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1 Introduction

When we listen to speech, we hear a sequence of words, but when we speak, we-do-not-

separate-words-by-pauses. A first step to learn the words of a language, then, is to extract

words from continuous speech. The current study presents a series of computational models

that may shed light on the precise mechanisms of word segmentation.

We shall begin with a brief review of the literature on word segmentation by enumerat-

ing several well-supported strategies that the child may use to extract words. We note that,

however, the underlying assumptions of some of these strategies are not always spelled out,

and moreover, relative contributions of these strategies to the successful word segmenta-

tion remain somewhat obscure. And it is still an open question how such strategies, which

are primarily established in the laboratory, would scale up in a realistic setting of language

acquisition. The computational models in the present study aim to address these questions.

Specifically, by using data from child-directed English speech, we demonstrate the inade-

quacies of several strategies for word segmentation. More positively, we demonstrate how

some of these strategies can in fact lead to high quality segmentation results when comple-

mented by linguistic constraints and/or additional learning mechanisms. We conclude with

some general remarks on the interaction between experience-based learning and innate

linguistic knowledge in language acquisition.

2 Strategies for Word Segmentation

Remarkably, 7.5 month-old infants are already extracting words from speech (Jusczyk &

Aslin, 1995). The problem of word segmentation has been one of the most important and

fruitful research areas in developmental psychology, and our brief review here cannot do

justice to the vast range of empirical studies. In what follows, we will outline several pro-

posed strategies for word segmentation but that is simply for the convenience of exposition:

these strategies are not mutually exclusive, and they have been proposed to be jointly re-

sponsible for word discovery (Jusczyk, 1999).

2.1 Isolated Words

It appears that the problem of word segmentation would go simply away if all utterances

consist of only isolated words; the child could simply file these away into the memory.

Indeed, earlier proposals (Peters, 1983; Pinker, 1984) hypothesize that the child may use

isolated words to bootstrap for novel words. Recent corpus analysis (Brent & Siskind, 2001;
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cf. Aslin, Woodward, LaMendola, & Bever, 1996; van de Weijer, 1998) has provided quan-

titative measures of isolated words in the input. For instance, Brent & Siskind (ibid) found

that in English mother-to-child speech, an average 9% of all utterances are isolated words.

Moreover, for a given child, the frequency with which a given word is used in isolation

by the mother strongly correlates with the timing of the child learning that word. Clearly,

isolated words are abundant in the learning data and children do make use of them.

The question is How. What would lead a child to recognize a given segment of speech

to be an isolated word, which then would come for free. In other words, how does the

child distinguish single-word utterances from multiple-word utterances? The length of the

utterance, for instance, is not a reliable cue: the short utterance “I-see” consists of two

words while the longer “spaghetti” is a single word. We are aware of no proposal in the

literature on how isolated words can recognized and, cosequently, extracted. Unless the

mechanisms for identifying isolated words are made clear, it remains an open question how

these freebies actually help the child despite the corpus studies. We return to this issue in

section 5.1.

2.2 Statistical Learning

Another traditional idea for word segmentation is to use statistical correlates in the sound

patterns of words (Chomsky, 1955; Harris, 1955; Hayes & Clark, 1970; Wolff, 1977; Pinker,

1984; Goodsitt, Morgan, & Kuhl, 1993; etc.).1 The insight is that syllables within a word

tend to co-occur more frequently than those across word boundaries. Specifically, word

segmentation may be achieved by using the transitional probability (TP) between adjacent

syllables A and B, i.e.,

TP(A → B) =
Pr(AB)
Pr(A)

where where P(AB) is the frequency of B following A, and P(A) is the total frequency of A.

Word boundaries are postulated at the points of local minima, where the TP is lower

than its neighbors. For example, given sufficient amount of exposure to English, the learner

may establish that, in the four-syllable sequence “prettybaby”, TP(pre→tty) and TP(ba→by)

are both higher than TP(tty→ba), thus making “tty-ba” a place of local minimum: a word

boundary can be (correctly) identified. It is remarkable that, based on only two minutes of

exposure, 8-month-old infants are capable of identify TP local minima among a sequence

1It may be worth pointing out that Harris (1955) attempts to establish morpheme boundaries rather than
word boundaries. Moreover, his method is not statistical but algebraic.
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of three-syllable pseudo-words in the continuous speech of an artificial language (Saffran,

Aslin, & Newport, 1996; Aslin, Saffran, & Newport, 1998).

Statistical learning using local minima has been observed in other domains of cognition

and perception (Saffran, Johnson, Alsin, & Newport, 1999; Gomez & Gerken, 1999; Hunt &

Aslin, 2001; Fiser & Aslin, 2002; Kirkham, Slemmer, & Johnson, 2002) as well as in tamarin

monkeys (Hauser, Newport, & Aslin, 2001). These findings suggest that statistical learning

is a domain general and possibly evolutionarily ancient mechanism that may have been

co-opted for language acquisition. Statistical learning has also been viewed by some re-

searchers as a challenge to Universal Grammar, the domain-specific knowledge of language

(Bates & Elman, 1996; Seidenberg, 1997, etc.). However, to the best of our knowledge, the

effectiveness of statistical learning in actual language acquisition has not be tested. Much

of the experimental studies used artificial languages with synthesized syllables, with the

exception of Johnson & Jusczyk (2001), who also used artificial languages but with nat-

ural speech syllables. A primary purpose of the present paper is to give some reasonable

estimate on the utility of statistical learning in a realistic setting of language acquisitio.

2.3 Metrical Segmentation Strategy

Another useful source of information for word segmentation is the dominant metrical pat-

tern of the target language, which the child may be able to extract on a (presumably)

statistical basis. For instance, about 90% of English content words in conversational speech

are stress initial (Cutler & Carter, 1987), and this has led some researchers to postulate

the Metrical Segmentation Strategy whereby the learner treats the stressed syllable as the

beginning of a word (Cutler & Norris, 1988).

There is a considerable body of evidence that supports the Metrical Segmentation Strat-

egy. For instance, 7.5-month-old infants do better at recognizing words with the strong/weak

pattern heard in fluent English speech than those with the weak/strong pattern. Nine-

month-old English infants prefer words with the strong/weak stress pattern over those with

the weak/strong pattern (Jusczyk, Cutler, & Redanz, 1993). Moreover, the use of the Metri-

cal Segmentation Strategy is robust that it may even lead to segmentation errors. Jusczyk,

Houston, & Newsome (1999) found that 7.5-month-old infants may treat the sequence

“taris” in“guitar is” as a word. Since “tar” is a strong syllable, this finding can be explained

if the infant is extracting words by looking for the dominant stress pattern in her language.

However, a number of questions remain. To use the Metrical Segmentation Strategy, the

learner must be able to identify the language-specific stress pattern, for the metrical systems
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in the world’s languages differ considerably. This can only be achieved after the learner has

accumulated a sufficient and representative sample of words to begin with–but where do

these words come from? There appears to be a chicken-and-egg problem at hand. It is

suggested that infants may use isolated words to bootstrap for the Metrical Segmentation

Strategy (Johnson & Jusczyk, 2001), but this may not be easy as it looks: as noted earlier,

there has been no proposal on how infants may recognize isolated words as such.

Furthermore, even if a sample of seed words is readily available, it is not clear how the

infant may learn the dominant prosodic pattern, for whatever mechanism the child uses to

do so must in principle generalize to the complex metrical systems in the world’s language

(Halle & Vergnaud, 1987; Idsardi, 1992; Halle, 1997). While the Metrical Segmentation

Strategy works very well–90%–for languages like English, there may be languages where

even the most frequent metrical pattern is not dominant, thereby rendering the Metrical

Segmentation Strategy less effective. We do not doubt the usefulness of a stress-based

strategy, but we do wish to point out that, because it is a language-specific strategy, how

children can get this strategy off the ground warrants some discussion. In section 5.1, we

propose a weaker but likely universal strategy of how to use stress information for word

segmentation.

2.4 Phonotactic Constraints

Phonotactic constraints refer to, among other things, the structural restrictions on what

forms a well-formed syllable in a particular language. For instance, although “pight”,

“clight” and “zight” are not actual English words, they could in principle be English words,

in a way that “vlight”, “dnight”, “ptight” could never be. This is because only certain con-

sonant clusters can serve as onsets for a valid English syllable (Halle, 1978). Note that

phonotactic constraints are language specific and must be learned on the basis of experi-

ence. Remarkably, 9-month-old infants have been shown to be sensitive to the phonotactic

constraints of their native languages (Jusczyk, Friederici, et al. 1993; Jusczyk, Luca, &

Charles-Luce, 1994; Mattys, Jusczyk, Luce, & Morgan, 1999; Mattys & Jusczyk, 2001).

Phonotactic knowledge may be useful for word segmentation in two ways. First, the

infant may directly use phonotactic constraints to segment words: e.g., in a sound sequence

that contains “vt”, which is not a possible English onset or coda, the learner may conclude

that ‘a word boundary must be postulated between “v” and “t”. Some complications arise,

though, for the learner must be able to distinguish consonant sequences that belong to two

adjacent syllables within a same word from those that belong to two words altogether. For
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example, “mb” is not a valid English onset or coda, but it does not necessarily indicate word

boundary: a word such as “embed” consists of two syllables that span over the consonant

sequence.

We believe that the use of phonotactic knowledge in word segmentation is less direct.

The tacit assumption underlying all discussion on word segmentation is that words consist

of syllables, which in turn consist of more primitive units of onset (a sequence of conso-

nants) and rime, which in turn consists of the nucleus vowel and coda (also a sequence of

consonants). Phonotactic constraints specify the well-formedness of syllables in a particular

language, and they enable the child to parse speech segments (consonants and vowels) into

syllables. This step of syllabification is necessary for further development of word segmen-

tation and other aspects of the phonological system. In this sense, phonotactic constraints

are logical priors to strategies such as Metrical Stress and statistical learning, as both require

learner to treat the syllable as the basic unit of information. For example, the infant learner

apparently keeps track of transitional probabilities over adjacent syllables, rather than ar-

bitrary phonological units. Syllabification also allows the learner to identify the metrical

pattern of her language, as it is standardly assumed that the syllable is the stress-bearing

unit.

It seems rather straightforward to learn phonotactic constraints if the learner has knowl-

edge of syllabic structures–and therefore knows where to find phonotactic constraints. It

suffices to pay attention to utterance-initial (before the first vowel) and utterance-final (af-

ter the last vowel) consonant sequences to learn the valid onsets and codas respectively.

Eventually, and probably quickly, the infant will have seen all–in English, a few dozens–

possible forms of onsets and codas. This simple method of learning may explain children’s

rapid acquisition of non-native phonotactic regularities from brief exposure in laboratory

settings (Onishi, Chambers, & Fisher, 2002; Chambers, Onishi, & Fisher, 2003)

2.5 Allophonic and articulatory cues

A somewhat more subtle cue for word segmentation comes from the context-dependent

allophonic variations. For instance, the allophone /t/ in English is aspirated at the beginning

of a word such as “tab”, but is unaspirated at the end of a word such as “cat”. If the child

is sensitive to how allophonic distributions correlate with wordhood, this could be a useful

guide for finding word boundaries. Also of use is the degree of coarticulation of adjacent

phonemes (Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967), which varies as a

complex function of their positions within or across syllable/word boundaries (Ladefoged,
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1993; Krakow, 1999), and other factors. There is developmental evidence (Jusczyk, Hohne,

& Bauman, 1999; Johnson & Jusczyk, 2001) that young infants could use allophonic as well

as articulatory cues for word segmentation.

How do children come to know that word boundaries have articulatory correlates? One

possibility is that some aspects of such knowledge are innate and fall out of the organization

of speech articulation (Brownman & Goldstein, 1992). But experience must also play a role

in the mastery of these cues, as different languages have different articulatory patterns. For

instance, Jusczyk, Hohne, & Bauman (ibid) show that 9-month-old infants do not seem to

use the allophonic variation between “nitrates” and “night rates” to find word boundaries,2

while 10.5-month-old infants can. On the other hand, if the infant extracts allophonic cues

from the linguistic data, it seems, as in the case of the Metrical Stress Strategy, that she

must have extracted a set of words to begin with. Hence, The assumptions and mechanisms

required for the successful application of articulatory cues remain somewhat unclear.

2.6 Memory

Last but not least, memory must play an important role in word segmentation, for a word

isn’t learned until it is filed away in the lexicon. However, it seems that the sound patterns

of words may be extracted and stored independently of–and prior to–and learning of word

meanings. In an important study (Jusczyk & Hohne, 1997), 8-month-old infants were

familiarized with novel words embedded in stories with speaker as well as order variations.

Even weeks later, they listened to the previously heard words significantly longer than foil

words that they had not been exposed to. This apparently takes place well before the word

learning stage: it is highly unlikely that the infants understood the meanings of the words

such as “python”, “vine”, “peccaries”, etc. that are used in this study. Once familiar words–

or familiar sound patterns that are potentially words–are filed into the memory, the learner

may use them to extract new words (Peters, 1983; Pinker, 1984); we return to the role of

memory in word segmentation in section 5.3.2.

2.7 Discussion

Although researchers may stress specific segmentation strategies, there appears to be a

consensus that no single factor alone is sufficient for word segmentation (Jusczyk, 1999). If

so, the question arises, How does the learner choose the appropriate segmentation when/if

2The problem is not perceptual: even younger infants are perfectly capable to detecting their acoustic dif-
ferences (Hohne & Jusczyk, 1994).
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multiple strategies are available? Consider a hypothetical scenario, where we have three

segmentation strategies A, B, and C, and infants have been shown to make use of them

experimental settings. Moreover, let us suppose that from corpus studies, A, B, and C can

extract 30%, 30%, and 40% of (non-overlapping sets of) words, respectively. Yet one is

not warranted to claim that the problem of word segmentation is therefore solved; the

details of how such strategies interact must still be spelled out as concrete mechanisms.3

Which strategy, or which strategies, and in which order, would the child employ to analyze

a specific stream of speech? Are A, B, and C universal or fitted for particular languages?

(Some of the proposals such as the Metrical Segmentation Strategy clearly are.) If the latter,

what kind of learning data and what kind of learning algorithm would lead to the successful

acquisition of these strategies before they can be applied to segmentation? It seems, then,

that only language-independent strategies can set word segmentation in motion before the

establishment and application of language-specific strategies. Finally, current research on

segmentation is almost always conducted an experimental setting with artificial languages;

it remains to be seen how segmentation strategies scale up in a realistic environment of

language acquisition.

3 Modeling Word Segmentation: Preliminaries

In the rest of this paper, we will present a series of computational models that directly

addresses the issues of strategy interaction and scalability in word segmentation. Before

diving into the detail, it is perhaps useful to state up front what our computational model

is not.
First and foremost, what we present is not a computational study of child-directed lin-

guistic data. We are interested in the psychologically plausible algorithms that the child may

use for word segmentation in an online (real-time) fashion. This is to be distinguished from

recent work in the distributional properties of the learning data (Cutler & Norris, 1987;

Redington, Chater, & Finch, 1998; Mintz, Newport, & Bever, 2002; Swingley, 2005, etc.),

which, to quote one of these studies, “is not to model the actual procedure a child might use,

but rather to examine the information available in children’s input.” (Mintz et al. ibid; p396.

emphasis original). The two lines of work are complementary but distinct. If distributional

3The lack of an account of how various segmentation strategies work together may have to do with the
methodologies in word segmentation research. In order to establish the effectiveness of a particular segmen-
tation strategy, one needs to neutralize other potential cues for word boundaries. Only recently have we seen
works that address this issue by pitting competing strategies–stress vs. statistical learning, specifically–against
each other (Johnson & Jusczyk, 2001; Thiessen & Saffran, 2003).

8



Gambell & Yang Word Segmentation

regularity is available in the linguistic input, it remains to be shown that the child could

in principle make use of it in a plausible fashion (see Yang, 2002 for extensive discussion).

Moreover, the study of corpus statistics is carried out by researchers, who have prior knowl-

edge about the kind of statistical pattern to look for. Whether children enter into the task of

language learning with similar preconceptions is a different question. To make an analogy,

statistical regularities surely exist in a consequence of integers emitted by a pseudo-random

number generator (and hence “pseudo”). With the aid of sufficient computing power, and

familiarity with the design of such systems, one may extract the underlying regularities

from a sufficiently large sample of numbers. Yet it is a different question whether this de-

ciphering process can be accomplished with psychologically plausible means. Hence, the

mere existence of corpus statistics may tell us nothing about a human learner’s ability to

use it (cf., Legate & Yang, 2002). In the present work, by contrast, we are only interested

in the segmentation mechanisms that the child can plausibly use. In section 4.3, we will re-

turn to this issue with a comparison of our model and a corpus study of word segmentation

(Swingley, 2005),

Second, our computational model differs from most traditional work in word segmenta-

tion. Finding structure in linguistic data is a central problem for computational linguistics,

and word segmentation has had an important presence (Olivier, 1968; Wolff, 1977; de Mar-

cken, 1996; Brent & Cartwright, 1996; Brent, 1999a; Batchelder, 2002; see Brent, 1999b

for summary). Characteristic of these works is the conception of word segmentation as an

optimization problem: the model’s task is to induce a lexicon that describes the observed

utterances in some information-theoretic sense. Because of the different assumptions and

methodologies for optimization problems, most of which come from computer science and

engineering, these models are not best suited as tools for understanding how human infants

segment words.

On the one hand, previous computational models often over-estimate the computational

capacity of human learners. For example, the algorithm of Brent & Cartwright (1996)

produces a succession of lexicons, each of which is associated with an evaluation metric

that is calculated over the entire learning corpus. A general optimization algorithm ensures

that each iteration yields a better lexicon until no further improvement is possible (which

may not produce the target lexicon).4 It is unlikely that algorithms of such complexity are

something a human learner is capable of using.

4Brent (1999a) presents a variant of this idea and improves on the computational efficiency by the use of
dynamic programming, which involves additional assumptions about the order in which words are presented
in the learning data.
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On the other hand, previous computational models often under-estimate the human

learner’s knowledge of linguistic representations. Most of these models are “synthetic” in

the sense of Brent (1999b): the raw material for segmentation is a stream of segments,

which are then successively grouped into larger units and eventually, conjectured words.

This assumption probably makes the child’s job unnecessarily hard in light of the evidence

that it is the syllable, rather than the segment, that makes up the primary units of speech

perception (Bertocini & Mehler, 1981; Bijeljac-Babic, Bertocini, & Mehler, 1993; Jusczyk,

1997; Jusczyk, Kennedy, & Jusczyk, 1998; Eimas, 1999). The very existence of the Metrical

Segmentation Strategy suggests that infants treat the syllable as the unit of prosodic mark-

ing. In addition, when infants compute transitional probabilities, they apparently do so

over successive syllables, rather than over segments or any other logically possible units of

speech; see section 6.2 for additional discussion. Since syllables are hierarchical structures

consisting of segments, treating the linguistic data as segment sequences as in previous

segmentation models makes the problem harder than it actually is: for a given utterance,

there are fewer syllables than segments, and hence fewer segmentation possibilities. In line

with the empirical findings, our model treats the syllable as the relevant primitive unit of

phonological information.

The performance of word segmentation models is evaluated following the conventional

methods in information retrieval: both precision and recall must be reported. These perfor-

mance measures are defined as follows:

(1) a. precision = true positives
true positives + false positives

b. recall = true positives
true positives + false negatives

For instance, if the target segmentation is “big bad wolf”, and the model outputs “bigbad

wolf”, then precision is 1/2 (“wolf” out of “bigbad” and “wolf”, and recall is 1/3 (“wolf”

out “big”, “bad”, and “wolf”).

We would like to stress the importance of both precision and recall as appropriate qual-

ity assessment for word segmentation; not all segmentation models or corpus studies re-

port these figures. In general, it is easy to obtain high performance for one of the two

measures but relatively difficult to obtain high performance for both. Take, for example,

a search engine that looks for documents that are relevant to the keyword “ iPod”. It is

trivial to achieve high precision–100%, in fact–by extracting precisely one web page of, say,

http://www.apple.com/ipod/, but that is obviously missing out many more hits, resulting

in an extremely low recall. Alternatively, recall can just easily be boosted to perfection. One

can extract every web page on the Internet, which surely contain all those related to the
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iPod, albeit along with numerous false alarms. In general, there is a precision vs. recall

tradeoff: lowering one usually boosts the other. In the information retrieval literature, the

so-called F-measure is often used to combine precision and recall:

(2)

F =
1

α1
p + (1− α)1

r

where p is precision, r is recall, and α is a factor that weighs the relative importance

of p and r (and is often chosen to be 0.5 in practice).

According to the most extensive quantitative comparisons of word segmentation models

(Brent, 1999b), the highest performance comes from Brent (1999a), a modification of Brent

& Cartwright (1996), with the precision and recall in the range of 70%-80%. Other models

are considerably lower, hovering around 40-50% (Elman, 1990; Olivier, 1968; Christiansen,

Allen, & Seidenberg, 1998).

Like certain previous models, our computational model uses actual child-directed speech

as segmentation materials. Specifically, we have taken the adult utterances from the Brown

files (1973) in the CHILDES corpus (MacWhinney, 1995). We obtained the phonetic tran-

scriptions of words from the CMU Pronunciation Dictionary (Version 0.6).5 In the CMU

Pronunciation Dictionary, lexical stress information is preserved by numbers: 0 for stress-

less, 1 for primary stress, 2 for secondary stress, etc. For instance, “cat” is represented as “K

AE1 T”, “catalog” is “K AE1 T AH0 L AO0 G”, and “catapult” is “K AE1 T AH0 P AH2 L T”.

For each word, we grouped the phonetic segments into syllables. This process is straightfor-

ward, at least for English, by the use of the principle “Maximize Onset”, which maximizes

the length of the onset as long as it is valid consonant cluster of English, i.e., it conforms

to the phonotactic constraints of English. For example, “Einstein” is “AY1 N S AY0 N” as

segments and parsed into “AY1N STAY0N” as syllables: this is because /st/ is the longest

valid onset for the second syllable containing “AY0” while /nst/ is longer but violates the

English phonotactics.

Finally, we removed the spaces (and punctuation) between words, but the boundaries

between utterances–as indicated by line breaks in CHIDLES–are retained. Altogether, there

are 226,178 words, consisting of 263,660 syllables. The learning material is therefore a list

of unsegmented syllable sequences, and the learner’s task is to find word boundaries that

group substrings of syllables together.
5Some words have multiple pronunciations in the Dictionary; in these cases, we consistently used the first

entry.
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4 Statistical Learning is Ineffective

Our approach to modeling is a modular one. We attempt to implement a succession of mod-

els that incorporates, one at a time, the cues for word segmentation reviewed in section 2.

In our view, implementing multiple cues simultaneously could obscure their respective con-

tributions to word segmentation, as the current research does not give a clear guide on how

to “weigh” the competing strategies. For the purpose of the present study, implementation

of strategies is halted if the performance of the model is deemed satisfactory. If none of

the strategies proves effective, then we consider alternative strategies that have not been

suggested in the existing literature.

We start with an evaluation of statistical learning with local minima (Chomsky, 1955;

Saffran et al. 1996).

4.1 Modeling Statistical Learning

The simplest cue to implement is statistical learning using transitional probabilities, and

there are good reasons to believe that statistical learning is also the first strategy available

to a child learner. This choice is both logical and empirical. Among the strategies reviewed

in section 2, only statistical learning avoids the chicken-and-egg problem, as it is the only

language-independent strategy for finding words. (We will return to the case of isolated

words in section 5.1.) In addition, recent work has turned up empirical evidence that

statistical learning may be the very process that gets word segmentation off the ground.

For instance, Johnson & Jusczyk (2001) show that, in word segmentation task using arti-

ficial language, 9-month-old infants use stress cues over statistical cues when both types

of information are available. However, Thiessen & Saffran (2003) showed that younger

(7-month-old) infants show the opposite pattern, where statistical cues take priority. And

they conclude that statistical learning may provide the seed words from which language

particular stress patterns may be derived.

The modeling of statistical learning is straightforward, though it may be useful to make

the details of our implementation clear. The model consists of two stages: training and

testing. During the training stage, the learner gathers transitional probabilities over adja-

cent syllables in the learning data. The testing stage does not start until the entire learning

data has been processed, and statistical learning is applied to the same data used in the

training stage. This is markedly different from the standard methodology in computational

linguistics, where the corpus data is typically divided into two separate portions for training

and testing respectively: that is, the model is tested on a different data set from the one on
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which it is trained. Our approach may be seen as giving the statistical learner some undue

advantage. However, we believe our approach is justified, if only as a matter of necessity.

If one were to use novel data for testing, there is a high likelihood that many syllable pairs

in testing are never attested in training: this is known as the “sparse data” problem in com-

putational linguistics (Jelinek & Mercer, 1980). How should the statistical learner proceed

when confronted with a syllable pair never seen before? Computational linguistics offers a

variety of techniques for smoothing over the missing probability mass (Chen & Goodman,

1996) though it is not clear how these techniques are applicable as a model of human lan-

guage processing. Moreover, a poor choice of smoothing technique could unfairly affect the

performance of statistical learning.

Another technical detail also needs to be spelled out: the TPs are gathered without stress

information. That is, when counting syllable frequencies, the learner does not distinguish,

say, a stressed syllable /ba/ from among the unstressed one.6 This assumption is again

out of necessity: as it stands, the corpus contains 58,448 unique syllable pairs according

to this counting procedure. If the stress levels of syllables are taken into consideration, the

statistical learner must keep multiple copies of a syllable, which leads to the explosion of

possibility transitional probability pairs.

After the TPs are gathered over the entire learning data, the testing stage starts. For

each utterance, the learner traverses the syllables from left to right and looks up the TPs

between successive pairs. A word boundary is postulated at the place of a local minimum.

That is, there is a word boundary AB and CD if if TP(A→B) >TP(B→C) < TP(C→D). The

conjectured word boundaries are then compared against the target segmentation. Scoring

is done for each utterance, using the definition of precision and recall in (1)

4.2 Results from Statistical Learning

Modeling shows that the statistical learning (Saffran et al., 1996) does not reliably segment

words such as those in child-directed English. Specifically, precision is 41.6%, recall is

23.3%. In other words, about 60% of words postulated by the statistical learner are not

English words, and almost 80% of actual English words are not extracted. This is so even

under favorable learning conditions:

• the child has syllabified the speech perfectly,

6Which is of course not to say that infants cannot distinguish them perceptually. The fact that young learners
can acquire the Metrical Stress Strategy suggests that they clearly are capable of recognizing stress levels.
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• the child has neutralized the effect of stress among the variants of syllables, which

reduces the sparse data problem,

• and the data for segmentation is the same as the data used in training, which elimi-

nates the sparse data problem

We were surprised by the low level of performance. Upon close examination of the learning

data, however, it is not difficult to understand the reason. A necessary condition on the

use of TP local minima to extract words is that words must consist of multiple syllables.

If the target sequence of segmentation contains only monosyllabic words, it is clear that

statistical learning will fail. A sequence of monosyllabic words require a word boundary

after each syllable; a statistical learner, on the other hand, will only place a word boundary

between two sequences of syllables for which the TPs within are higher than that in the

middle. Indeed, in the artificial language learning experiment of Saffran et al. (1996) and

much subsequent work, the pseudowords are uniformly three syllables long. However, the

case of child-directed English is quite different. The fact that the learning data consists of

226,178 words but only 263,660 syllables suggests that the overwhelming majority of word

tokens are monosyllabic. More specifically, a monosyllabic word is followed by another

monosyllabic word 85% of time. As long as this is the case, statistical learning cannot work.

One might contend that the performance of statistical learning would improve if the

learner is given more training data to garnish more accurate measures of transitional prob-

abilities. We doubt that. First, the problem of monosyllabic words, which causes the local

minima method problems, will not go away. Second, statistics from large corpora may not

help at that much. In realistic setting of language acquisition, the volume of learning data

is surely greater than our sample but is not unlimited before children would use statistical

learning to segment words by the 7-8th month (Jusczyk & Aslin, 1995). Empirically, we

found that the TPs stablize fairly quickly, which means more data may not give much better

TPs. A reasonable measure of the informativeness from the quantity of training data is to

calculate the sum of the absolute value changes in the TPs (
∑
|∆TP|) over some time in-

terval of say, every 1000 syllables processed during training. If this number changes very

little, then we know that the TP values have stablized. As Figure 1 illustrates, the change in

TPs is fairly rapid for the first 100,000 syllables processed: this is expected because many

syllable pairs at this stage are new. However,
∑
|∆TP| slows down considerably afterwards,

indicating that the values of TPs are no longer changing very much. Indeed, after 100,000

syllables,
∑
|∆TP| hovers around the neighborhood of 10 to 30 for every 1000 syllables

processed. It is not straightforward to estimate precisely how much a particular TP changes
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during each training interval. For instance, TP(A→B) will change as long as the learner sees

AB occurring jointly as well as A occurring with something other syllable. In other words,

though each training interval consists of 1,000 syllables, many thousands of TPs may be

changing during this time. On average, then, each TP may change only by a truly miniscule

value: 10–30 divided by 58,448, the total number of unique syllable pairs. When we expand

the interval to 10,000 syllables, during which it is far more likely that the value of every TP

would change, we obtain the average |∆TP| to be 0.0028: again, a minute adjustment of

the TP statistics. These calculations suggest that by using a larger set of training data, the

estimated TPs will certainly be closer to their realistic values, but the improvement is likely

to be marginal.
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Figure 1:
∑
|∆TP| during the course of training. Note the rapid stablization of TPs.
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4.3 Corpus Statistics and Statistical Learning

Our modeling results differ significantly from those from a recent study of statistical learn-

ing (Swingley, 2005), where it is claimed that on the basis of English and Dutch child-

directed corpora, statistical regularities do correlate with word boundaries. In this section,

we highlight some differences between these two lines of work.

One source for such contrasting findings has to do with the methodology. Swingley

(2005) carried out “off-line” study of statistical regularity in the input while the present

work models the on-line process of segmentation using statistical regularities. But as noted

earlier, the poor performance of statistical learning in our simulation has to do with the

presence of many monosyllabic words, which cannot be reliably with the means of TP local

minima. Unless the parents in Swingley’s corpus spoke a great deal more “big” words,

modeling results ought to be fairly consistent between the two models. It turns out that

the performance differences lie in the segmentation mechanisms that these two models

implement.

Swingley’s corpus study makes use of multiple source of statistical information. Specif-

ically, it maintains three kinds of information units: single syllables, adjacent syllable pairs

(bigrams), and adjacent syllable triples (trigrams). Four types of statistical information are

accumulated: the frequencies of these three units, in addition to he mutual information

between adjacent syllable pairs (IAB).7 These numbers are then ranked along a percentile

scale, much like standardized tests. For instance, if a syllable is at least as frequent as 70%

of all syllables, it receives a percentile score of 70, and if the mutual information between

a syllable pair is at least as high as those of 60% of all syllable pairs, it receives a percentile

of 60%. Let RA, RAB, RABC be the percentile score of single, double, and triple syllables

based on frequency, and RIAB be that of mutual information between A and B. Now a

decision procedure is applied according to a percentile cutoff threshold (θ), and units are

considered to be words according to the following criteria:

(3) a. if RA > θ, then A is a word.

b. if RAB > θ and RIAB > θ, then AB is a word.

c. if RABC > θ, RAB > θ, and RBC > θ, then ABC is a word.

Roughly speaking, the syllables and syllable sequences whose presence dominte the learning

data are conjectured to be words. By experimenting with a range of values for θ, Swing-

ley reports fairly high precision when θ is in the range of 50%–100% percentile. While
7IAB is defined as log2

p(AB)
p(A)p(B)

, which is similar, though not equivalent, to TP(A→B); see Aslin, Saffran, &
Newport (1998) and Swinney (1999).
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our model of statistical learning is a direct implementation of a specific statistical learning

model (Saffran et al, 1996) and much subsequent work, Swingley’s statistical criteria for

words are quite different and build into a number of assumptions and mechanisms, some of

which have not been empirically tested. Ultimately, the results from the two lines of works

do not form a useful comparison.

First, the limit of word length to 3 syllables is arbitrary and longer words cannot be

extracted. Yet such a limit may be necessary for Swingley’s corpus study. Severe sparse data

problems will rise if length of syllable consequences increases to four or higher: vast major-

ity of syllable four-grams will have zero occurrences in any speech corpus, and those that

do occur will likely have very low number of occurrences. In engineering practice, virtually

all statistical models of language stop at trigrams, even when the amount of training data

is far higher than those used in Swingley’s corpora, or what a child could conceivably likely

encounter during language acquisition.

Second, though we find the percentile-based criteria in (3) to be interesting, we are

not aware of any direct experimental evidence suggesting that they might be used in ac-

tual word segmentation. Mutual information, which is similar to transitional probability,

may indeed be a cue for word boundary and one which the learner can probably exploit.

However, whether high frequency alone (of syllables, or syllable sequences) correlates with

word boundaries remain to be seen. Moreover, there is is little reason to suppose that the

learner will treat frequency information and mutual information with the same percentile

threshold (θ).

Third, the very status of θ remains unclear. Swingley (2005) does not provide the

raw data but from the graph (his Figure 1: p100), it appears that θ=80% yields highest

precision results. But how does the learner determine the best values of θ? So far as we

can tell, there are two possibilities. One is that the optimal value of θ is innately available.

The other possibility that the optimal θ is obtained via some sort of learning procedure as

the result of word segmentation–which again seems to require a set of seed words to begin

with, and such a procedure that determines the value of θ needs to be spelled out. In either

case, independent motivation is required.

Finally, issues remain in the interpretation of Swingley’s results. It is true that overall

precision may be quite high for certain values of θ but it is worth noting that most of the

three-syllable words determined by Swingley’s criteria are wrong: the precision is consis-

tently under 25-30% (Swingley, ibid; Figure 1) regardless the value of θ. Moreover, the

statistical criteria in (3) produce very low recalls. Swingley does not provide raw data but

the performance plots in his paper show that the maximum number of correctly extracted
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words does not appear to exceed 400-500. Given that Swingley’s corpus contains about

1,800 distinct word types (ibid; p96), the recall is at best 22-27%.

In sum, the corpus study of Swingley (2005) considers a number of statistical regulari-

ties that could be extracted in the linguistic data. The extraction of these regularities, and

the criteria postulated for finding word boundaries, are not always supported by indepen-

dent evidence. Even if these assumptions were motivated, the segmentation results remain

poor, particularly for recall and longer words. We therefore do not consider this work to af-

fect our conclusion that statistical learning fails to scale up in a realistic setting of language

learning.

Before we present our own proposal for word segmentation, we would like to reiterate

that our results strictly pertain to one specific type of statistical learning model, namely

the local minima method of Saffran et al. (1996), by far the best known and best studied

proposal of statistical learning in word segmentation. We are open to the possibility that

some other, known or unknown, statistical learning approach may yield better or even

perfect segmentation results, and we believe that computational modeling along the lines

sketched out here may provide quantitative measures of their utility once these proposals

are made explicit.

5 Segmentation under Linguistic Constraints

Now the segmentation problem appears to be in a somewhat precarious state. As discussed

earlier, statistical learning appears to be the only language-independent way of extracting

words from which language-particular strategies can be developed. However, modeling

results show that statistical learning does not–and cannot, at least for English–scale up to a

realistic setting of language learning. How do children segment words?

In this section, we consider some computationally simple, psychologically plausible, and

linguistically motivated constraints that complement existing proposals of word segmenta-

tion. Some of these constraints may be innate and domain-specific knowledge of language,

while others are probably general principles of symbolic information processing. They lead

to marked improvement in performance and may contribute to the understanding of the

word segmentation process.
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5.1 Constraint on Word Stress

Modern machine learning research (Gold, 1967; Valiant, 1984; Vapnik, 1995), together

with earlier observation on the limitations of associationist and inductive learning (Chom-

sky 1959, 1975), suggest that constraints on the learning space and the learning algorithm

are essential for (realistically efficient) learning. When a domain neutral learning model–

e.g., statistical learning–fails on a domain specific task–e.g., word segmentation–where chil-

dren clearly succeed, it is likely that children are equipped with knowledge and constraints

specific to the task at hand. It is then instructive to identify such constraints to see to what

extent they complement, or even replace, domain neutral learning mechanisms.

Which brings us to one important source of information for word segmentation that has

been left unexplored, namely, single word utterances. Though most researchers share the

intuition that isolated words are easy to learn, we do not know of any proposal that can

reliably identify isolated words as such. So consider the following self-evident linguistic

principle:

(4) The Unique Stress Constraint (USC): A word can bear at most one primary stress

(a strong syllable).

The USC virtually follows from the definition of the phonological word (Chomsky & Halle,

1968; Liberman & Prince, 1977). Its pervasiveness can be appreciated if we–at least those

of us that are old enough–warped ourselves back to the 1977 premiere of Star Wars. Upon

hearing “chewbacca” and “darthvader” for the very first time, it must have been immedi-

ately clear that the former utterance is one word, the latter is two (though whatever they

meant was altogether a different matter). Both sequences are three syllables so length is

not a useful guide. Yet “chewbacca” contains only one primary stress, which falls on /ba/,

whereas “darthvader” contains two primary stresses, which fall on /darth/ and /va/ respec-

tively: USC immediately segments the utterances correctly. Likewise, we believe that USC

provides important clues for word boundaries for an infant learner whose situation is not

much different from first time Star Wars viewers.

First, and most directly, USC may give the learner many isolated words for free. This,

so far as we know, constitutes the only known mechanism that takes advantage of the

abundance of single word utterances (Brent & Siskind, 2001). Specifically, if the learner

hears an utterance that contains exactly one primary stress, she can immediately conclude

that such utterance, regardless of its length, can and can only be a single word. Moreover,

the segmentation for multiple word utterance can be equally straightforward under USC.

(In section 6.1, we discuss a relaxation of this assumption.) Take a sequence W1S1S2S3W2,
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where W stands for a weak syllable and S stands for a strong syllable. A learner equipped

with USC will immediately know that the sequence consists of three words: specifically,

W1S1, S2, and S2W2.

Second, and somewhat indirectly, USC can constrain the use of statistical learning. For

example, the syllable consequence S1W1W2W3S2 cannot be segmented by USC alone, but

it may still provide highly informative cues that facilitate the application of other segmenta-

tion strategies. For instance, the learner knows that the sequence consists of two words, as

indicated by two strong syllables.8 Moreover, it also knows that in the window between S1

and S2 must lie a word boundary (or boundaries)–and that may be what statistical learning

using local minima may be able to locate. As we show later, constrained application of

statistical learning leads to enormous improvement on its effectiveness.

5.2 Remarks on Unique Stress Constraint

A number of remarks are in order before we present the modeling results using USC (in

combination with other segmentation strategies). First, it is assumed that the learner be

able to distinguish strong syllables and weak syllables. This is surely plausible in the light

of the fact that the Metrical Segmentation Strategy is operative in 9-month-old, or perhaps

even younger, infants. To find the dominant stress patterns involves at least (a) the recog-

nition of strong vs. weak syllables, (b) a collection of reliably segmented words (through

whatever means) and their respective stress patterns, and (c) a certain computational pro-

cedure that identifies the dominant pattern among the set of words. To make use of USC,

only (a) is assumed. Hence, USC is a weaker assumption on the part of the learner than the

Metrical Segmentation Strategy.

Which raises the second remark: How does the child identify metrical patterns in speech?

That they do is beyond doubt, though it is by no means clear what kind of processes are

involved. It is tempting to assume that pitch peaks directly pick out strong syllables (see

Sluijter, van Heuven, & Pacily, 1996), but the search for direct acoustic correlates of stress

has been largely illusive (Hayes, 1995). It is likely, then, that the identification of stresses

involves, beyond an obvious perceptual component, certain cognitive/structural represen-

tation of speech and subsequent computations, which may be domain-specific phonological

8 Perhaps more than two. Note that USC as formulated here does not assert that a word must have a
primary stress. A language may contain a closed and fairly small set of functional words–some prepositions,
auxiliaries, and determiners, in the case of English–that do not bear primary stresses. For instance, “drin-king-
the-cham-pagne” is a sequence with two strong syllables at the two ends but nevertheless consists of three
words (“drinking the champagne”). See section 5.3.2 for how functional words may be extracted from speech
by statistical as well as non-statistical means.
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knowledge. In any case, the identification of metrical pattern remains an open question

though children have no trouble solving it at a very young age.

Third, USC, unlike the Metrical Segmentation Strategy, is a universal constraint on word

boundaries rather than a language particular one. It therefore does not run into the chicken-

and-egg dilemma noted earlier (cf., Thiessen & Saffran, 2003). In fact, along with statistical

learning, USC is the only universally applicable procedure that can bootstrap a sufficiently

reliable set of words from which language-particular strategies can be derived.

Fourth, the ideal application of USC presupposes that primary stresses of words are

readily available in spoken language. In our modeling, we have assumed that every pri-

mary stress, which is obtained from the CMU Pronunciation Dictionary, is preserved in the

learning data. However, complications may arise if the primary stresses of some words are

lost in casual speech: for example, a single word utterance will not be recognized as such if

the primary stress is not available. If so, the USC may not be as usual as in the ideal case.

However, as discussed in section 5.3.2, this does not necessarily pose a serious problem if

the application of USC is complemented by a simple “agnostic learning” strategy.

Finally, we will not speculate further on the functional motivations for USC other than

pointing out that it is likely an innate constraint, perhaps reflecting the general princi-

ple that prosody marks linguistically significant units (morphemes, words, constituents,

phrases, etc.) One reason for supposing so is that USC is a negative principle, which is

known to create learnability problems under the standard assumption of no negative ev-

idence (Brown & Hanlon, 1970; Berwick, 1985; Lasnik, 1989). Another reason is that if

USC were learned from experience, the child must, at the minimum, have extracted a set of

seed words already with language-independent means. However, statistical learning, which

is the only other candidate strategy that would fit the bill, cannot generate such a set accu-

rately, as the modeling results show. Hence another reason for supposing the innateness of

USC.

5.3 Constraints are Effective for Segmentation

We now describe several variants of word segmentation models that make use of USC.

5.3.1 Statistical Learning under USC

In the first model, we apply statistical learning when USC does not automatically identify

word boundaries. In the training stage, TPs are gathered as before. In the testing stage, the

learner scans a sequence of input syllables from left to right:
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(5) a. If two strong syllables are adjacent (i.e., “... S1S2 ...”), a word boundary is

postulated in between.

b. If there are more than one (weak) syllables between two strong ones (i.e,

S1W...WS2), then a word boundary is postulated where the pairwise TP is at

the local mininum.

(5a) straightforwardly solves the monosyllablic word problem–by avoiding statistical learn-

ing altogether. Certain complications may arise in (5b). It is possible that multiple local

minima exist between S1...S2, which would lead the model to postulate multiple word

boundaries. This is sometimes justified, if the sequence of weak syllables happens to con-

tain a stressless functional word; see footnote (8).

The improvement in segmentation results is remarkable: when constrained by USC,

statistical learning with local minimum achieves precision of 73.5% and recall of 71.2%.

In fact, these figures are comparable to the highest performance reported in the literature

(Brent, 1999a), which nevertheless uses uses a computationally prohibitive algorithm that

iteratively optimizes over the entire lexicon. By contrast, the computational complexity of

the present model is exactly that of computation of transitional probabilities, which appears

to be less costly but still leaves much to be desired.

5.3.2 Algebraic Learning: Quick but not dirty

Once the linguistic constraint USC is built in, we are in position to explore alternative seg-

mentations that do not make use of statistical information at all. We do so out of the

concern that the computational burden of statistical learning is no means trivial. English,

for instance, has a few thousand syllables, and the number of transitional probabilities

that the learner must keep track of is likely enormous. (In our relative small corpus,

there are 58,448 unique syllable pairs.) Furthermore, given the definition of transitional

probability—TP(A→B) = Pr(AB)/Pr(A)–it is clear that whenever the learner sees an occur-

rence of A, she would have adjust the values of all B’s in TP(A→B). This means that, in a

realistic setting of language acquisition, the learner must adjust the values of potentially

thousands of TPs for every syllable processed in the input. Though we do not know how

infants do so, we do consider it worthwhile to evaluate computationally less expensive but

potentially more reliable segmentation strategies.

We pursue a number of variants of the traditional idea that recognition of known words

may bootstrap for novel words (Peters, 1983; Pinker, 1984). This is a plausible strategy

on a number of grounds. To begin with, young learners have memory for familiar sound
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patterns, as shown by Juscyzk & Hohne (1997) that 8-month-old infants can retain sound

patterns of words in memory. Therefore, if the child has learned the word “big”, she might

be able to recognize “big” in the utterance “bigsnake” and extract “snake” as a result. For

concreteness, call this bootstrapping process subtraction (Gambell & Yang, 2003). Further-

more, the subtraction strategy is evidenced by familiar observations of young children’s

speech. The irresistible segmentation errors (e.g., “I was have” from be-have, “hiccing up”

from hicc-up, “two dults” from a-adult) suggest that subtraction does take place (cf. Peters,

ibid). Recent work (Bortfeld, Morgan, et al., 2005) demonstrates that infants as young as 6

months old may use this bootstrapping strategy. For word sequences such as XY, where Y is

a novel word, infants prefer those that are paired with a familiar X, such as “Mommy”, the

child’s name, and others that may be developmentally appropriate for this stage.

Under algebraic learning, the learner has a lexicon which stores previously segmented

words. No statistical training of the TPs is used. As before, the learner scans the input

from left to right. If it recognizes a word that has been stored in the lexicon, it puts the

word aside and proceeds to the remainder of the string. Again, the learner will use USC

to segment words in the manner of (5a): in our modeling, this constraint handles most

cases of segmentation. However, USC may not resolve word boundaries conclusively. This

happens when the learner encounters S1W
n
1 S2: the two S’s stand for strong syllables, and

there are n syllables in between, where W j
i stands for the substring that spans from the ith

to the jth weak syllable. In the window of Wn
1 , two possibilities may arise.

(6) a. If both S1W
i−1
1 and Wn

j+1S2 (i < j) are, or are part of, known words on both

sides of S1W
n
1 S2, then W j

i must be a word,9 and the learner adds W j
i as a new

word into the lexicon. This is straightforward.

b. Otherwise, a word boundary lies somewhere in Wn
1 , and USC does not provide

reliable information. This is somewhat more complicated.

To handle the case of (6b), we consider two variants of algebraic learning:

(7) a. Agnostic: the learner ignores the strings S1W
n
1 S2 altogether and proceeds to

segment the rest of the utterance. No word is added to the lexicon.

b. Random: the learner picks a random position r (1 ≤ r ≤ n and splits Wn
1 into

two substrings W r
1 and Wn

r+1 as parts of the two words containing S1 and S2

respectively.10 Again, no word is added to the lexicon.
9Since it does not contain a strong syllable, it is most likely a functional word.

10These two resulting words may include materials that precede S1 and materials that follow S2, should such
segmentation not be prohibited by USC.
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The logic behind the agnostic learner is that the learner is non-committal if the learning data

contains uncertainty unresolvable by “hard” linguistic constraints such as USC.11 This could

arise for two adjacent long words such as “languageacquisition”, where two primary stresses

are separated by multiple weak syllables as in the case of (6b). It could also arise when the

input data (casual speech) is somewhat degraded such that some primary stresses are not

prominently pronounced, as discussed in 5.2. While the agnostic learner does not make

a decision when such situations arise, it can be expected that the words in the sequence

S1W
n
1 S2 will mostly like appear in combinations with other words in future utterances,

where USC may directly segment them out. The random learner is implemented as a base-

line comparison, though we suspect that in actual language acquisition, the learner may

invoke the language-specific Metrical Segmentation Strategy, rather than choosing word

boundaries randomly, in ambiguous contexts such as S1W
n
1 S2.

Note further that in both versions of the algebraic model, no word is added to the

lexicon when the learner is unsure about the segmentation; that is, both algebraic learn-

ers are conservative and conjectures words only when they are certain. This is important

because mis-segmented words, once added to the lexicon, may lead to many more mis-

segmentations under the subtraction algorithm. In section 6.1, we discuss ways in which

this assumption can be relaxed.

Table 1 summarizes the segmentation results from the two algebraic learners, along

with those from earlier sections on statistical learning.

Model Precision Recall F-measure (α = 0.5)
SL 41.6% 23.3% 0.298

SL + USC (5) 73.5% 71.2% 0.723
Algebraic agnostic (7a) 85.9% 89.9% 0.879
Algebraic random (7b) 95.9% 93.4% 0.946

Table 1: Performance of four models of segmentation. SL stands for the statistical learning
model of Saffran et al. (1996), while the other three models are described in the text.

It may seem a bit surprising that the random algebraic learner yields the best segmenta-

tion results but this is not unexpected. The performance of the agnostic learner suffers from

deliberately avoiding segmentation in a substring where word boundaries lie. The random

learner, by contrast, always picks out some word boundary, which is very often correct. And

this is purely due to the fact that words in child-directed English are generally short. Taken
11A comparable case of this idea is the Structural Triggers Learner (Fodor, 1998) in syntactic parameter

setting. We thank Kiel Christianson for pointing out this connection.
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together, the performance of the algebraic learners entails that (a) USC and subtraction

work for most of words, and (b) when they don’t, there are only very few weak syllables in

the window between two strong ones (n is small in Wn
1 ) such that a random guess is not

far off. On the other hand, while scoring is used here to evaluate the performance of seg-

mentation model, which punishes the agnostic learner. In real life, however, it is perfectly

fine to move on the next utterance when the learner is unsure about the segmentation of

the present utterance.

Based on these results, we conjecture that algebraic learning is a reasonable strategy

for word segmentation and ought to be further evaluated in experimental settings. In the

concluding section of this paper, we will suggest a number of ways in which the algebraic

learner can be modified and improved.

6 Conclusion

Our computational models complement experimental research in word segmentation. The

main results can be summarized as follows.

• The segmentation process can get off the ground only through the use of language-

independent means: experience-independent linguistic constraints such as USC and

experience-dependent statistical learning are the only candidates among the proposed

strategies for word segmentation.

• Statistical learning does not scale up to realistic settings of language acquisition.

• Simple principles on phonological structures such as USC can constrain the applica-

bility of statistical learning and improve its performance, though the computational

cost of statistical learning may still be prohibitive.

• Algebraic learning under USC, which has trivial computational cost and is in principle

universally applicable, outperforms all other segmentation models.

We conclude with some specific remarks on word segmentation followed by a general

discussion on the role of statistical learning in language acquisition.

6.1 Directions for future work

One line of future work is to further disentangle the various segmentation strategies pro-

posed in the literature. For example, the present models have not considered the role of
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co-articulation cues in segmentation (Jusczyk, Houston, & Newsome, 1999; Johnson &

Jusczyk, 2001) Our work has, however, helped to clarify some logical issues in the use of

the Metrical Segmentation Strategy. The phonological principle USC is sufficient for gener-

ating a set of seed words, from which the language-specific Metrical Stress Strategy can be

derived: just how children extract such statistical tendencies is still unknown, particularly

when the full range of stress systems in the world’s languages is taken into account. On

the other hand, it may be useful to pitch USC against the Metrical Segmentation Strategy

along the lines of Johnson & Jusczyk (2001; cf. Thiessen & Saffran, 2003). It would be in-

teresting to see whether an appropriately aged learner, who has mastered the the Metrical

Segmentation Strategy, favors language-specific or language-independent cues when both

cues are available.

Another important question concerns how, or how well, infant learners can syllabify

the input speech. Virtually all segmentation strategies (statistical learning, the Metrical

Segmentation Strategy, USC, etc.) are dependent on the learner’s ability to parse segments

into syllables. It may be worthwhile to explore how syllabification can be achieved by

phonetic and articulatory cues (Browman & Goldstein, 1995; Krakow, 1999) as well as the

traditional conception of the syllable as a structured unit that surrounds the vowel with

language-specific phonotactic knowledge, e.g., onset consonant clusters.

One of the potential problems with the algebraic learners is that they learn too fast. A

learner equipped with USC can segment words reliably and very rapidly, and previously

segmented words stored in the lexicon may lead to rapid segmentation of novel words

under the subtraction strategy. In a human learner, however, reliable segmentation may

take much longer. It is straightforward to augment our model to bring it a step closer

to reality. For instance, one may add a frequency-dependent function that controls the

construction of the lexicon. Specifically, addition of words to the lexicon as well as retrieval

(in subtraction-based learning) from it are probabilistic. The retrieval of a word from the

lexicon is determined by a function that increases when that word has been extracted by

the input: the net effect is the learner may sometimes recognize a word but sometimes fail

to do so. With a probabilistic function, one may remove the conservative requirement on

the algebraic learners. A mis-segmented word can be added to the lexicon, but if it appears

very infrequently, the negative effect of its use in subtraction is negligible. This then directly

captures the frequency-dependent characteristics of word segmentation. We are currently

exploring the behavior of the probabilistic learner in comparison to the time course of word

segmentation in human learners.

Finally, it is important to examine the segmentation problem in a cross-linguistic setting.
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In agglutinative languages (e.g., Turkish) and polysynthetic languages (e.g., Mohawk), the

notion of “word” is inseparable from the morphosyntactic system, and is thus considerably

different from the more clear-cut cases like Modern English. Consequently, word segmen-

tation in these languages may involve simultaneous acquisition at other linguistic levels. It

remains to be seen how any model of segmentation can generalize to these cases.

6.2 Statistical Learning and Language Acquisition

Statistical learning (Saffran et al., 1996) surely ranks among the most important discoveries

of our cognitive abilities. Yet it remains to be seen, contrary to a number of claims (Bates &

Elman, 1996; Seidenberg, 1997, etc.), whether statistical learning serves as an alternative

to innate and domain-specific knowledge of language (Universal Grammar, broadly speak-

ing). In addition, as the present study shows, it remains an open question whether statistical

learning using local minima is used in actual word segmentation in the first place. In con-

clusion, we discuss a number of contemporary issues regarding domain specific knowledge

and domain general learning mechanisms.

First, does the ability to learn diminish the need for Universal Grammar? Here we

concur with Saffran et al. (1997), who are cautious about the interpretation of their results.

Indeed, it seems that the success of learning strengthens, rather than weakens, the claim

of Universal Grammar, or at least innate cognitive/perceptual constraints that must be in

place in order for learning to occur.

Recall the classic poverty of stimulus argument for innateness (Chomsky, 1975): the

case of auxiliary inversion in English interrogative questions (e.g., “John is nice” → “Is John

nice?”). It is no doubt that this construction is learned, as not all language invert auxiliaries.

But it is precisely the fact that auxiliary inversion is learned that establishes the argument

for the innate principle of structure dependency in syntax. The learner could have learned

many other logically possible transformations; the fact that they don’t (Crain & Nakayama,

1987) suggests that they tacitly know what kind of regularities in question formation to

keep track of.12

The same logic applies to the success of statistical learning in segmenting artificial lan-

guage: it presupposes the learner knowing what kind of statistical information to keep track

of. After all, an infinite range of statistical correlations exists: e.g., What is the probability
12Recent corpus studies (e.g., Pullum & Scholz, 2002) claim that the learner may have access to disconfirming

evidence against incorrect hypotheses about question formation. First, there are various problems with how
these studies gather corpus statistics. More important, even if the child does have access evidence for structure
dependency, these studies fail to establish that such evidence is sufficient for eliminating incorrect hypotheses
by the developmental stage they were tested for auxiliary inversion. See Legate & Yang (2002) for details.
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of a syllable rhyming with the next? What is the probability of two adjacent vowels being

both nasal? The fact that infants can use statistical learning in the first place entails that, at

the minimum, they know the relevant unit of information over which correlative statistics

is gathered: in this case, it is the syllables, rather than segments, or front vowels, or labial

consonants.

A number of questions then arise. First, How do they know the primacy of syllables?

It is at least plausible that the primacy of syllables as the basic unit of speech is innately

available, as suggested in neonate speech perception studies (Bijeljiac-Babic, Bertoncini, &

Mehler, 1993; cf., (Bertocini & Mehler, 1981; Jusczyk, 1997; Jusczyk, Kennedy, & Jusczyk,

1998; Eimas, 1999). Second, where do the syllables come from? While the experiments

in Saffran et al. (1996) used uniformly CV syllables (and three syllables per word), many

languages, including English, make use of a far more diverse range of syllabic types. Third,

syllabification of speech is far from trivial, involving both innate knowledge of phonological

structures as well as discovering language-specific phonotactic constraints. Finally, in a

realistic learning environment, statistical information is bound to be far less perfect than

the constructed in artificial language learning experiments, where within-word transitional

probabilities are uniformly 1 and across-word transitional probabilities are uniformly 1/3.

All of these are practical problems that the child has to solve before the claim of statistical

learning is used in word segmentation can be established.

Indeed, we are not aware of any experimental study that uses realistic language input

to test the effectiveness of statistical learning. (We do appreciate the likely practical dif-

ficulty with such experiments.) This leaves us with computational modeling–one which

implements psychologically plausible mechanisms–as a reliable evaluation of the scope and

limits of statistical learning. The fact that statistical learning does not extract words reli-

ably, and the fact that simple linguistic constraints and algebraic learning do extract words

reliably, raise the possibility that statistical learning may not be used in word segmenta-

tion at all. If an alternative learning strategy is simple, effective, and linguistically and

developmentally motivated, it is reasonable to expect the child to use it too.

It is worth reiterating that our critical stance on statistical learning refers only to a

specific kind of statistical learning that exploits local minima over adjacent linguistic units

(Saffran et al., 1996). Rather, we simply wish to reiterate the conclusion from decades

of machine learning research that no learning, statistical or otherwise, is possible without

appropriate prior assumptions on the representation of the learning data and a constrained

hypothesis space. Recent work on the statistical learning over non-adjacent phonological

units has turned out some interesting limitations on the kind of learnable statistical correla-
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tions (Newport & Aslin, 2004, Aslin, Newport, & Hauser, 2004; Toro, Sinnett, & Soto-Faraco,

In press; Peña, Bonatti, Nespor, & Mehler, 2002; for visual learning tasks, see Tucker-Brown,

Junge, & Scholl, submitted; Catena & Scholl, submitted). The present work, then, can be

viewed as an attempt to articulate the specific linguistic constraints that might be built

in for successful word segmentation to take place. Indeed, in other work (Yang 1999,

2002, 2004), we have incorporated domain-general probabilistic learning models (Bush &

Mosteller, 1955; Atkinson, Bower, & Crouthers, 1965; Tversky & Edwards, 1966; Herrn-

stein & Loveland, 1975) into the bona fide problem of domain-specific learning, the setting

of syntactic parameters in the Principles and Parameters framework (Chomsky, 1981). Even

the algebraic learning we proposed here, which requires the learner to recognize identity

of occurrences, resembles the pattern extraction process in early infant learning (Marcus,

Vijayan, Rao, & Vishton, 1999), which may well be domain neutral as it has been replicated

in other species (Hauser, Weiss, & Marcus, 2002). In all these cases, it is important to sepa-

rate the learning mechanism, which may be domain general, from the learning constraints,

which may domain specific.
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