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394 Natural Selection

between populations, and among species. According to Lewontin (1970), the biparental }ex'el
“givés\ghe great advantage that the evolution of the entlr? populaggn, rather thag a s.mglé;
lineage, is promoted by selection.” Under constant selection conditions! the multiplicity of
genotypes resulting from the sexual process in biparental organisms dllows for an immense
diversity on Whiqh selection may act, while with clonal organismg genic diversity is more
restricted to acqui%'\tion by mutation. Under changing conditions! it is obvious according to
Wright “that the prosgss of continual readaptation would b/more effective if it could be
based on the adaptiven\e\ss of genotypes or systems of thesg£than merely on the momentary
net effects of the separate genes.” Consequently. in the agdptiveness of several gene pools to
communities or several demes\within a species to th€ entire species, interdeme selection
leading to various adaptive leve\TN_ncluding races/and species is of vast importance. Of
course, linear, diversifying, and stabﬂ}'z\ing selectién acts at all these levels, not as mutually
exclusive forces but as overlapping ones,so thayin natural populations the mode of selection
may be difficult or nearly impossible tm@{s\c‘irn. Only when we apply selection exper-

imentally in the laboratory or in breeding £an we be more certain of the goal to be attained.
The instances in which actual specific seléctive action has been ascertained in nature are very
few indeed, and a considerable amounpt of attentﬁn should be given in future to finding out
what selective differences genotypeg'may have in nﬁ\ure. At this time, more than 100 years
after the Darwin-Wallace papers/on the subject, we axg still quite in the dark when we ask
somewhat metaphorical questgﬂﬁs: “What is selection atming at in the population?” “What
are the selective agents in oupenvironmental niche?” Nevertheless, the few cases of which we
are reasonably certain de_;rfonstrate how powerful and ho%\subtle the action of natural
selection may be. For sgﬁeral examples, consult Endler (1986)?\\

While natural selgftion and artificial selection differ in tha the first is directed by
relative fitness of hereditary traits under specified conditions and the'second is goal-directed
by the experimeni€r, they share the common element that the effectivgness of selection in
producing a response depends on (1) modes and intensity of selection. (2)\e{ction of genes as
manifested in/phenotypes being selected, and (3) the amount and archited{ure of genetic
variability i‘}{the population. The result of these factors—the adapted populatign following
the action/of natural selection or the “improved™ population following artificial Selection—
demonstfates the powerful yet varied property of the entire process. With numerous\genetic
pathways available to selection, populations with various genotypes initially may res nd
with/parallel outcome; conversely, under various selective pressures, a single population may
give diverse responses.

THE SIMPLEST CASE OF SELECTION

For selection to produce a directed change in the gene pool, only two ingredients are
essential: a reproductive difference between genotypes and the duplicating ability of the
genetic material. In order to establish some fundamental principles and definitions, we begin
with a hypothetical example of selection in a haploid organism. We may visualize a
population of haploid prokaryotic organisms stressed by a selective agent such as an
antibiotic at low concentration (in order not to kill all the cells) or a low dose of radiation to
separate sensitive from the more resistant cells. Further, we assume:

1. Two alleles exist in the population initially, A and g, in equal frequencies (p =g =0.5).
2. Reproduction is by simple fission with no sexual phase.
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3. The ability of 4 to get through its life cycle and reproduce, leaving one offspring per
one parent individual, is better than the ability of a allele under the specified
environmental conditions; for example, for every 100 new A4 individuals produced by
one life cycle from A parents, only 90 new « individuals are produced in the same life
cycle by a parents. In brief, the Darwinian “fitness” of A4 relative to a is 1:0.9; and we
assume fitness remains constant over all generations.

4. The environment can support a constant number of individuals in a generation. If
these haploid organisms double their number of their life cycle, the “struggle for
existence” will cause all to be lost except that constant number. We call this number
100%. For example, if the population consisted of 1000 individuals initially
(500 4:500 a), and they all divided by binary fission, making a total of 2000 progeny,
the number must be rduced back to 1000 in the “struggle for existence.”

Given these assumptions, the changes in frequencies of the two kinds of organisms (or
genotypes) will take place as given in Table 14-1A. It is important to have clearly in mind the
meaning of the calculations in the first generation. First, we might imagine that the organism
only reproduces by making a single copy of itself and that the 4 individuals are 10% better
at doing that than the ¢ individuals. But this interpretation is not what is meant by the
calculation, because such an implication would result in a lowering of the total progeny
number. It is more meaningful to recall condition 4, above—that both 4 and a reproduce
themselves by doubling and that the environment will support only a constant number. To
make the relative numbers add up to a constant total, we “normalize” the relative survival
numbers from the row “after selection.” These relative “after-selection” numbers are merely
the product of fitness x frequency of each genotype in order to calculate the mean fitness,
given at the end of that line as 0.950. (The student should recall the formula for arithmetic
average ?zz_f Y;/n for data grouped by frequency.) We now have a total progeny = 100%.
There would consequently be a probability for any individual in G, to be A4 genotype
=0.500/0.950=0.5263; for ¢ =0.450/0.950=0.4737, or a ratio of 1:0.900.

If the fitnesses remain constant (condition 3) each generation, for each round of life cycle
the mean fitness and relative proportions of progeny surviving will be occurring as in the
calculated illustration. It is evident that there is a rise both in the “favored” allele (4) and in
the mean fitness (boxed in Table 14-1). Briefly, the objective of natural selection is to
maximize the mean fitness of the population by ridding the population of the less-fit allele.
We may say that the population “suffers a genetic load” (using H. J. Muller’s term) as long as
the less fit allele is present. We merely imply by this metaphorical phrase that the population
is not reproducing at its potentially maximum efficiency for the conditions under which
these genotypes have the fitness values we have assumed.

The rate at which a is eliminated changes as the limit is approached. We symbolize these
changes algebraically to generalize them, using the symbols employed by Wright (1931) for
relative fitness (selective) values of the two genotypes: W, and W, (1 and 0.90, respectively),
which may stand for “weight” given by relative selective effects of conditions on the two
genotypes. Alternatively, the less-fit genotype may be thought of as having a disadvantage
{0.10), which may be symbolized as the selection coefficient s=1— W, in this case. More
generally, the genotype fitness is W;=1—s,. Mean fitness W= fW,, with frequencies
usually p, g values (or genotype frequencies in diploids). Calculations would proceed then as
in Table 14-1B. The student should verify the calculations in the A portion of the table by
applying the symbols from the B portion.
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TABLE 14-1 Haploid Selection

A Simple haploid selection: assuming initial p = g = 0.5, relative fitness
values of 14:0.9a per generation, and a constant number of individuals
(100 percent) per generation. Mean fitness values (3| / W) are in boxes
at right.

Genotypes

Generation A a Totals

Initial frequency (parents) 0.500 = p, 0.500 = g, 1.000
1

G, fitness 0.90

After selection 0.500 0.450 0.950
G, (relative) 0.526 = p, 0474 = q, 1.000
Fitness 1 0.90

After selection 0.526 0.427 0.953
G, (relative) 0.552 = p, 0.448 = q, 1.000
Fitness 1 0.90

After selection 0.552 0.403 0.955
G, (relative) 0.578 = p; 0422 = g, 1.000
Limit G, 1000 =p, 0=gq,

B Symbolically, these data may be represented as follows

G, p +q 1.00
Fitness (W) W, W,
Or 1 (1 —y3)
Product (after selection)  pW, + qgW, > W =W
Or p +4q4—-59 (1 — sq)
G, (relative) p/(W) +(q — sq)/(W) 1.00
Or p/(l — sq) + (g — sg)/(1 — sq)  1.00
. . - —-sq(l -
Change in ¢ per generation: Ag = A7 qg= sl 9)
(1 - sq) (1 = sq)
W, w, - W,
or more generally in terms of W;: Ag = i N q= (W, ~ Wipq
PWs + qW, w

The change in allele frequency per generation (Ag) is easily calculated by subtracting the

original g value from the new g value [g(1 —s)/(1 —sq)] at the bottom of Table 14-1B.

—sq(l—q) —(W,—W,)q(1—
Ag= iq( q9) _ —(W,—Wi)q(1-q) (14-1)
—3q w
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(rate of change in ¢ under haploid selection). From Exercise 1 the student should note that
this rate of change decreases as the less-fit allele becomes rarer. The denominator (14-1)
approaches a value of 1 as ¢ — 0, and the rate approaches the allelic frequency product (pq)
x the selection coefficient s. It is constantly negative (downward in g), so that the limit can
only be g =0. If we ask whether there can be a stable equilibrium by setting Ag=0, we see
that no solution except g =0 or 1 will satisfy the equation. We call this equilibrium “trivial”
because it is more or less self-evident.

Finally, we may consider the number of generations it would take for selection to
produce a given change in ¢. From (14-1), if we dismiss the denominator as negligible when
the product sq is very small, the rate of change can be envisioned as a continuous function so
that (14-1) may be expressed as a differential equation where 1 refers to time in generations.

dg q
—=—5¢g(l—¢q) or
T T )

gt a‘ t
J L —s j dt
qo Q(l 7(1) 0
where r= generations for a given change in ¢ value from ¢, to g,. The solution is

tzlogt’ l:@_(l_—ir)} /s (14_2)
q.(1 —qo) |/

iwhere log, =2.3026 log, ). For example where s =0.10, if we wish to estimate the number of
zenerations to change from ¢, =0.05 to ¢,=0.005, we should have as follows:

 — o 0.05(0.995)
i 0.005(0.95) Ol

1
t=log, [10.4737] (bwl—) =23.5 generations

= —sdt

Integrating both sides gives

CTION AGAINST RECESSIVE
HOMOZYGOTES _—

P . . . . . . ,;f‘/)‘./’
W 1th dlploxd and the accompanying increase in genotypes at a locus, the relative dlﬂ"erences

,,,,

’irge population random matifig.to produee genotypes from gametes, Mendelian segre-
zation, and no other forces actmg, the population), (2) constant Darwinian fitness
throughout, (3) a single palr,@f’alleles at the locus, and (4) selection acting between the
zvgotic stage and the-adult.
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