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Input & Universal Grammar

• Input: A statistical look at distributional information

• Output: Quantitative and cross-linguistic patterns of development

• Mechanisms of learning: Why UG can make use of input-driven, 
probabilistic, and domain general learning processes

• Some speculations on L2 acquisition



Input & Usage Effects?

• Frequency effects, limited extent of diversity (“verb islands”), etc.

• “give me X”, a highly frequent expression, is often cited as 
evidence of the child using formulaic expressions

• From the Harvard children (Adam, Eve, Sarah)

• give me: 93, give him: 15, give her: 12, or 7.75 : 1.23 : 1

• me: 2870, him: 466, her: 364, or 7.88 : 1.28 : 1



Input: Very boring
• Zipf’s law: Much of language is repetitions of a few, while most 

distinct items occur rarely

• Linguistic combinations produce an even large space of 
possibilities (e.g., bigrams, trigrams, morphology, rules/
constructions)

2.2 Zipfian Combinatorics

The “long tail” of Zipf’s law, which is occupied by low frequency words, becomes even more pronounced
when we consider combinatorial linguistic units. Take, for instance, n-grams, the simplest linguistic
combination that consists of n consecutive words in a text.2 Since there are a lot more bigrams and
trigrams than words, there are consequently a lot more low frequency bigrams and trigrams in a linguistic
sample, as Figure 2 illustrates from the Brown corpus (for related studies, see Teahan 1997, Ha et al.
2002):
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Figure 2. The vast majority of n-grams are rare events. The x-axis denotes the frequency of the gram, and the
y-axis denotes the cumulative % of the gram that appear at that frequency or lower.

For instance, there are about 43% of words that occur only once, about 58% of words that occur 1-2
times, 68% of words that occur 1-3 times, etc. The % of units that occur multiple times decreases rapidly,
especially for bigrams and trigrams: approximately 91% of distinct trigram types in the Brown corpus
occur only once, and 96% occur once or twice.

The range of linguistic forms is so vast that no sample is large enough to capture all of its varieties
even when we make a certain number of abstractions. Figure 3 plots the rank and frequency distributions
of syntactic rules of modern English from the Penn Treebank (Marcus et al. 1993). Since the corpus has
been manually annotated with syntactic structures, it is straightforward to extract rules and tally their
frequencies.3 The most frequent rule is “PP!P NP”, followed by “S!NP VP”: again, the Zipf-like pattern
can be seen by the close approximation by a straight line on the log-log scale.

2For example, given the sentence “the cat chases the mouse”, the bigrams (n = 2) are “the cat chases the mouse” are “the cat”,
“cat chases”, “chases the”, and “the mouse”, and the trigrams (n = 3) are “the cat chases”, “cat chases the”, “chases the mouse”.
When n = 1, we are just dealing with words.

3Certain rules have been collapsed together as the Treebank frequently annotates rules involving distinct functional heads
as separate rules.
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Wall Street Journal

• Rules and their frequencies from the Penn Treebank (log-log scale)

An Industrial Look

• Wall Street Journal from the parsed Penn Treebank

“S�NP VP”: again, the Zipf-like pattern can be seen by the close approximation by a straight line
on the log-log scale.
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Figure 3. The frequency distribution of the syntactic rules in the Penn Treebank.

The long tail of linguistic combinations must be taken into account when we assess the struc-
tural properties of the grammar. Claims of item-based learning is based the premise that linguis-
tic productivity entails diversity of usage, and is established on the observation of “unevenness”
in usage distribution (1) Take the notion of overlap in the case of determiner use in early child
language (1c). If the child has fully productive use of the syntactic category determiner, then
one might expect her to use determiners with any noun for which they are appropriate. Since
the determiners “the” and “a” have (virtually) identical syntactic distributions, a linguistically
productive child that uses “a” with a noun is expected to automatically transfer the use of that
noun to “the”. Quantitatively, determiner-noun overlap is defined as the percentage of nouns
that appears with both determiners out of those that appear with either. The low overlap val-
ues in children’s determiner use (Pine & Lieven 1997, among others) are taken to support the
item-based view of child language.

However, using a similar metric, Valian and colleagues (Valian et al. 2009) find that the over-
lap measures for young children and their mothers are not significantly different, and they are
both very low. In fact, when applied to the Brown corpus (see section 3.2 for methods), we find
that “a/the” overlap for singular nouns is only 25.2%: almost three quarters that could have ap-
peared with both determiners only appeared with one exclusively. The overlap value of 25.2%
is actually lower than those of some children reported in (Pine & Lieven 1997). It would follow
that the language of the Brown corpus, which draws from various genres of professional print
materials, is less productive and more item-based than that of a toddler—which seems absurd.
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Verb Islands in adult language (>1Mil)
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

put 401 164 124 15 12 12 11 10 8 5
tell 245 65 49 49 45 36 22 16 14 13
see 152 100 38 32 28 21 14 14 12 11

want 158 83 36 24 19 15 13 9 5 4
let 238 38 32 23 22 17 8 6 3 3

give 115 92 59 32 31 7 5 5 5 5
take 130 57 30 21 18 15 14 9 8 7
show 100 34 27 21 19 17 12 8 7 7
got 58 37 14 12 11 9 7 7 7 4
ask 45 41 27 24 12 10 8 8 4 2

make 67 20 12 10 9 7 7 4 3 2
eat 67 42 14 8 6 5 5 3 3 3
like 39 13 9 6 4 4 4 4 3 3

bring 43 30 17 15 10 10 3 3 3 3
hear 46 22 13 9 6 4 4 3 3 3
total 1904 838 501 301 252 189 137 109 88 75

put: it, your, them, him, my, her, em, you, his, water



PIN Number Analysis



Matches and Mismatches

• Roger Brown (1973, A First Language): word order errors are 
“triflingly few”

• Children must be able to learn the basic rules of grammar with 
2-3 million sentences

• Yet a great deal of surprises remain, especially if we relate them 
to the distributions of linguistic patterns in the input



Abundant Input, Late Learning

• Missing subjects in child English (Bloom 1973, Hyam 1986)

• __ want look a man.

• Missing objects as well (Wang et al. 1992)

• Look at __.  __ go a little higher 

• Null subject stage last about 3 years but an overwhelming amount 
of child directed English input do contain the subject, as English 
is an obligatory subject language (unlike Chinese, Japanese, 
Spanish, Italian, etc.)



Lateness is not Universal

English Italian Chinese

Subject ~ 0% 70% 50%

Object 0% 0% 20%

Subject 30% ~70% ~50%

Object 8% 0% ~20%

Adults

Children

Children age: <3;0
Data from Wang et al. (1992), Valian (1991), Bates (1978)

“Luke, look at the input ...”



Abundant Input, Late Learning

• Extensive use of Root Infinitives that should be tensed

• English: Papa have it. 

• Dutch: thee drinken (tea drink-INF)

• French: Dormir petit bébé (sleep-INF little baby)

• German: mein Kako hinstelln (my chocolate milk put-INF)

• Hebrew: Malon lauf (balloon fly-INF)



Optional Infinitives and Null Subjects Together
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Little Input, Early Learning

• The placement of verbs in French

• Jean voit souvent/pas Claude. (“John sees often/not Claude”)

• Only 7% of the sentences in child-directed French show this 
pattern (Yang 2002), yet children learn this property of French by 
the time of two word combinations (1;8, Pierce 1992)

• marches pas (“works not”)

• pas la poupée dormir (“not the doll sleep”)

• Similar findings in similar languages, and languages like English 
pattern very differently



Same Grammar, Differential Learning

• Germanic languages have Verb Second (V2)

• Dutch: Dit boek las ik gisteren. (“this book read I yesterday”)

• Norwegian: Det vet æ ikkje. (“that know I not”)

• But Dutch and German children take over 3 years to use V2 
reliably as they produce a lot of verb initial utterances (Clahsen 
1986, Haegeman 1996), while Norwegian children learn V2 as 
early as 2;0 (Westergaard 2009)



Central Questions

• Can learning primarily consist of memorization and lexically 
specific rules?

• For detailed assessment of usage-based learning, seeYang 
(2011, Proc. Assoc. Comp. Ling.)

• What combination of grammar model and learning model will 
give the best account of child language?



Industrial Lessons

• Statistical parsing: Learn from pre-parsed tree structures (e.g., 
Wall Street Journal, Brown Corpus) 

• Start: a large set of probabilistic CFG rules

• Training: adjust the probabilities of rule expansions so that they 
maximize the likelihood of the training data

• Testing: run the resulting grammar on new data 

• State of art parsers: low 90% (impressive but still a long way to 
go)

S
p�! NP VP, S

1�p�! NP VP



Why Google hasn’t solved everything

(Jelinek 1998); the n-gram and rule distributions discussed in section 2.2 make these points very clearly.

For the linguist, the Zipfian nature of language raises important questions for the development of
linguistic theories. First, Zipf’s law hints at the inherent limitations in approaches that stress the stor-
age of construction-specific rules or processes (e.g., Goldberg 2003, Culicover & Jackendoff 2005). For
instance, the central tenets of Construction Grammar views constructions as “stored pairings of form
and function, including morphemes, words, idioms, partially lexically filled and fully general linguis-
tic patterns” and “the totality of our knowledge of language is captured by a network of constructions”
(Goldberg 2003, p219). Yet the Zipfian distribution of linguistic combinations, as illustrated in Figure
3 for the Wall Street Journal and Figure 4 for child directed speech, ensure that most “pairings of form
and function” simply will never be heard, never mind stored, and those that do appear may do so with
sufficiently low frequency such that no reliable storage and use is possible.

Second, and more generally, Zipf’s law challenges the conventional wisdom in current syntactic the-
orizing that makes use of a highly detailed lexical component; there have suggestions that all matters of
language variation are in the lexicon which in any case needs to be acquired for individual languages.
Yet the effectiveness of lexicalization in grammar has not been fully investigated in large scale studies.
However, useful inferences can be drawn from the research on statistical induction of grammar in com-
putational linguistics (Charniak 1993, Collins 2003). These tasks typically take a large set of grammatical
rules (e.g., probabilistic context free grammar) and find appropriate parameter values (e.g., expansion
probabilities in a probabilistic context free grammar) on the basis of an annotated training data such as
the Treebank where sentences have been manually parsed into phrase structures. The performance of
the trained grammar is evaluated by measuring parsing accuracy on a new set of unanalyzed sentences,
thereby obtaining some measure of generalization power of the grammar.

Obviously, inducing a grammar on a computer is hardly the same thing as constructing a theory
of grammar by the linguist. Nevertheless, statistical grammar induction can be viewed as a tool that
explores what type of grammatical information is in principle available in and attainable from the data,
which in turn can guide the linguist in making theoretical decisions. Contemporary work on statistical
grammar induction makes use of wide range of potentially useful linguistic information in the grammar
formalism. For instance, an phrase “drink water” may be represented in multiple forms:

(a) VP� V NP

(b) VP� Vdrink NP

(c) VP� Vdrink NPwater

(a) is the most general type of context free grammar rule, whereas both (b) and (c) include additional
lexical information: (b) provides a lexically specific expansion rule concerning the head verb “drink”,
and the bilexical rule in (c) encodes the item-specific pairing of “drink” and “water”, which corresponds
to the notion of sentence frame in Tomasello’s Verb Island hypothesis (1992; see section 4.2).

By including or excluding the rules of the types above in the grammatical formalism, and evaluat-
ing parsing accuracy of the grammar thus trained, we can obtain some quantitative measure of how
much each type of rules, from general to specific, contributes to the grammar’s ability to generalize to
novel data. Bikel (2004) provides the most comprehensive study of this nature. Bilexical rules (c), similar
to the notion of sentence frames and constructions, turn out to provide virtually no gain over simpler
models that only use rules of the type (a) and (b). Furthermore, lexicalized rules (b) offer only modest
improvement over general categorical rules (a) alone, with which almost all of the grammar’s general-
ization power lies. These findings are not surprising given the Zipfian nature of linguistic productivity:
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Rule Type F-score

a+b+c ~89.0%

a+b ~88.4%

a ~84%

• Multiple forms of rules are present in training, ranging from general 
to lexical

• One can vary certain types to test their effectives in generalization 
(Gildea 2001 Proc. ACL, Bikel 2004, Comp. Ling.)

• Storing construction or lexically specific rules offers virtually no 
payoff in data coverage (Yang 2011, Proc. ACL)

• The range of grammar (output) is enormous, but the learning data 
(input) is limited and grows far too slowly



Are the best rules good enough?

• Formal learnability is one thing; the developmental test from 
child language is ultimately more important

• S→ NP VP will be learned quickly: >95% of the English data

• VP→ VFIN pas will be learned slowly: 7% of the French data

• But French children learn verb placement early and English 
children learn the use of subjects late!

• What kind of (grammar, learning) combination would take the 
input and produce the output like children?



UG + Learning from Input

• Parameters ≈ Principal Component Analysis 

• “Child competence is identical to adult competence”

• “Parameters are set very early”

• Magic and More Magic ...

• Use parameters

• a model of language variation and child learning errors

• Do not use Magic

• use a model of learning that is gradual and takes input into 
account



From Trigger to Dimmer

• The Variational model (Yang 2002 Oxford UP)

• Parameter values are associated with probabilities (p: VO, 1-p: OV)

• try out a value, reward/punish) based on success/failure

• learning rate: magnitude of change, subject to individual variation

• More tokens of parameter signatures, faster learning

Universal Grammar, statistics or both?
Charles D. Yang

Department of Linguistics and Psychology, Yale University, 370 Temple Street 302, New Haven, CT 06511, USA

Recent demonstrations of statistical learning in infants
have reinvigorated the innateness versus learning
debate in language acquisition. This article addresses
these issues from both computational and developmen-
tal perspectives. First, I argue that statistical learning
using transitional probabilities cannot reliably segment
words when scaled to a realistic setting (e.g. child-
directed English). To be successful, it must be con-
strained by knowledge of phonological structure. Then,
turning to the bona fide theory of innateness – the
Principles and Parameters framework – I argue that a full
explanation of children’s grammar development must
abandon the domain-specific learning model of trigger-
ing, in favor of probabilistic learning mechanisms that
might be domain-general but nevertheless operate in
the domain-specific space of syntactic parameters.

Two facts about language learning are indisputable. First,
only a human baby, but not her pet kitten, can learn a
language. It is clear, then, that there must be some
element in our biology that accounts for this unique
ability. Chomsky’s Universal Grammar (UG), an innate
form of knowledge specific to language, is a concrete
theory of what this ability is. This position gains support
from formal learning theory [1–3], which sharpens the
logical conclusion [4,5] that no (realistically efficient)
learning is possible without a priori restrictions on the
learning space. Second, it is also clear that no matter how
much of a head start the child gains throughUG, language
is learned. Phonology, lexicon and grammar, although
governed by universal principles and constraints, do vary
from language to language, and they must be learned on
the basis of linguistic experience. In other words, it is a
truism that both endowment and learning contribute to
language acquisition, the result of which is an extremely
sophisticated body of linguistic knowledge. Consequently,
both must be taken into account, explicitly, in a theory of
language acquisition [6,7].

Contributions of endowment and learning
Controversies arise when it comes to the relative contri-
butions from innate knowledge and experience-based
learning. Some researchers, in particular linguists,
approach language acquisition by characterizing the
scope and limits of innate principles of Universal Gram-
mar that govern the world’s languages. Others, in
particular psychologists, tend to emphasize the role of
experience and the child’s domain-general learning abil-
ity. Such a disparity in research agenda stems from the

division of labor between endowment and learning:
plainly, things that are built in need not be learned, and
things that can be garnered from experience need not
be built in.

The influential work of Saffran, Aslin and Newport [8]
on statistical learning (SL) suggests that children are
powerful learners. Very young infants can exploit transi-
tional probabilities between syllables for the task of word
segmentation, with only minimal exposure to an artificial
language. Subsequent work has demonstrated SL in other
domains including artificial grammar, music and vision,
as well as SL in other species [9–12]. Therefore, language
learning is possible as an alternative or addition to the
innate endowment of linguistic knowledge [13].

This article discusses the endowment versus learning
debate, with special attention to both formal and deve-
lopmental issues in child language acquisition. The first
part argues that the SL of Saffran et al. cannot reliably
segment words when scaled to a realistic setting
(e.g. child-directed English). Its application and effective-
ness must be constrained by knowledge of phonological
structure. The second part turns to the bona fide theory of
UG – the Principles and Parameters (P&P) framework
[14,15]. It is argued that an adequate explanation of
children’s grammar must abandon the domain-specific
learning models such as triggering [16,17] in favor of
probabilistic learning mechanisms that may well be
domain-general.

Statistics with UG
It has been suggested [8,18] that word segmentation from
continuous speechmight be achieved by using transitional
probabilities (TP) between adjacent syllables A and B,
where TP(A/B)ZP(AB)/P(A), where P(AB)Zfrequency
of B following A, and P(A)Ztotal frequency of A. Word
boundaries are postulated at ‘local minima’, where the
TP is lower than its neighbors. For example, given
sufficient exposure to English, the learner might be
able to establish that, in the four-syllable sequence
‘prettybaby’, TP(pre/tty) and TP(ba/by) are both higher
than TP(tty/ba). Therefore, a word boundary between
pretty and baby is correctly postulated. It is remarkable
that 8-month-old infants can in fact extract three-syllable
words in the continuous speech of an artificial language
from only two minutes of exposure [8]. Let us call this SL
model using local minima, SLM.

Statistics does not refute UG
To be effective, a learning algorithm – or any algorithm –
must have an appropriate representation of the relevant
(learning) data. We therefore need to be cautious about the

Corresponding author: Charles D. Yang (charles.yang@yale.edu).

www.sciencedirect.com 1364-6613/$ - see front matter Q 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tics.2004.08.006
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Signatures & Learning

• Verb raising in French: 7% input, very early acquisition

• Learning the use of subject in English

• Hearing “I eat pizza” doesn’t no good because it does not 
disambiguate the types of grammars the learner considers

• Expletive subject sentences

• “There is a cookie on the floor” (1%)

• Signature for Chinese-type topic drop: null objects (12%)

• The most comprehensive study of a realistic parameter domain 
(Fodor & Sakas 2012 Language Acquisition) shows that most if not 
all parameters have signatures, which make learning feasible



From Input to Output

• Parameters have developmental correlates (Yang 2012, WIREs 
Cognitive Science)

• Same parameter, different languages:

• V2 in Norwegian: 10% of OVS in input→early 

• V2 in Dutch: 1.2% of OVS input→late 

WIREs Cognitive Science Computational models of syntactic acquisition

TABLE 1 Statistical Correlates of Parameters in the Input and Output of Language Acquisition

Parameter Target Signature Input Frequency (%) Acquisition

Wh fronting English Wh questions 25 Very early

Topic-drop Chinese Null objects 12 Very early

Prodrop Italian Null subjects in questions 10 Very early

Verb raising French Verb adverb/pas 7 1.8

Obligatory subject English Expletive subjects 1.2 3.0

Verb second German/Dutch OVS sentences 1.2 3.0–3.2

Scope marking English Long-distance questions 0.2 >4.0

Very early acquisition refers to cases where children rarely, if ever, deviate from target form, which can typically be observed as soon as they enter into
multiple word stage of production. The 90% criterion of usage in obligator context is used to mark successful acquisition. The references to the linguistic and
developmental details of these case studies can be found in Ref 3.

the child has in fact learned the English grammar
correctly very early2,61 and the omitted subjects and
objects are due to nonsyntactic factors such as perfor-
mance. But cross-linguistic studies reveal difficulties
with this approach. For instance, both Italian and
Chinese children from a very early stage use subjects
and objects at frequencies comparable to adults,61,62

in sharp contrast to the delay in child English.
The variational learning model may help close

the gap between language learnability and language
development.3 The introduction of probabilistic learn-
ing is designed on the one hand to capture the
gradualness of syntactic development and on the
other to preserve the utility of parameters in the
explanation of nontarget forms in child language, all
the while providing a quantitative role for the input
data in the explanation of child language. And it must
be acknowledged that language acquisition research
in the generative tradition has not paid sufficient
attention to the role of the input. Here we briefly sum-
marize some quantitative evidence for parameters in
syntactic acquisition. Parameters with a larger amount
of signatures (section on Learning as Selection) in the
input, which can be estimated from child-directed
speech data, can be expected to be set faster than
those for which signatures are less abundant. It thus
accounts for, among other findings, why English chil-
dren approach the adult use of subjects and objects
with an extended delay—as the learner still proba-
bilistically drops the topic—while Italian and Chinese
learning children are on target early (Table 1).

While formal models of acquisition have
received sufficient attention through mathematical
and computational analysis, the developmental pat-
terns of child language may provide decisive in
the consideration of alternative approaches. Con-
sider the child’shypothesis space (or UG)as a class

of PCFG rules; here we follow an early effort that mod-
els a fragment of an English learning child’s syntax.63

For instance, the rule ‘S
α−→ pronoun VP’ may cor-

respond to the requirement of a subject in English,
and ‘S

β−→ VP’ accounts for the fact that languages
like Italian allow subject drop: the learner’s task is to
determine the weights (α and β) of these rules. A prob-
abilistic learning model applied to English and Italian
corpora may quickly drive α and β to the right values:
β ≈ 0 in the case of English. But one immediately sees
that this learning trajectory of PCFG is inconsistent
with child language, as English learning children go
through an extended stage of subject drop despite the
overwhelming amount of overt subjects in the adults’
speech. The formal study of syntactic acquisition
allows for the manipulation of the hypothesis space
and enables the learning algorithm to explore their
empirical consequences.

CONCLUSION
Computational methods have been an important com-
ponent of cognitive science since its inception yet it
has not been an unqualified success. Computer chess,
originally conceived as a showcase for human prob-
lem solving,64 has become an exercise in hardware
development, offering no insight on the mind even as
it now consistently topples the greatest.65

The task of learning a grammar, something that
every five year old accomplishes with ease, has so far
eluded computational brute force. For a research topic
that lies at the intersection of linguistics, engineering,
and developmental psychology, progress can only be
made if we incorporate the explanatory insights from
linguistic theory, assimilate the formal rigor of com-
putational sciences, and most important, build con-
nections with the empirical study of child language.

 2011 John Wiley & Sons, Ltd.



Input & Individual Variation

• Never been denied (Chomsky 1965, Wexler & Culicover 1980, 
Berwick 1985, Gibson & Wexler 1994, Yang 2002)

• No need to appeal to unmotivated and unnecessary theoretical 
machinery to account for the gaps between children and adults

• Optional Infinitives: verbal morphology that mark tense-you are not 
learning Chinese (Legate & Yang 2007 Lg. Acq.)

• Individual level correlation between length of OI stage and the amount 
of tensed morphology in CDS (Hadley et al. 2011 JSLHR)

• Suggests that the source of delay in SLI children may be due to 
(more general) learning: poor morphological learner (Leonard et al 
1992, Rice et al. 2000) make less effective use of the tense 
information to unlearn the RI usage



Learning & Learning Language

• Variational Model uses Reinforcement Learning (Bush & 
Mosteller 1951), a very general learning mechanism with broad 
behavioral and neural support

• Strongly demonstrated in human subjects (children and adults)

• See especially the work in the acquisition of sociolinguistic 
variables (Labov and co.)

75% 25%

!



L2 Acquisition: Re-turning the dimmer?

• The combination of grammar model and learning model

• The Variational Model provides a precise and testable hypothesis 
for L2 acquisition research

• Even if the grammar model is not parameter based

• If initial state is L1-independent:

• L2 learners mirror the time course trajectories of L1 learners

• If initial state is L1:

• L2 learners will eschew the time course of L1 learners

• It’s not sufficient to study a single parameter: cross-parameter 
comparison is necessary



Conclusion

• Input is rich and interesting, but it alone won’t do the job

• Also need to be cautious about drawing conclusions from input 
effects

• Input and Universal Grammar are perfectly consistent

• Previous conception of the learning mechanism needs to be 
reconsidered

• Input effects in L2 likewise may be assessed accurately by 
making the grammar-learning interaction very explicit


