A Universal Law for Linguistic Generalization
(Why it is not optimal)
(What it has to do with Numbers)

Charles Yang
University of Pennsylvania

Lorentz Center 2016
what dat feeled like?
All grammars leak

• Why does “-ed” emerge so later?
• How can a minority rule achieve productivity?
 • German noun plural suffix -s (4-5%; Marcus, Clahsen …)
• When a statistically dominate rule fails to generalize?
 • English words are overwhelmingly stress-initial (>80%; Cutler & Davis 1988) but does not fall a “quantity insensitive” system
• Where language breaks down?
 • The ineffables: *stride-strode-stridden, Russian inflection (Halle 1973), Polish singular masc. genitive (Dabrowska 2000), …
Roadmap

- A calculus for linguistic generalization (2016, MIT Press)
 - A selection of case studies: English, Polish, artificial language
- Why linguistic generalization is not optimal/Bayesian
 - Another empirical case study of English
- How linguistic generalization may be related to numbers
 - A speculation …
A decision rule

- Space?
 - Minimum Description Length (MDL; \(\approx\) Bayesian inference)
 - Difficult to identify an empirically motivated currency
- Time!
 - The organization of grammar (rules in balance with exceptions) favors **faster** systems (“third factor”: Chomsky 2005)
- Exception 1
- Exception 2
- Exception 3
- ...
- Exception e
- Rule (N-e)

<

- Exception 1
- Exception 2
- Exception 3
- ...
- ...
- Exception N
Tipping Point

- Let R be a rule applicable to N lexical items out of which e do not follow R. R is productive iff

$$e \leq \theta_N := \frac{N}{\ln N}$$
Tolerance Principle

The Tolerance Principle as an evaluation metric in language acquisition.

Let’s start with something very familiar, the acquisition of past tense in English. Suppose the learner has arrived at a set of morphological rules such as those produced by some suitable model of inductive learning (e.g., Yip and Sussman 1997). Those in (1a) are irregular and the learner should eventually assess them to be unproductive while the rule in (1b) is regular and the learner should recognize it as such.

1 When the teacher holded the baby rabbits

2 For simplicity of presentation, we omit the phonological alternation for the -d suffixation, which can be automatically induced by the learning model as shown in Chapter 3.

<table>
<thead>
<tr>
<th>N</th>
<th>(\theta_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>13</td>
</tr>
<tr>
<td>100</td>
<td>22</td>
</tr>
<tr>
<td>200</td>
<td>38</td>
</tr>
<tr>
<td>500</td>
<td>80</td>
</tr>
<tr>
<td>1000</td>
<td>144</td>
</tr>
<tr>
<td>2000</td>
<td>263</td>
</tr>
<tr>
<td>5000</td>
<td>587</td>
</tr>
<tr>
<td>10000</td>
<td>1086</td>
</tr>
</tbody>
</table>

parameter/regression free
Space for individual variation
past tense rules “longitudinally”

<table>
<thead>
<tr>
<th>top N</th>
<th>sing→sang</th>
<th>feed→fed</th>
<th>fly→flew</th>
<th>-d</th>
<th>θ_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>—</td>
<td>—</td>
<td>(8, 3)</td>
<td>(100, 54)</td>
<td>22</td>
</tr>
<tr>
<td>200</td>
<td>(3, 1)</td>
<td>—</td>
<td>(10, 5)</td>
<td>(200, 76)</td>
<td>37</td>
</tr>
<tr>
<td>300</td>
<td>(3, 1)</td>
<td>—</td>
<td>(13, 8)</td>
<td>(300, 92)</td>
<td>52</td>
</tr>
<tr>
<td>500</td>
<td>(5, 2)</td>
<td>(6, 3)</td>
<td>(15, 10)</td>
<td>(500, 103)</td>
<td>80</td>
</tr>
<tr>
<td>800</td>
<td>(8, 5)</td>
<td>(11, 7)</td>
<td>(18, 13)</td>
<td>(800, 121)</td>
<td>119</td>
</tr>
<tr>
<td>1022</td>
<td>(8, 5)</td>
<td>(13, 9)</td>
<td>(22, 16)</td>
<td>(1022, 127)</td>
<td>147</td>
</tr>
</tbody>
</table>

6 million words of child-directed English
When *feel* became *feeled*?

- Adam: first instance of over-regularization (2;11) (*feeled*)
- Collect all word types and extract all verbal stems
- Adam used $N=300$ verb stems, $e=57$ irregulars
 - $\theta_{300} = 300/\ln 300 = 53 \approx 57$
- Crucially, Adam did not learn *-ed* rule sooner: need filibuster proof majority
Collapse of productivity:

- Paraphrastic gaps (Halle 1973)
- Language change

It can do minority productive rules (e.g., German plural -s; see Yang 2016)
• Polish **singular** masculine genitives take either -a or -u as suffix but neither seems to be the default based on a suite of tests (Dabrowska 2000).

• **Plurals** take -ow as the default, with exceptional -i/y suffix

 drut ‘wire’
 rower ‘bike’
 balon ‘balloon’
 karabin ‘rifle’
 autobus ‘bus’
 lotos ‘lotus flower’
Polish Acquisition

- Analysis of child-directed Polish in CHILDES
- Error rates from Dabrowska (2000, 2005)

<table>
<thead>
<tr>
<th>suffix</th>
<th>type freq.</th>
<th>productive?</th>
<th>ave. token freq.</th>
<th>error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a (sg.)</td>
<td>837</td>
<td>no</td>
<td>7.17</td>
<td>1.28%</td>
</tr>
<tr>
<td>-u (sg.)</td>
<td>516</td>
<td>no</td>
<td>8.8</td>
<td>0.24%</td>
</tr>
<tr>
<td>-ow (pl.)</td>
<td>551</td>
<td>yes</td>
<td>6.5</td>
<td>0.41%</td>
</tr>
<tr>
<td>-i/y (pl.)</td>
<td>61</td>
<td>no</td>
<td>11.4</td>
<td>15.53%</td>
</tr>
</tbody>
</table>

predict gaps and default: errors not a function of frequency (as in usage-based theories)
From the Lab

Schuler, Yang, and Newport (2016)

<table>
<thead>
<tr>
<th>condition</th>
<th># of nouns following</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rule (R)</td>
</tr>
<tr>
<td>5R/4e</td>
<td>5</td>
</tr>
<tr>
<td>3R/6e</td>
<td>3</td>
</tr>
</tbody>
</table>

The Tolerance Principle quantifies the number of exceptions a productive rule can tolerate. Let R be a rule that is applicable to N types of inflections added to novel nouns in our exposure corpus, so that - as in natural languages - some were highly frequent and others were much less frequent. In our exposure corpus, so that - as in natural languages - some were highly frequent and others were much less frequent. When children learn a language, they do not just memorize words or sentences; they acquire the patterns by which to make a noun plural. However, in some cases there are not strong patterns for how words change their form; these must indeed be memorized. When we repeated the same experiment with adults, they behaved quite differently than children, matching the token frequency of the “ka” inflection in their input. This effect is nearly categorical: almost every child forms a productive rule when the Tolerance Principle predicts that they will. Children form a productive rule when the Tolerance Principle predicts that they will. This research was supported by a grant from the National Institute of Child Health and Human Development (HD037082). We are grateful to Sarah Furlong, Marie Beasley, and Kathryn D. Schuler. Without their participation and support this work would not have been possible.

Testing the Tolerance Principle for rule productivity in an artificial grammar

<table>
<thead>
<tr>
<th>Number of exposures</th>
<th>Rule (R)</th>
<th>Exceptions (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5R/4e</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3R/6e</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

When children learn a language, they do not just memorize words or sentences; they acquire the patterns by which to make a noun plural. However, in some cases there are not strong patterns for how words change their form; these must indeed be memorized. When we repeated the same experiment with adults, they behaved quite differently than children, matching the token frequency of the “ka” inflection in their input. This effect is nearly categorical: almost every child forms a productive rule when the Tolerance Principle predicts that they will. Children form a productive rule when the Tolerance Principle predicts that they will. This research was supported by a grant from the National Institute of Child Health and Human Development (HD037082). We are grateful to Sarah Furlong, Marie Beasley, and Kathryn D. Schuler. Without their participation and support this work would not have been possible.

Testing the Tolerance Principle for rule productivity in an artificial grammar

<table>
<thead>
<tr>
<th>Number of exposures</th>
<th>Rule (R)</th>
<th>Exceptions (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5R/4e</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3R/6e</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

When children learn a language, they do not just memorize words or sentences; they acquire the patterns by which to make a noun plural. However, in some cases there are not strong patterns for how words change their form; these must indeed be memorized. When we repeated the same experiment with adults, they behaved quite differently than children, matching the token frequency of the “ka” inflection in their input. This effect is nearly categorical: almost every child forms a productive rule when the Tolerance Principle predicts that they will. Children form a productive rule when the Tolerance Principle predicts that they will. This research was supported by a grant from the National Institute of Child Health and Human Development (HD037082). We are grateful to Sarah Furlong, Marie Beasley, and Kathryn D. Schuler. Without their participation and support this work would not have been possible.

Testing the Tolerance Principle for rule productivity in an artificial grammar

<table>
<thead>
<tr>
<th>Number of exposures</th>
<th>Rule (R)</th>
<th>Exceptions (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5R/4e</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3R/6e</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

When children learn a language, they do not just memorize words or sentences; they acquire the patterns by which to make a noun plural. However, in some cases there are not strong patterns for how words change their form; these must indeed be memorized. When we repeated the same experiment with adults, they behaved quite differently than children, matching the token frequency of the “ka” inflection in their input. This effect is nearly categorical: almost every child forms a productive rule when the Tolerance Principle predicts that they will. Children form a productive rule when the Tolerance Principle predicts that they will. This research was supported by a grant from the National Institute of Child Health and Human Development (HD037082). We are grateful to Sarah Furlong, Marie Beasley, and Kathryn D. Schuler. Without their participation and support this work would not have been possible.

Testing the Tolerance Principle for rule productivity in an artificial grammar

<table>
<thead>
<tr>
<th>Number of exposures</th>
<th>Rule (R)</th>
<th>Exceptions (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5R/4e</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3R/6e</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

When children learn a language, they do not just memorize words or sentences; they acquire the patterns by which to make a noun plural. However, in some cases there are not strong patterns for how words change their form; these must indeed be memorized. When we repeated the same experiment with adults, they behaved quite differently than children, matching the token frequency of the “ka” inflection in their input. This effect is nearly categorical: almost every child forms a productive rule when the Tolerance Principle predicts that they will. Children form a productive rule when the Tolerance Principle predicts that they will. This research was supported by a grant from the National Institute of Child Health and Human Development (HD037082). We are grateful to Sarah Furlong, Marie Beasley, and Kathryn D. Schuler. Without their participation and support this work would not have been possible.

Testing the Tolerance Principle for rule productivity in an artificial grammar

<table>
<thead>
<tr>
<th>Number of exposures</th>
<th>Rule (R)</th>
<th>Exceptions (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5R/4e</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3R/6e</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

When children learn a language, they do not just memorize words or sentences; they acquire the patterns by which to make a noun plural. However, in some cases there are not strong patterns for how words change their form; these must indeed be memorized. When we repeated the same experiment with adults, they behaved quite differently than children, matching the token frequency of the “ka” inflection in their input. This effect is nearly categorical: almost every child forms a productive rule when the Tolerance Principle predicts that they will. Children form a productive rule when the Tolerance Principle predicts that they will. This research was supported by a grant from the National Institute of Child Health and Human Development (HD037082). We are grateful to Sarah Furlong, Marie Beasley, and Kathryn D. Schuler. Without their participation and support this work would not have been possible.

Testing the Tolerance Principle for rule productivity in an artificial grammar

<table>
<thead>
<tr>
<th>Number of exposures</th>
<th>Rule (R)</th>
<th>Exceptions (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5R/4e</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3R/6e</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

When children learn a language, they do not just memorize words or sentences; they acquire the patterns by which to make a noun plural. However, in some cases there are not strong patterns for how words change their form; these must indeed be memorized. When we repeated the same experiment with adults, they behaved quite differently than children, matching the token frequency of the “ka” inflection in their input. This effect is nearly categorical: almost every child forms a productive rule when the Tolerance Principle predicts that they will. Children form a productive rule when the Tolerance Principle predicts that they will. This research was supported by a grant from the National Institute of Child Health and Human Development (HD037082). We are grateful to Sarah Furlong, Marie Beasley, and Kathryn D. Schuler. Without their participation and support this work would not have been possible.

Testing the Tolerance Principle for rule productivity in an artificial grammar

<table>
<thead>
<tr>
<th>Number of exposures</th>
<th>Rule (R)</th>
<th>Exceptions (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5R/4e</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3R/6e</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

When children learn a language, they do not just memorize words or sentences; they acquire the patterns by which to make a noun plural. However, in some cases there are not strong patterns for how words change their form; these must indeed be memorized. When we repeated the same experiment with adults, they behaved quite differently than children, matching the token frequency of the “ka” inflection in their input. This effect is nearly categorical: almost every child forms a productive rule when the Tolerance Principle predicts that they will. Children form a productive rule when the Tolerance Principle predicts that they will. This research was supported by a grant from the National Institute of Child Health and Human Development (HD037082). We are grateful to Sarah Furlong, Marie Beasley, and Kathryn D. Schuler. Without their participation and support this work would not have been possible.

Testing the Tolerance Principle for rule productivity in an artificial grammar

<table>
<thead>
<tr>
<th>Number of exposures</th>
<th>Rule (R)</th>
<th>Exceptions (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5R/4e</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3R/6e</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

When children learn a language, they do not just memorize words or sentences; they acquire the patterns by which to make a noun plural. However, in some cases there are not strong patterns for how words change their form; these must indeed be memorized. When we repeated the same experiment with adults, they behaved quite differently than children, matching the token frequency of the “ka” inflection in their input. This effect is nearly categorical: almost every child forms a productive rule when the Tolerance Principle predicts that they will. Children form a productive rule when the Tolerance Principle predicts that they will. This research was supported by a grant from the National Institute of Child Health and Human Development (HD037082). We are grateful to Sarah Furlong, Marie Beasley, and Kathryn D. Schuler. Without their participation and support this work would not have been possible.

Testing the Tolerance Principle for rule productivity in an artificial grammar

<table>
<thead>
<tr>
<th>Number of exposures</th>
<th>Rule (R)</th>
<th>Exceptions (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5R/4e</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3R/6e</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

When children learn a language, they do not just memorize words or sentences; they acquire the patterns by which to make a noun plural. However, in some cases there are not strong patterns for how words change their form; these must indeed be memorized. When we repeated the same experiment with adults, they behaved quite differently than children, matching the token frequency of the “ka” inflection in their input. This effect is nearly categorical: almost every child forms a productive rule when the Tolerance Principle predicts that they will. Children form a productive rule when the Tolerance Principle predicts that they will. This research was supported by a grant from the National Institute of Child Health and Human Development (HD037082). We are grateful to Sarah Furlong, Marie Beasley, and Kathryn D. Schuler. Without their participation and support this work would not have been possible.
Training and Wug test

Experimenter says "gentif norg."

Child says "gentif ____"

"gentif mawg ka"

"gentif lepal tay"

"gentif tomber ka"

"gentif mawg"
Children are categorical!

English past tense!

<table>
<thead>
<tr>
<th></th>
<th>5R/4E</th>
<th>3R/6E</th>
</tr>
</thead>
<tbody>
<tr>
<td># children using rule 100%</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td># children using rule <100%</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

No **frequency-based** regularization of -ka. Adults probability match.
Why it isn’t Bayesian-optimal

I gave a book to the library.
I gave the library a book.
I donated a book to the library.
*I donated the library a book

• The target grammar is \textbf{g}, and the learner has conjectured \textbf{G}: how does the learner back off to \textbf{g}, without negative evidence?

• Hypothesis ordering (Angluin 1980, Berwick 1985)

• Indirect negative evidence (Gold1967, Chomsky 1981)

• Pinker (1989, p40): “virtually a restatement of the original learning problem.”
Bayesian Inference

- Prior probabilities: $P(g)$ and $P(G)$
- Data: D
- Likelihood function: $P(D|g)$ and $P(D|G)$
 - A hypothesis assigns a probabilistic distribution to the set of admissible strings
 - Unattested but admissible strings lowers $P(D|G)$
- Posterior probability: $P(g)P(D|g)$ vs. $P(G)P(D|G)$
- Select the better hypothesis
There's another way to phrase that and that is that the absence of evidence is not evidence of absence. ... Simply because you do not have evidence that something exists does not mean that you have evidence that it doesn't exist.
Complexity

• How to determine which is bigger hypothesis (g vs. G)

• Innate hypothesis ordering: can’t be entirely true

• Computed online:

 • generally uncomputable (Osherson, Stob, & Weinstein 1986)

 • provably intractable (Luby 1993, Chickering et al. 2004, Fodor & Sakas 2011)

 • even approximation methods are NP-hard (Kwisthout et al. 2013)
Non-optimal performance

- Perfors, Tenenbaum, & Wonnacott (2010): dative constructions via hierarchical Bayesian models
 - MLE works equally well (Villavicencio, Berwick, & Malioutov 2013)
- Frank, Goodman, & Tenenbaum (2009): Bayesian model of word learning
 - A reinforcement learning model performs better on child-directed English data (Stevens, Trueswell, Gleitman, & Yang, 2014, under review)
Optimality

• But language is inherently variant (Weinreich et al. 1968)

 • Children are capable of acquiring probabilistic/variable rules along with their structural conditionings (Labov & Roberts 1996)

 • Competing grammars in language learning and change (Kroch 1989, Yang 2000, Han, Lidz, & Mussolini 2016): Optimality predicts no change

 • Probability matching remains a challenge for Bayesian models (Suppes 1966) and straightforwardly applies to language variation (Yang 2002, 2002)

• The best still is not good enough: Morphological gaps (Polish, Russian, English, Spanish, French …)
Effectiveness: Why there are no asleep cats
Frequency-based expectation: sufficiently frequent adjectives failing to appear as **AN**

Paraphrase (Uniqueness, Mutual Exclusivity, Principle of Contrast): “the cat that is asleep” **instead of AN**
Data

• 180,000 parsed sentences from child-directed English
• 6 million words of child-directed English text
many more frequent adjectives only appeared predicatively but can appear attributively without difficulty (careful, sorry, ready, …)
Finding Paraphrases

180,000 utterances

“nice cat”
8467/575

“cat that is nice”
65/46
440,000 words of CDS
6 million words of CDS
A positive solution

- The statistical distribution of a-adjective usage does not rule out the over-hypothesis: indirect negative evidence, Bayesian or otherwise, is ineffective.

- Solution: Avoid over-hypothesis!
A- is the key

• Creation of new words (Salkoff 1983, *Language*)

• The tree is abud with green shoots.
 ? An abud tree is a beautiful thing to see.

• The water is afizz with bubbles.
 ? The afizz water was everywhere.
A+stem

- Non-a-adjectives:
 - The **above** examples
 - The **aloof** professor
 - The **alert** student
 - The **astute** investor
 - The **amazing** car
A-adjectives are not Atypical

• The teacher is present. *The present teacher
• The receptionist is out. *The out receptionist.
• The batter is up. *The up batter.
• The runner is on. *The on runner.
• The game is over. *The over game.
• The delivery is here/there. *The here/there delivery.
Prepositional Phrases

• The ball is out of sight. *The out of sight ball.
• The dog is behind the fence. *The behind the fence dog.
• The singers are at ease. *The at ease singers.
• The marbles are in the jar. *The in the jar marbles.
Special adverbs

- I was well/wide awake at 4am.
- The race leader is well ahead.
- The baby fell right/sound asleep.
- You can go right ahead.
- The guards are well aware (of the danger).
The cat came straight out.
The answer was wide off.
The arrow was shot well over.
The ball sailed far out.

*The car is right/straight/well new/nice/red.

*The politician is right/straight/well annoying/amazing/available.
Morphological Partitioning

• Morphological condition: extracted all adjectives, removed initial schwa to obtain a phonotactically valid remainder
 • Assume children can do morphological segmentation (Brown 1970, Peters 1983)
 • Analysis of 6 million words of child directed English

• afraid, awake, aware, ashamed, ahead, alone, apart, around, asleep, alike, away, across

• amazing, annoying, allergic, available, adorable, another, american, attractive, approachable, acceptable, agreeable, affectionate, adept, above, aberrant
Adverbial Modification

• 8 out of 12 a-adjectives are **right** modified (3 to >100)
 • are you **wide** awake?
 • I’m **well** aware of my shortcomings
 • thank you go **right** ahead.
 • it fell **right** apart on you.
 • turn **right** around.
 • finish the book **right** away.
 • he fell **fast** asleep.
 • we are coming **right** across.
• No non-a-adjectives are **right** modified at all
• Numerous instances of **right here, right under the table**
It walks like a duck, quacks like a duck …
Big data may be harmful!

- Speakers reliably have judgement for a-adjectives
- 12 appear in a year’s speech, 8 have signatures
- 51 million word corpus (SUBTLEX-US), only 28 a-adjectives
 - very unlikely that most of them have signatures
- If the child were to know many more a-adjectives, the generalization may not be valid:
 - 8/12 is fine, but 10/28 is not fine
Early productivity

Figure 1a

- Lin’s CCC: $\rho_c=0.977$, 95% CI 0.925-0.993
Productivity without a Model

- David’s homesign combinations: nominals with 12 predicate classes
- Goldin-Meadow & Yang (in press): $\rho_c=0.975$, 95% CI 0.926-0.992.
Adam’s Mother

- Adam’s mother:

 - 914 singular nouns, only 34% are used with both a/n and the

- A third of the batters are observed to switch-hit:

 - Do all of them switch hit?
Study Reveals:
Babies Are Stupid

Above: Despite their relatively large cranial capacities, babies such as this one are so unintelligent that they are unable to distinguish colorful plastic squeak toys from food sources.
Less may/must be more

- Top 50 most frequent nouns: 43 appear with both
- Top 100 most frequent nouns: 87 appear with both
- Limiting attention to the most frequent, and potentially more “important”, items in language may be necessary for the successful acquisition of language (Newport, Elman)
- Current projects jointly led with Mitch Marcus are exploring and exploiting these ideas in NLP
Part III: Numbers

• Successor function: Discrete infinity

• Claim: Learning a **productive** numeral system, i.e., the language-specific morphosyntactic system that goes on in a predictable fashion, is a **sufficient** condition for inducing/learning/triggering the successor function

• Proposal: Identify the conditions under which a productive numeral system can be acquired

 • E.g., the child needs to learn the numeral word up to \(N \) such that a productive **rule** can be learned in the presence of **idiosyncratic** numerals
Example I: English

one two three four five six seven eight nine ten

eleven twelve thirteen fourteen fifteen sixteen seventeen

eighteen nineteen twenty 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50

51 52 53 54 55 56 57 58 59 60 ...

e_{\text{max}}=17, \min(N_{\text{max}})=73

If 1-10 are idiosyncratic, the child needs to learn a lot more numerals than 1-10 to have successor function even for small numbers.
Example II: Chinese

一二三四五六七八九十
十一 十二 十三 十四 十五 十六 十七 十八 十九 二十
twenty-one twenty-two twenty-three twenty-four twenty-five

$e_{\text{max}}=11$, $\min(N_{\text{max}})=40$
Suggestions

• Successor function may be induced/triggered by the acquisition of the productive numeral system in a specific language
 • which requires a vocabulary of certain size (not necessarily consecutive)

• There will be cross-linguistic differences
 • Including languages that may fail to trigger the successor function (Barner, Pica, Spelke)

• There will be cross-individual differences
 • Children with larger vocabulary may have an advantage
Back to language

- Language/number has the **capacity** for discrete infinity
- Different languages allow for different degrees of recursion in different domains
 - Maria’s neighbor’s friend’s house (English)
 - * Marias Nachbars Freundin Haus (German)
 - And there is Piraha …
- Proposal: a single learning system for language and numbers
Summary

• Language poses a lot of hard problems for learning theories
 • Specific linguistic details matter
• (Some) learning models are computationally complex and may not be effective
 • Traditional learnability research remains useful, and models that bridge Marrian levels should be the target
• Tightening the connection between language and numbers
 • One way to do so is to see how language learning supports number cognition
Relevant publications

(Forthcoming) Rage against the machine: Evaluation Metrics in the 21st century. Language Acquisition. (Bayesian critique, Marr levels)

(In press) Goldin-Meadow & Yang. Statistical evidence that a child can create a combinatorial linguistic system without linguistic input:Implications for language evolution. Neuroscience and Biobehavioral Review

(Under review) Stevens, Trueswell, Gleitman, & Yang. Pursuit of word meanings. (Resource-limited online learning vs. cross-situational learning)
Thanks

- Susan Goldin-Meadow
- Lila Gleitman
- Mitch Marcus
- Elissa Newport
- John Trueswell

Constantine Lignos (BBN) Kyle Gorman (Google Research) Kathryn Schuler (Georgetown) Jon Stevens (ZAS Berlin)