup M) = \{a\}$
 k) $K - M = \{a\}$
 m) $L - M = \emptyset$
 n) $M - L = \{b\}$
 o) $K - \emptyset = K$
 p) $\emptyset - K = \emptyset$

1.7 Set-theoretic equalities

see pg. 18 of ch. 1, Partee, ter Mullen and Wall.
Set-theoretic equalities can be used to simplify a complex set-theoretic expression, or to prove the truth of other statements about sets.
• Simplify the expression $(A \cup B) \cup (B \cap C)'$.

1. $(A \cup B) \cup (B \cap C)'$
2. $(A \cup B) \cup (B' \cup C')$ DeMorgan
3. $A \cup (B \cup (B' \cup C'))$ Associative
4. $A \cup ((B \cup B') \cup C')$ Associative
5. $A \cup (U \cup C')$ Complement
6. $A \cup (C' \cup U)$ Commutative
7. $A \cup U$ Identity
8. U Identity

Question: Show that $(A \cap B) \cap (A \cap C)' = A \cap (B - C)$.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(A \cap B) \cap (A \cap C)'$</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Question: Show that $X \cap Y \subseteq X \cup Y$. (hint: Use Consistency Principle.)

2 Ordered pairs and Cartesian products

• A sequence of objects is a list of these objects in some order. (cf., Recall that a set is unordered.)
 $< a, b, c >, < 7, 21, 57 >, < 1, 2, 3, ... >$

 Finite sequences are called **tuples**. A sequence with k elements is a k-**tuple**.

 A 2-tuple is also called an (ordered) **pair**.

 $< a, b >$

 • If A and B are two sets, the **Cartesian product** of A and B, written as $A \times B$, is the set containing all pairs wherein the first element is a member of A and the second element is a member of B.

 Question: Let $K = \{a, b, c\}$ and $L = \{1, 2\}$.

 $K \times L = \{< a, 1 >, < a, 2 >, < b, 1 >, < b, 2 >, < c, 1 >, < c, 2 >\}$

 $L \times K =$

 $L \times L =$

 • Although each member of a Cartesian product is an ordered pair, the Cartesian product itself is an unordered set of them.
3 Relations

- A relation is a set of pairs. e.g., mother of, kiss, subset.
 A relation from A to B is a subset of the Cartesian product $A \times B$.
 $R(a, b)$, Rab, or aRb: The relation R holds between objects a and b.
 $R \subseteq A \times B$: A relation between objects from two sets A and B. A relation from A to B.
 $R \subseteq A \times A$: A relation holding of objects from a single set A is called a relation in A.

- Domain(R) = $\{a\}$ if there is some b such that $<a, b> \in R$
 Range(R) = $\{b\}$ if there is some a such that $<a, b> \in R$
 Let $A = \{a, b\}$ and $B = \{c, d, e\}$. $R = \{<a, d>, <a, e>, <b, c>\}$.
 Domain(R) = $\{a, b\}$
 Range(R) = $\{c, d, e\}$
 Note: A relation may relate one object in its domain to more than one object in its range.

- A relation R is an equivalence relation if R satisfies the following three conditions:
 R is reflexive, i.e., for every $x \in \text{Domain}(R)$, $R(x, x)$.
 R is symmetric, i.e., for every x and $y \in \text{Domain}(R)$, $R(x, y)$ if and only if $R(y, x)$.
 R is transitive, i.e., for every x, y and $z \in \text{Domain}(R)$, $R(x, y)$ and $R(y, z)$ implies $R(x, z)$.

- The complement of a relation $R \subseteq A \times B$, written R', contains all ordered pairs of the Cartesian product which are not members of the relation R.
 The inverse of a relation, written as R^{-1}, has as its members all the ordered pairs in R, with their first and second elements reversed.

$$(R')' = R$$
$$(R^{-1})^{-1} = R$$

If $R \subseteq A \times B$, the $R^{-1} \subseteq B \times A$, but $R' \subseteq A \times B$.

Question: Let $A = \{1, 2, 3\}$ and let $R \subseteq A \times A$ be $<3, 2>, <3, 1>, <2, 1>$, which is ‘greater than’ relation in A.
 What is R'?
 What is R^{-1}?

4 Functions

- A relation R from A to B is a function from A to B if and only if:
 a) Each element in the domain is paired with just one element in the range.
 b) The domain of R is equal to A (except for partial functions).

Question: Let $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$. Which of the following relations are functions?
 a) $P = \{<a, 1>, <b, 2>, <c, 3>\}$
 b) $Q = \{<a, 1>, <b, 2>\}$
 c) $R = \{<a, 2>, <a, 3>, <b, 4>\}$
 d) $S = \{<a, 3>, <b, 2>, <c, 2>\}$
• A function that is a subset of $A \times B$ is a function from A to B.
 A function in $A \times A$ is a function in A.

• $F : A \rightarrow B$ is read as “F is function from A to B”.

• $F(a) = b$ is read as “F maps a to b”.

• Given $F(a) = b$, a is an argument and b is the value.

• Functions from A to B are generally said to be into B.
 Functions from A to B such that the range of the function equals B are called onto B.

• A function $F : A \rightarrow B$ is called a one-to-one function just in case no member of B is assigned
 to more than one member of A.
 Otherwise, we will call them many-to-one function.

• A function which is both one-to-one and onto is called a one-to-one correspondence.
 If a function F is a one-to-one correspondence, F^{-1} is also a function.

• A function with k arguments is called a k-ary function, and k is called the arity of the
 function.
 Unary function takes one argument. $F(a)$.
 Binary function takes two argument. $F(a, b)$.

• Infix notation: e.g., $a + b$.
 Prefix notation: e.g., $+(a, b)$.

• A predicate or property is a function whose range is \{True, False\}.
 $\text{even}(2) = \text{True}$, $\text{even}(3) = \text{False}$.
 take-106, male, freshman.