

Memory and the
Computational Brain

9781405122870_1_pre.qxd 23/1/09 11:07 AM Page i

Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience C. R. Gallistel
and Adam Philip King © 2010 C. R. Gallistel and Adam Philip King ISBN: 978-1-405-12287-0

Memory and the
Computational Brain
Why Cognitive Science Will
Transform Neuroscience

C. R. Gallistel and Adam Philip King

A John Wiley & Sons, Ltd., Publication

9781405122870_1_pre.qxd 23/1/09 11:07 AM Page iii

This edition first published 2010
© 2010 C. R. Gallistel and Adam Philip King

Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell’s publishing
program has been merged with Wiley’s global Scientific, Technical, and Medical business to form
Wiley-Blackwell.

Registered Office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ,
United Kingdom

Editorial Offices
350 Main Street, Malden, MA 02148-5020, USA
9600 Garsington Road, Oxford, OX4 2DQ, UK
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, for customer services, and for information about
how to apply for permission to reuse the copyright material in this book please see our
website at www.wiley.com/wiley-blackwell.

The right of C. R. Gallistel and Adam Philip King to be identified as the authors of this
work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988,
without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks.
All brand names and product names used in this book are trade names, service marks,
trademarks or registered trademarks of their respective owners. The publisher is not
associated with any product or vendor mentioned in this book. This publication is
designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the publisher is not engaged in
rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data
Gallistel, C. R., 1941–

Memory and the computational brain : why cognitive science will transform neuroscience /
C. R. Gallistel and Adam Philip King.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4051-2287-0 (alk. paper) — ISBN 978-1-4051-2288-7 (pbk. : alk. paper)

1. Cognitive neuroscience. 2. Cognitive science. I. King, Adam Philip. II. Title.
QP360.5G35 2009
612.8′2—dc22

2008044683

A catalogue record for this book is available from the British Library.

Set in 10/12.5pt Sabon by Graphicraft Limited, Hong Kong
Printed in Singapore

1 2010

9781405122870_1_pre.qxd 23/1/09 11:07 AM Page iv

Contents

Preface viii

1 Information 1
Shannon’s Theory of Communication 2
Measuring Information 7
Efficient Coding 16
Information and the Brain 20
Digital and Analog Signals 24
Appendix: The Information Content of Rare Versus Common 25

Events and Signals

2 Bayesian Updating 27
Bayes’ Theorem and Our Intuitions about Evidence 30
Using Bayes’ Rule 32
Summary 41

3 Functions 43
Functions of One Argument 43
Composition and Decomposition of Functions 46
Functions of More than One Argument 48
The Limits to Functional Decomposition 49
Functions Can Map to Multi-Part Outputs 49
Mapping to Multiple-Element Outputs Does Not Increase 50

Expressive Power
Defining Particular Functions 51
Summary: Physical/Neurobiological Implications of Facts 53

about Functions

4 Representations 55
Some Simple Examples 56
Notation 59
The Algebraic Representation of Geometry 64

9781405122870_1_pre.qxd 23/1/09 11:08 AM Page v

vi Contents

5 Symbols 72
Physical Properties of Good Symbols 72
Symbol Taxonomy 79
Summary 82

6 Procedures 85
Algorithms 85
Procedures, Computation, and Symbols 87
Coding and Procedures 89
Two Senses of Knowing 100
A Geometric Example 101

7 Computation 104
Formalizing Procedures 105
The Turing Machine 107
Turing Machine for the Successor Function 110
Turing Machines for fis_even 111
Turing Machines for f+ 115
Minimal Memory Structure 121
General Purpose Computer 122
Summary 124

8 Architectures 126
One-Dimensional Look-Up Tables (If-Then Implementation) 128
Adding State Memory: Finite-State Machines 131
Adding Register Memory 137
Summary 144

9 Data Structures 149
Finding Information in Memory 151
An Illustrative Example 160
Procedures and the Coding of Data Structures 165
The Structure of the Read-Only Biological Memory 167

10 Computing with Neurons 170
Transducers and Conductors 171
Synapses and the Logic Gates 172
The Slowness of It All 173
The Time-Scale Problem 174
Synaptic Plasticity 175
Recurrent Loops in Which Activity Reverberates 183

11 The Nature of Learning 187
Learning As Rewiring 187
Synaptic Plasticity and the Associative Theory of Learning 189
Why Associations Are Not Symbols 191

9781405122870_1_pre.qxd 23/1/09 11:08 AM Page vi

Contents vii

Distributed Coding 192
Learning As the Extraction and Preservation 196

of Useful Information
Updating an Estimate of One’s Location 198

12 Learning Time and Space 207
Computational Accessibility 207
Learning the Time of Day 208
Learning Durations 211
Episodic Memory 213

13 The Modularity of Learning 218
Example 1: Path Integration 219
Example 2: Learning the Solar Ephemeris 220
Example 3: “Associative” Learning 226
Summary 241

14 Dead Reckoning in a Neural Network 242
Reverberating Circuits as Read/Write Memory Mechanisms 245
Implementing Combinatorial Operations by Table-Look-Up 250
The Full Model 251
The Ontogeny of the Connections? 252
How Realistic Is the Model? 254
Lessons to Be Drawn 258
Summary 265

15 Neural Models of Interval Timing 266
Timing an Interval on First Encounter 266
Dworkin’s Paradox 268
Neurally Inspired Models 269
The Deeper Problems 276

16 The Molecular Basis of Memory 278
The Need to Separate Theory of Memory from Theory of 278

Learning
The Coding Question 279
A Cautionary Tale 281
Why Not Synaptic Conductance? 282
A Molecular or Sub-Molecular Mechanism? 283
Bringing the Data to the Computational Machinery 283
Is It Universal? 286

References 288
Glossary 299
Index 312

9781405122870_1_pre.qxd 23/1/09 11:08 AM Page vii

Preface

This is a long book with a simple message: there must be an addressable read/write
memory mechanism in brains that encodes information received by the brain into
symbols (writes), locates the information when needed (addresses), and transports
it to computational machinery that makes productive use of the information
(reads).

Such a memory mechanism is indispensable in powerful computing devices, and
the behavioral data imply that brains are powerful organs of computation. Computa-
tional cognitive scientists presume the existence of an addressable read/write mem-
ory mechanism, yet neuroscientists do not know of, and are not looking for, such a
mechanism. The truths the cognitive scientists know about information processing,
when integrated into neuroscience, will transform our understanding of how the
brain works.

An example of such a transformation is the effect that the molecular identi-
fication of the gene had on biochemistry. It brought to biochemistry a new concep-
tual framework. The foundation for this new framework was the concept of a code
written into the structure of the DNA molecule. The code concept, which had no
place in the old framework, was foundational in the new one. On this foundation,
there arose an entire framework in which the duplication, transcription, translation,
and correction of the code were basic concepts.

As in biochemistry prior to 1953, one can search through the literature on the
neurobiology of memory in vain for a discussion of the coding question: How do
the changes wrought by experience in the physical structure of the memory mech-
anism encode information about the experience? When experience writes to mem-
ory the distance and direction of a food source from a nest or hive, how are that
distance and that direction represented in the experientially altered structure of
the memory mechanism? And how can that encoded information be retrieved and
transcribed from that enduring structure into the transient signals that carry that
same information to the computational machinery that acts on this information?
The answers to these questions must be at the core of our understanding of the
physical basis of memory in nervous tissue. In the voluminous contemporary liter-
ature on the neurobiology of memory, there is no discussion of these questions.
We have written this book in the hope of getting the scientific community that is

9781405122870_1_pre.qxd 23/1/09 11:08 AM Page viii

Preface ix

interested in how brains compute to focus on finding the answers to these critical
questions.

In elaborating our argument, we walk the reader through the concepts at the
heart of the scientific understanding of information technology. Although most stu-
dents know the terminology, the level of their understanding of the conceptual frame-
work from which it comes is often superficial. Computer scientists are, in our view,
to some extent to be faulted for this state of affairs. Computer science has been
central to cognitive science from the beginning, because it was through computer
science that the scientific community came to understand how it was possible to
physically realize computations. In our view, the basic insights taught in computer
science courses on, for example, automata theory, are a more secure basis for
considering what the functional architecture of a computational brain must be than
are the speculations in neuroscience about how brains compute. We believe that
computer science has identified the essential components of a powerful comput-
ing machine, whereas neuroscience has yet to establish an empirically secured under-
standing of how the brain computes. The neuroscience literature contains many
conjectures about how the brain computes, but none is well established. Unfor-
tunately, computer scientists sometimes forget what they know about the founda-
tions of physically realizable computation when they begin to think about brains.
This is particularly true within the neural network or connectionist modeling
framework. The work done in that tradition pays too much attention to neuroscient-
ific speculations about the neural mechanisms that supposedly mediate computation
and not enough to well-established results in theoretical and practical computer
science concerning the architecture required in a powerful computing machine, whether
instantiated with silicone chips or with neurons. Connectionists draw their com-
putational conclusions from architectural commitments, whereas computationalists
draw their architectural conclusions from their computational commitments.

In the first chapter, we explicate Shannon’s concept of communication and the
definition of information that arises out of it. If the function of memory is to carry
information forward in time, then we have to be clear about what information is.
Here, as in all of our chapters on the foundational concepts in computation, we
call attention to lessons of fundamental importance to understanding how brains
work. One such lesson is that Shannon’s conception of the communication process
requires that the receiver, that is, the brain, have a representation of the set of
possible messages and a probability distribution over that set. Absent such a rep-
resentation, it is impossible for the world to communicate information to the brain,
at least information as defined by Shannon, which is the only rigorous definition
that we have and the foundation on which the immensely powerful theory of infor-
mation has been built. In this same chapter, we also review Shannon’s ideas about
efficient codes, ideas that we believe will inform the neuroscience of the future, for
reasons that we touch on repeatedly in this book.

Informative signals change the receiver’s probability distribution, the probability
of the different states of the world (different messages in a set of possible messages).
The receiver’s representation after an information-bearing signal has been received
is the receiver’s posterior probability distribution over the possible values of an
empirical variable, such as, for example, the distance from the nest to a food source

9781405122870_1_pre.qxd 23/1/09 11:08 AM Page ix

x Preface

or the rate at which food has been found in a given location. This conception puts
Bayes’ theorem at the heart of the communication process, because it is a theorem
about the normative (correct) way in which to update the receiver’s representation
of the probable state of the world. In Chapter 2, we take the reader through the
Bayesian updating process, both because of its close connection to Shannon’s
conception of the communication process, and because of the ever growing role of
Bayesian models in contemporary cognitive science (Chater, Tenenbaum, & Yuille,
2006). For those less mathematically inclined, Chapter 2 can be skipped or
skimmed without loss of continuity.

Because communication between the brain and the world is only possible, in a
rigorous sense, if the brain is assumed to have a representation of possible states
of the world and their probabilities, the concept of a representation is another
critical concept. Before we can explicate this concept, we have to explicate a con-
cept on which it (and many other concepts) depends, the concept of a function.
Chapter 3 explains the concept of a function, while Chapter 4 explains the con-
cept of a representation.

Computations are the compositions of functions. A truth about functions of
far-reaching significance for our understanding of the functional architecture of the
brain is that functions of arbitrarily many arguments may be realized by the com-
position of functions that have only two arguments, but they cannot be realized
by the composition of one-argument functions. The symbols that carry the two
values that serve as the arguments of a two-argument function cannot occupy phys-
ically adjacent locations, generally speaking. Thus, the functional architecture of
any powerful computing device, including the brain, must make provision for bring-
ing symbols from their different locations to the machinery that effects the primit-
ive two-argument functions, out of which the functions with many arguments are
constructed by composition.

A representation with wide-ranging power requires computations, because the
information the brain needs to know in order to act effectively is not explicit
in the sensory signals on which it depends for its knowledge of the world. A read/write
memory frees the composition of functions from the constraints of real time by
making the empirically specified values for the arguments of functions available at
any time, regardless of the time at which past experience specified them.

Representations are functioning homomorphisms. They require structure-preserving
mappings (homomorphisms) from states of the world (the represented system) to
symbols in the brain (the representing system). These mappings preserve aspects of
the formal structure of the world. In a functioning homomorphism, the similarity
of formal structure between symbolic processes in the representing system and aspects
of the represented system is exploited by the representing system to inform the actions
that it takes within the represented system. This is a fancy way of saying that the
brain uses its representations to direct its actions.

Symbols are the physical stuff of computation and representation. They are the
physical entities in memory that carry information forward in time. They become,
either directly or by transcription into signals, the arguments of the procedures that
implement functions. And they embody the results of those computations; they carry
forward in explicit, computationally accessible form the information that has

9781405122870_1_pre.qxd 23/1/09 11:08 AM Page x

Preface xi

been extracted from transient signals by means of those computations. To achieve
a physical understanding of a representational system like the brain, it is essential
to understand its symbols as physical entities. Good symbols must be distinguish-
able, constructible, compact, and efficacious. Chapter 5 is devoted to explicating
and illustrating these attributes of good symbols.

Procedures, or in more contemporary parlance algorithms, are realized through
the composition of functions. We make a critical distinction between procedures
implemented by means of look-up tables and what we call compact procedures.
The essence of the distinction is that the specification of the physical structure of
a look-up table requires more information than will ever be extracted by the use
of that table. By contrast, the information required to specify the structure of a
mechanism that implements a compact procedure may be hundreds of orders of
magnitude less than the information that can be extracted using that mechanism.
In the table-look-up realization of a function, all of the singletons, pairs, triplets,
etc. of values that might ever serve as arguments are explicitly represented in
the physical structure of the machinery that implements the function, as are all the
values that the function could ever return. This places the table-look-up approach
at the mercy of what we call the infinitude of the possible. This infinitude is mer-
ciless, a point we return to repeatedly.

By contrast, a compact procedure is a composition of functions that is guaran-
teed to generate (rather than retrieve, as in table look-up) the symbol for the value
of an n-argument function, for any arguments in the domain of the function. The
distinction between a look-up table and a compact generative procedure is critical
for students of the functional architecture of the brain. One widely entertained func-
tional architecture, the neural network architecture, implements arithmetic and other
basic functions by table look-up of nominal symbols rather than by mechanisms that
implement compact procedures on compactly encoded symbols. In Chapter 6, we
review the intimate connection between compact procedures and compactly encoded
symbols. A symbol is compact if its physical magnitude grows only as the logarithm
of the number of distinct values that it can represent. A symbol is an encoding
symbol if its structure is dictated by a coding algorithm applied to its referent.

With these many preliminaries attended to, we come in Chapter 7 to the exposi-
tion of the computer scientist’s understanding of computation, Turing computabil-
ity. Here, we introduce the standard distinction between the finite-state component
of a computing machine (the transition table) and the memory (the tape). The distinc-
tion is critical, because contemporary thinking about the neurobiological mechan-
ism of memory tries to dispense with the tape and place all of the memory in the
transition table (state memory). We review well-known results in computer science
about why this cannot be a generally satisfactory solution, emphasizing the infinitude
of possible experience, as opposed to the finitude of the actual experience. We revisit
the question of how the symbols are brought to the machinery that returns the values
of the functions of which those symbols are arguments. In doing so, we explain
the considerations that lead to the so-called von Neumann architecture (the central
processor).

In Chapter 8, we consider different suggestions about the functional architec-
ture of a computing machine. This discussion addresses three questions seldom

9781405122870_1_pre.qxd 23/1/09 11:08 AM Page xi

xii Preface

addressed by cognitive neuroscientists, let alone by neuroscientists in general: What
are the functional building blocks of a computing machine? How must they be
configured? How can they be physically realized? We approach these questions by
considering the capabilities of machines with increasingly complex functional
structure, showing at each stage mechanical implementations for the functional com-
ponents. We use mechanical implementations because of their physical trans-
parency, the ease with which one can understand how and why they do what they
do. In considering these implementations, we are trying to strengthen the reader’s
understanding of how abstract descriptions of computation become physically real-
ized. Our point in this exercise is to develop, through a series of machines and
formalisms, a step-by-step argument leading up to a computational mechanism with
the power of a Turing machine. Our purpose is primarily to show that to get machines
that can do computations of reasonable complexity, a specific, minimal functional
architecture is demanded. One of its indispensable components is a read/write mem-
ory. Secondarily, we show that the physical realization of what is required is not
all that complex. And thirdly, we show the relation between descriptions of the
structure of a computational mechanism at various levels of abstraction from its
physical realization.

In Chapter 9, we take up the critical role of the addressability of the symbols in
memory. Every symbol has both a content component, the component of the sym-
bol that carries the information, and an address component, which is the compon-
ent by which the system gains access to that information. This bipartite structure
of the elements of memory provides the physical basis for distinguishing between
a variable and its value and for binding the value to the variable. The address of
a value becomes the symbol for the variable of which it is the value. Because the
addresses are composed in the same symbolic currency as the symbols themselves,
they can themselves be symbols. Addresses can – and very frequently do – appear
in the symbol fields of other memory locations. This makes the variables themselves
accessible to computation, on the same terms as their values. We show how this
makes it possible to create data structures in memory. These data structures encode
the relations between variables by the arrangement of their symbols in memory.
The ability to distinguish between a variable and its value, the ability to bind the
latter to the former, and the ability to create data structures that encode relations
between variables are critical features of a powerful representational system. All of
these capabilities come simply from making memories addressable. All of these cap-
abilities are absent – or only very awkwardly made present – in a neural network
architecture, because this architecture lacks addressable symbolic memories.

To bolster our argument that addressable symbolic memories are required by the
logic of a system whose function is to carry information forward in an accessible
form, we call attention to the fact that the memory elements in the genetic code
have this same bipartite structure: A gene has two components, one of which, the
coding component, carries information about the sequence of amino acids in a pro-
tein; the other of which, the promoter, gives the system access to that information.

In Chapter 10, we consider current conjectures about how the elements of a
computing machine can be physically realized using neurons. Because the sugges-
tion that the computational models considered by cognitive scientists ought to be

9781405122870_1_pre.qxd 23/1/09 11:08 AM Page xii

Preface xiii

neurobiologically transparent1 has been so influential in cognitive neuroscience, we
emphasize just how conjectural our current understanding of the neural mechanisms
of computation is. There is, for example, no consensus about such a basic ques-
tion as how information is encoded in spike trains. If we liken the flow of infor-
mation between locations in the nervous system to the flow of information over a
telegraph network, then electrophysiologists have been tapping into this flow for
almost a century. One might expect that after all this listening in, they would have
reached a consensus about what it is about the pulses that conveys the informa-
tion. But in fact, no such consensus has been reached. This implies that neurosci-
entists understand as much about information processing in the nervous system as
computer scientists would understand about information processing in a computer
if they were unable to say how the current pulses on the data bus encoded the
information that enters into the CPU’s computations.

In Chapter 10, we review conventional material on how it is that synapses can
implement elementary logic functions (AND, OR, NOT, NAND). We take note of
the painful slowness of both synaptic processes and the long-distance information
transmission mechanism (the action potential), relative to their counterparts in an
electronic computing machine. We ponder, without coming to any conclusions, how
it is possible for the brain to compute as fast as it manifestly does.

Mostly, however, in Chapter 10 we return to the coding question. We point out
that the physical change that embodies the creation of a memory must have three
aspects, only one of which is considered in contemporary discussions of the mech-
anism of memory formation in neural tissue, which is always assumed to be
an enduring change in synaptic conductance. The change that mediates memory
formation must, indeed, be an enduring change. No one doubts that. But it must
also be capable of encoding information, just as the molecular structure of a gene
endows it with the capacity to encode information. And, it must encode informa-
tion in a readable way. There must be a mechanism that can transcribe the encoded
information, making it accessible to computational machinery. DNA would have
no function if the information it encodes could not be transcribed.

We consider at length why enduring changes in synaptic conductance, at least
as they are currently conceived, are ill suited both to encode information and, assum-
ing that they did somehow encode it, make it available to computation. The essence
of our argument is that changes in synaptic conductance are the physiologists’
conception of how the brain realizes the changes in the strengths of associative bonds.
Hypothesized changes in the strengths of associative bonds have been at the foun-
dation of psychological and philosophical theorizing about learning for centuries.
It is important to realize this, because it is widely recognized that associative bonds
make poor symbols: changes in associative strength do not readily encode facts about
the state of the experienced world (such as, for example, the distance from a hive
to food source or the duration of an interval). It is, thus, no accident that asso-
ciative theories of learning have generally been anti-representational (P. M. Church-
land, 1989; Edelman & Gally, 2001; Hoeffner, McClelland, & Seidenberg, 1996;

1 That is, they ought to rest on what we understand about how the brain computes.

9781405122870_1_pre.qxd 23/1/09 11:08 AM Page xiii

xiv Preface

Hull, 1930; Rumelhart & McClelland, 1986; Skinner, 1938, 1957; Smolensky,
1991). If one’s conception of the basic element of memory makes that element ill-
suited to play the role of a symbol, then one’s story about learning and memory
is not going to be a story in which representations figure prominently.

In Chapter 11, we take up this theme: the influence of theories of learning on
our conception of the neurobiological mechanism of memory, and vice versa.
Psychologists, cognitive scientists, and neuroscientists currently entertain two very
different stories about the nature of learning. On one story, learning is the process
or processes by which experience rewires a plastic brain. This is one or another
version of the associative theory of learning. On the second story, learning is
the extraction from experience of information about the state of the world, which
information is carried forward in memory to inform subsequent behavior. Put another
way, learning is the process of extracting by computation the values of variables,
the variables that play a critical role in the direction of behavior.

We review the mutually reinforcing fit between the first view of the nature of
learning and the neurobiologists’ conception of the physiological basis of memory.
We take up again the explanation of why it is that associations cannot readily be
made to function as symbols. In doing so, we consider the issue of distributed codes,
because arguments about representations or the lack thereof in neural networks often
turn on issues of distributed coding.

In the second half of Chapter 11, we expand on the view of learning as the extrac-
tion from experience of facts about the world and the animal’s relation to it, by
means of computations. Our focus here is on the phenomenon of dead reckoning,
a computational process that is universally agreed to play a fundamental role
in animal navigation. In the vast literature on symbolic versus connectionist ap-
proaches to computation and representation, most of the focus is on phenomena
for which we have no good computational models. We believe that the focus ought
to be on the many well-documented behavioral phenomena for which computa-
tional models with clear first-order adequacy are readily to hand. Dead reckoning
is a prime example. It has been computationally well understood and explicitly taught
for centuries. And, there is an extensive experimental literature on its use by ani-
mals in navigation, a literature in which ants and bees figure prominently. Here, we
have a computation that we believe we understand, with excellent experimental
evidence that it occurs in nervous systems that are far removed from our own on
the evolutionary bush and many orders of magnitude smaller.

In Chapter 12, we review some of the behavioral evidence that animals routinely
represent their location in time and space, that they remember the spatial locations
of many significant features of their experienced environment, and they remember
the temporal locations of many significant events in their past. One of us reviewed
this diverse and large literature at greater length in an earlier book (Gallistel, 1990).
In Chapter 12, we revisit some of the material covered there, but our focus is on
more recent experimental findings. We review at some length the evidence for episodic
memory that has been obtained from the ingenious experimental study of food caching
and retrieval in a species of bird that, in the wild, makes and retrieves food from
tens of thousands of caches. The importance of this work for our argument is that
it demonstrates clearly the existence of complex experience-derived, computationally

9781405122870_1_pre.qxd 23/1/09 11:08 AM Page xiv

Preface xv

accessible data structures in brains much smaller than our own and far removed
from ours in their location on the evolutionary bush. It is data like these that motiv-
ate our focus in an earlier chapter (Chapter 9) on the architecture that a memory
system must have in order to encode data structures, because these data are hard
to understand within the associative framework in which animal learning has
traditionally been treated (Clayton, Emery, & Dickinson, 2006).

In Chapter 13, we review the computational considerations that make learning
processes modular. The view that there are only one or a very few quite generally
applicable learning processes (the general process view, see, for example, Domjan,
1998, pp. 17ff.) has long dominated discussions of learning. It has particularly
dominated the treatment of animal learning, most particularly when the focus is
on the underlying neurobiological mechanism. Such a view is consonant with a
non-representational framework. In this framework, the behavioral modifications
wrought by experience sometimes make animals look as if they know what it is
about the world that makes their actions rational, but this appearance of symbolic
knowledge is an illusion; in fact, they have simply learned to behave more effect-
ively (Clayton, Emery, & Dickinson, 2006). However, if we believe with Marr (1982)
that brains really do compute the values of distal variables and that learning is
this extraction from experience of the values of variables (Gallistel, 1990), then
learning processes are inescapably modular. They are modular because it takes dif-
ferent computations to extract different representations from different data, as
was first pointed out by Chomsky (1975). We illustrate this point by a renewed
discussion of dead reckoning (aka path integration), by a discussion of the mech-
anism by which bees learn the solar ephemeris, and by a discussion of the special
computations that are required to explain the many fundamental aspects of clas-
sical (Pavlovian) conditioning that are unexplained by the traditional associative
approach to the understanding of conditioning.2

In Chapter 14, we take up again the question of how the nervous system might
carry information forward in time in a computationally accessible form in the absence
of a read/write memory mechanism. Having explained in earlier chapters why
plastic synapses cannot perform this function, we now consider in detail one of the
leading neural network models of dead reckoning (Samsonovich & McNaughton,
1997). This model relies on the only widely conjectured mechanism for perform-
ing the essential memory function, reverberatory loops. We review this model in
detail because it illustrates so dramatically the points we have made earlier about
the price that is paid when one dispenses with a read/write memory. To our mind,
what this model proves is that the price is too high.

In Chapter 15, we return to the interval timing phenomena that we reviewed in
Chapter 12 (and, at greater length, in Gallistel, 1990; Gallistel & Gibbon, 2000;
Gallistel & Gibbon, 2002), but now we do so in order to consider neural models

2 This is the within-field jargon for the learning that occurs in “associative” learning paradigms.
It is revelatory of the anti-representational foundations of traditional thinking about learning. It is called
conditioning because experience is not assumed to give rise to symbolic knowledge of the world. Rather,
it “conditions” (rewires) the nervous system so that it generates more effective behavior.

9781405122870_1_pre.qxd 23/1/09 11:08 AM Page xv

xvi Preface

of interval timing. Here, again, we show the price that is paid by dispensing with
a read/write memory. Given a read/write memory, it is easy to model, at least to
a first approximation, the data on interval timing (Gallistel & Gibbon, 2002; Gibbon,
Church, & Meck, 1984; Gibbon, 1977). Without such a mechanism, modeling these
phenomena is very hard. Because the representational burden is thrown onto the
conjectured dynamic properties of neurons, the models become prey to the prob-
lem of the infinitude of the possible. Basically, you need too many neurons, because
you have to allocate resources to all possible intervals rather than just to those that
have actually been observed. Moreover, these models all fail to provide computa-
tional access to the information about previously experienced durations, because
the information resides not in the activity of the neurons, nor in the associations
between them, but rather in the intrinsic properties of the neurons in the arrays
used to represent durations. The rest of the system has no access to those intrinsic
properties.

Finally, in Chapter 16, we take up the question that will have been pressing
on the minds of many readers ever since it became clear that we are profoundly
skeptical about the hypothesis that the physical basis of memory is some form of
synaptic plasticity, the only hypothesis that has ever been seriously considered by
the neuroscience community. The obvious question is: Well, if it’s not synaptic
plasticity, what is it? Here, we refuse to be drawn. We do not think we know what
the mechanism of an addressable read/write memory is, and we have no faith in
our ability to conjecture a correct answer. We do, however, raise a number of
considerations that we believe should guide thinking about possible mechanisms.
Almost all of these considerations lead us to think that the answer is most likely
to be found deep within neurons, at the molecular or sub-molecular level of struc-
ture. It is easier and less demanding of physical resources to implement a read/write
memory at the level of molecular or sub-molecular structure. Indeed, most of what
is needed is already implemented at the sub-molecular level in the structure of DNA
and RNA.

9781405122870_1_pre.qxd 23/1/09 11:08 AM Page xvi

1

Information

Most cognitive scientists think about the brain and behavior within an informa-
tion-processing framework: Stimuli acting on sensory receptors provide informa-
tion about the state of the world. The sensory receptors transduce the stimuli into
neural signals, streams of action potentials (aka spikes). The spike trains transmit
the information contained in the stimuli from the receptors to the brain, which pro-
cesses the sensory signals in order to extract from them the information that they
convey. The extracted information may be used immediately to inform ongoing beha-
vior, or it may be kept in memory to be used in shaping behavior at some later time.
Cognitive scientists seek to understand the stages of processing by which informa-
tion is extracted, the representations that result, the motor planning processes through
which the information enters into the direction of behavior, the memory processes
that organize and preserve the information, and the retrieval processes that find the
information in memory when it is needed. Cognitive neuroscientists want to under-
stand where these different aspects of information processing occur in the brain
and the neurobiological mechanisms by which they are physically implemented.

Historically, the information-processing framework in cognitive science is closely
linked to the development of information technology, which is used in electronic
computers and computer software to convert, store, protect, process, transmit, and
retrieve information. But what exactly is this “information” that is so central to
both cognitive science and computer science? Does it have a rigorous meaning?
In fact, it does. Moreover, the conceptual system that has grown up around this
rigorous meaning – information theory – is central to many aspects of modern
science and engineering, including some aspects of cognitive neuroscience. For
example, it is central to our emerging understanding of how neural signals trans-
mit information about the ever-changing state of the world from sensory receptors
to the brain (Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1997). For us,
it is an essential foundation for our central claim, which is that the function of
the neurobiological memory mechanism is to carry information forward in time in
a computationally accessible form.

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 1

Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience C. R. Gallistel
and Adam Philip King © 2010 C. R. Gallistel and Adam Philip King ISBN: 978-1-405-12287-0

2 Information

Shannon’s Theory of Communication

The modern quantitative understanding of information rests on the work of
Claude Shannon. A telecommunications engineer at Bell Laboratories, he laid the
mathematical foundations of information theory in a famous paper published in
1948, at the dawn of the computer age (Shannon, 1948). Shannon’s concern was
understanding communication (the transmission of information), which he schem-
atized as illustrated in Figure 1.1.

The schematic begins with an information source. The source might be a person
who hands in a written message at a telegraph office. Or, it might be an orchestra
playing a Beethoven symphony. In order for the message to be communicated to
you, you must receive a signal that allows you to reconstitute the message. In this
example, you are the destination of the message. Shannon’s analysis ends when the
destination has received the signal and reconstituted the message that was present
at the source.

The transmitter is the system that converts the messages into transmitted signals,
that is, into fluctuations of a physical quantity that travels from a source location
to a receiving location and that can be detected at the receiving location. Encoding
is the process by which the messages are converted into transmitted signals. The
rules governing or specifying this conversion are the code. The mechanism in the
transmitter that implements the conversion is the encoder.

Following Shannon, we will continue to use two illustrative examples, a telegraphic
communication and a symphonic broadcast. In the telegraphic example, the source
messages are written English phrases handed to the telegrapher, for example,
“Arriving tomorrow, 10 am.” In the symphonic example, the source messages are
sound waves arriving at a microphone. Any one particular short message written
in English and handed to a telegraph operator can be thought of as coming from
a finite set of possible messages. If we stipulate a maximum length of, say, 1,000

INFORMATION
SOURCE TRANSMITTER

MESSAGE

NOISE
SOURCE

SIGNAL RECEIVED
SIGNAL

MESSAGE

RECEIVER DESTINATION

Figure 1.1 Shannon’s schematization of communication (Shannon, 1948).

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 2

Information 3

characters, with each character being one of 45 or so different characters (26 letters,
10 digits, and punctuation marks), then there is a very large but finite number of
possible messages. Moreover, only a very small fraction of these messages are intel-
ligible English, so the size of the set of possible messages – defined as intelligible
English messages of 1,000 characters or less – is further reduced. It is less clear
that the sound waves generated by an orchestra playing Beethoven’s Fifth can be
conceived of as coming from a finite set of messages. That is why Shannon chose
this as his second example. It serves to illustrate the generality of his theory.

In the telegraphy example, the telegraph system is the transmitter of the mes-
sages. The signals are the short current pulses in the telegraph wire, which travel
from the sending key to the sounder at the receiving end. The encoder is the tele-
graph operator. The code generally used is the Morse code. This code uses pulses
of two different durations to encode the characters – a short mark (dot), and a
long mark (dash). It also uses four different inter-pulse intervals for separations
– an intra-character gap (between the dots and dashes within characters), a short
gap (between the letters), a medium gap (between words), and a long gap (between
sentences).

In the orchestral example, the broadcast system transmitting radio signals from
the microphone to your radio is the transmitter. The encoder is the electronic device
that converts the sound waves into electromagnetic signals. The type of code is likely
to be one of three different codes that have been used in the history of radio (see
Figure 1.2), all of which are in current use. All of them vary a parameter of a high-
frequency sinusoidal carrier signal. The earliest code was the AM (amplitude
modulated) code. In this code, the encoder modulates the amplitude of the carrier
signal so that this amplitude of the sinusoidal carrier signal varies in time in a way
that closely follows the variation in time of the sound pressure at the microphone’s
membrane.

When the FM (frequency modulated) code is used, the encoder modulates the
frequency of the carrier signal within a limited range. When the digital code is used,
as it is in satellite radio, parameters of the carrier frequency are modulated so as
to implement a binary code, a code in which there are only two characters, cus-
tomarily called the ‘0’ and the ‘1’ character. In this system, time is divided into
extremely short intervals. During any one interval, the carrier signal is either low
(‘0’) or high (‘1’). The relation between the sound wave arriving at the microphone
with its associated encoding electronics and the transmitted binary signal is not
easily described, because the encoding system is a sophisticated one that makes use
of what we have learned about the statistics of broadcast messages to create efficient
codes. The development of these codes rests on the foundations laid by Shannon.

In the history of radio broadcasting, we see an interesting evolution (Figure 1.2):
We see first (historically) in Figure 1.2a a code in which there is a transparent (eas-
ily comprehended) relation between the message and the signal that transmits it
(AM). The code is transparent because variation in the amplitude of the message
is converted into variation in the amplitude of the carrier signal that transmits
the message. This code is, however, inefficient and highly vulnerable to noise. It
is low tech. In Figure 1.2b, we see a code in which the relation is somewhat less
transparent, because variation in the amplitude of the message is converted into

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 3

MessageAM(a)

FM(b)

Binary

Time

(c)

Carrier signal
Si

gn
al

 a
m

pl
itu

de

Figure 1.2 The various ways of encoding sound “messages” into broadcast radio signals.
All of them use a carrier frequency and vary parameters of that carrier frequency. (a) In
the AM encoding, the amplitude of the message determines the amplitude of the carrier
frequency. This makes for a transparent (easily recognized) relation between the message
and the signal that transmits it. (b) In the FM encoding, the amplitude of the message
modulates the frequency of the carrier. This makes for a less transparent but still
recognizable relation between message and signal. (c) In digital encoding, there is
binary (two-values only) modulation in a parameter of the carrier signal. In this purely
notional illustration, the amplitude of any given cycle has one of two values, depending
on whether a high or low bit is transmitted. In this scheme, the message is converted
into a sophisticated binary code prior to transmission. The relation between message
and signal is opaque.

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 4

Information 5

variation in the frequency of the carrier signal that transmits it (FM). This code is
no more efficient than the first code, but it is less vulnerable to noise, because the
effects of extraneous noise tend to fall mostly in frequency bands outside a given
FM band. Finally, in Figure 1.2c we see a high-tech code in which the relation between
the message and the signal that transmits it is opaque. The encoding makes extens-
ive use of advanced statistics and mathematics. The code is, however, both efficient
and remarkably invulnerable to noise. That’s why satellite broadcasts sound better
than FM broadcasts, which sound better than AM broadcasts. The greater efficiency
of the digital code accounts for the ability of digital radio to transmit more channels
within a given bandwidth.

The evolution of encoding in the history of broadcasting may contain an
unpalatable lesson for those interested in understanding communication within the
brain by means of the action potentials that carry information from sources to des-
tinations within the brain. One of neurobiology’s uncomfortable secrets – the sort
of thing neurobiologists are not keen to talk about except among themselves – is
that we do not understand the code that is being used in these communications.
Most neurobiologists assume either explicitly or tacitly that it is an unsophisticated
and transparent code. They assume, for example, that when the relevant variation
at the source is in the amplitude or intensity of some stimulus, then the information-
carrying variation in the transmitted signal is in the firing rate (the number of action
potentials per unit of time), a so-called rate code. The transparency of rate codes
augurs well for our eventually understanding the communication of information
within the brain, but rate codes are grossly inefficient. With more sophisticated but
less transparent codes, the same physical resources (the transmission of the same
number of spikes in a given unit of time) can convey orders of magnitude more
information. State-of-the-art analysis of information transmission in neural signal-
ing in simple systems where we have reason to believe that we know both the set
of message being transmitted and the amount of information available in that set
(its entropy – see below) implies that the code is a sophisticated and efficient one,
one that takes account of the relative frequency of different messages (source stat-
istics), just as the code used in digital broadcasting does (Rieke et al., 1997).

A signal must travel by way of some physical medium, which Shannon refers to
as the signal-carrying channel, or just channel for short. In the case of the tele-
graph, the signal is in the changing flow of electrons and the channel is a wire. In
the case of the symphony, the signal is the variation in the parameters of a carrier
signal. The channel is that carrier signal.1 In the case of the nervous system, the
axons along which nerve impulses are conducted are the channels.

In the real world, there are factors other than the message that can also produce
these same fluctuations in the signal-carrying channel. Shannon called these noise

1 In digital broadcasting, bit-packets from different broadcasts are intermixed and travel on a com-
mon carrier frequency. The receivers sort out which packets belong to which broadcast. They do so on
the basis of identifying information in the packets. Sorting out the packets and decoding them back
into waveforms requires computation. This is why computation and communication are fused at the
hip in information technology. In our opinion, a similar situation obtains in the brain: Computation
and communication are inseparable, because communication has been optimized in the brain.

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 5

6 Information

sources. The signal that arrives at the receiver is thus a mixture of the fluctuations
deriving from the encoding of the message and the fluctuations deriving from noise
sources. The fluctuations due to noise make the receiver’s job more difficult, as the
received code can become corrupted. The receiver must reconstitute the message
from the source, that is, change the signal back into that message, and if this sig-
nal has been altered, it may be hard to decode. In addition, the transmitter or the
receiver may be faulty and introduce noise during the encoding/decoding process.

Although Shannon diagrammatically combined the sources of noise and showed
one place where noise can be introduced, in actuality, noise can enter almost any-
where in the communication process. For example, in the case of telegraphy, the
sending operators may not code correctly (use a wrong sequence of dots and dashes)
or even more subtly, they might make silences of questionable (not clearly discern-
ible) length. The telegraph key can also malfunction, and not always produce current
when it should, possibly turning a dash into some dots. Noise can also be introduced
into the signal directly – in this case possibly through interference due to other sig-
nals traveling along wires that are in close proximity to the signal-carrying wire.
Additionally, the receiving operator may have a faulty sounder or may simply decode
incorrectly.

Shannon was, of course, aware that the messages being transmitted often had
meanings. Certainly this is the case for the telegraphy example. Arguably, it is the
case for the orchestra example. However, one of his profound insights was that
from the standpoint of the communications engineer, the meaning was irrelevant.
What was essential about a message was not its meaning but rather that it be selected
from a set of possible messages. Shannon realized that for a communication system
to work efficiently – for it to transmit the maximum amount of information in the
minimum amount of time – both the transmitter and the receiver had to know what
the set of possible messages was and the relative likelihood of the different mes-
sages within the set of possible messages. This insight was an essential part of his
formula for quantifying the information transmitted across a signal-carrying chan-
nel. We will see later (Chapter 9) that Shannon’s set of possible messages can be iden-
tified with the values of an experiential variable. Different variables denote different
sets of possible messages. Whenever we learn from experience the value of an empir-
ical variable (for example, how long it takes to boil an egg, or how far it is from
our home to our office), the range of a priori possible values for that variable is
narrowed by our experience. The greater the range of a priori possible values for
the variable (that is, the larger the set of possible messages) and the narrower the
range after we have had an informative experience (that is, the more precisely we
then know the value), the more informative the experience. That is the essence of
Shannon’s definition of information.

The thinking that led to Shannon’s formula for quantifying information may be
illustrated by reference to the communication situation that figures in Longfellow’s
poem about the midnight ride of Paul Revere. The poem describes a scene from
the American revolution in which Paul Revere rode through New England, warn-
ing the rebel irregulars that the British troops were coming. The critical stanza for
our purposes is the second:

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 6

Information 7

He said to his friend, “If the British march
By land or sea from the town to-night,
Hang a lantern aloft in the belfry arch
Of the North Church tower as a signal light, –
One if by land, and two if by sea;
And I on the opposite shore will be,
Ready to ride and spread the alarm
Through every Middlesex village and farm,
For the country folk to be up and to arm.”

The two possible messages in this communication system were “by land” and “by
sea.” The signal was the lantern light, which traveled from the church tower to the
receiver, Paul Revere, waiting on the opposite shore. Critically, Paul knew the pos-
sible messages and he knew the code – the relation between the possible messages
and the possible signals. If he had not known either one of these, the communica-
tion would not have worked. Suppose he had no idea of the possible routes by
which the British might come. Then, he could not have created a set of possible
messages. Suppose that, while rowing across the river, he forgot whether it was
one if by land and two if by sea or two if by land and one if by sea. In either case,
the possibility of communication disappears. No set of possible messages, no com-
munication. No agreement about the code between sender and receiver, no com-
munication.

However, it is important to remember that information is always about some-
thing and that signals can, and often do, carry information about multiple things.
When we said above that no information was received, we should have been more
precise. If Paul forgot the routes (possible messages) or the code, then he could
receive no information about how the British might come. This is not to say that
he received no information when he saw the lanterns. Upon seeing the two
lanterns, he would have received information about how many lanterns were hung.
In the simplest analysis, a received signal always (baring overriding noise) carries
information regarding which signal was sent.

Measuring Information

Shannon was particularly concerned with measuring the amount of information com-
municated. So how much information did Paul Revere get when he saw the
lanterns (for two it was)? On Shannon’s analysis, that depends on his prior expecta-
tion about the relative likelihoods of the British coming by land versus their com-
ing by sea. In other words, it depends on how uncertain he was about which route
they would take. Suppose he thought it was a toss-up – equally likely either way.
According to Shannon’s formula, he then received one bit2 (the basic unit) of infor-
mation when he saw the signal. Suppose that he thought it less likely that they

2 Shannon was the first to use the word bit in print, however he credits John Tukey who used the
word as a shorthand for “binary digit.”

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 7

8 Information

would come by land – that there was only one chance in ten. By Shannon’s for-
mula, he then received somewhat less than half a bit of information from the lantern
signal.

Shannon’s analysis says that the (average!) amount of information communicated
is the (average) amount of uncertainty that the receiver had before the commun-
ication minus the amount of uncertainty that the receiver has after the commun-
ication. This implies that information itself is the reduction of uncertainty in the
receiver. A reduction in uncertainty is, of course, an increase in certainty, but what
is measured is the uncertainty.

The discrete case

So how did Shannon measure uncertainty? He suggested that we consider the prior
probability of each message. The smaller the prior probability of a message, the
greater its information content but the less often it contributes that content,
because the lower its probability, the lower its relative frequency. The contribution
of any one possible message to the average uncertainty regarding messages in the set
of possible messages is the information content of that message times its relative
frequency. Its information content is the log of the reciprocal of its probability

log2 . Its relative frequency is pi itself. Summing over all the possible messages

gives Shannon’s famous formula:

H = pi log2

where H is the amount of uncertainty about the possible messages (usually called
the entropy), n is the number of possible messages, and pi is the probability of the
ith message.3 As the probability of a message in the set becomes very small (as it
approaches 0), its contribution to the amount of uncertainty also becomes very small,
because a probability goes to 0 faster than the log of its reciprocal goes to infinity.
In other words, the fall off in the relative frequency of a message (the decrease in pi)

outstrips the increase in its information content the increase in log2 .

In the present, simplest possible case, there are two possible messages. If we take
their prior probabilities to be 0.5 and 0.5 (50–50, equally likely), then following
Shannon’s formula, Paul’s uncertainty before he saw the signal was:

p1 log2 + p2 log2 = 0.5 log2 + 0.5 log2 (1)1
0.5

1
0.5

1
p2

1
p1

DEF
1
pi

A
C

1
pi

i=n

∑
i=1

DEF
1
pi

A
C

3 The logarithm is to base 2 in order to make the units of information bits, that is, to choose a base
for the logarithm is to choose the size of the units in which information is measured.

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 8

Information 9

Now, 1/0.5 = 2, and the log to the base 2 of 2 is 1. Thus, equation (1) equals:

(0.5)(1) + (0.5)(1) = 1 bit.

Consider now the case where p1 = 0.1 (Paul’s prior probability on their coming
by land) and p2 = 0.9 (Paul’s prior probability on their coming by sea). The log2 (1/0.1)
is 3.32 and the log2 (1/0.9) is 0.15, so we have (0.1)(3.32) + (0.9)(0.15) = 0.47. If
Paul was pretty sure they were coming by sea, then he had less uncertainty than if
he thought it was a toss-up. That’s intuitive. Finding a principled formula that specifies
exactly how much less uncertainty he had is another matter. Shannon’s formula
was highly principled. In fact, he proved that his formula was the only formula
that satisfied a number of conditions that we would want a measure of uncertainty
to have.

One of those conditions is the following: Suppose we have H1 amount of uncer-
tainty about the outcome of the roll of one die and H2 amount of uncertainty about
the outcome of the roll of a second die. We want the amount of uncertainty we
have about the combined outcomes to be simply H1 + H2, that is, we want the
amounts of uncertainties about independent sets of possibilities to be additive.
Shannon’s formula satisfies this condition. That’s why it uses logarithms of the prob-
abilities. Independent probabilities combine multiplicatively. Taking logarithms
converts multiplicative combination to additive combination.

Assuming Paul trusted his friend completely and assuming that there was no pos-
sibility of his mistaking one light for two (assuming in other words, no transmis-
sion noise), then when he saw the two lights, he had no more uncertainty about
which way the British were coming: p1, the probability of their coming by land,
was 0 and p2, the probability of their coming by sea, was 1. Another condition on
a formula for measuring uncertainty is that the measure should be zero when there
is no uncertainty. For Paul, after he had seen the lights, we have: 0 log2 (1/0) +
1 log2 (1/1) = 0 (because the p log (1/p) = 0, which makes the first term in the

sum 0, and the log of 1 to any base is 0, which makes the second term 0). So Shannon’s
formula satisfies that condition.

Shannon defined the amount of information communicated to be the difference
between the receiver’s uncertainty before the communication and the receiver’s uncer-
tainty after it. Thus, the amount of information that Paul got when he saw the
lights depends not only on his knowing beforehand the two possibilities (knowing
the set of possible messages) but also on his prior assessment of the probability of
each possibility. This is an absolutely critical point about communicated informa-
tion – and the subjectivity that it implies is deeply unsettling. By subjectivity, we
mean that the information communicated by a signal depends on the receiver’s (the
subject’s) prior knowledge of the possibilities and their probabilities. Thus, the amount
of information actually communicated is not an objective property of the signal
from which the subject obtained it!

Unsettling as the subjectivity inherent in Shannon’s definition of communicated
information is, it nonetheless accords with our intuitive understanding of commun-
ication. When someone says something that is painfully obvious to everyone, it
is not uncommon for teenagers to reply with a mocking, “Duh.” Implicit in this

lim
p→0

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 9

10 Information

mockery is that we talk in order to communicate and to communicate you have
to change the hearer’s representation of the world. If your signal leaves your lis-
teners with the same representation they had before they got it, then your talk is
empty blather. It communicates no information.

Shannon called his measure of uncertainty entropy because his formula is the
same as the formula that Boltzmann developed when he laid the foundations for
statistical mechanics in the nineteenth century. Boltzmann’s definition of entropy
relied on statistical considerations concerning the degree of uncertainty that the
observer has about the state of a physical system. Making the observer’s uncer-
tainty a fundamental aspect of the physical analysis has become a foundational prin-
ciple in quantum physics, but it was extremely controversial at the time (1877).
The widespread rejection of his work is said to have driven Boltzmann to suicide.
However, his faith in the value of what he had done was such that he had his entropy-
defining equation written on his tombstone.

In summary, like most basic quantities in the physical sciences, information is a
mathematical abstraction. It is a statistical concept, intimately related to concepts
at the foundation of statistical mechanics. The information available from a source
is the amount of uncertainty about what that source may reveal, what message it
may have for us. The amount of uncertainty at the source is called the source entropy.
The signal is a propagating physical fluctuation that carries the information from
the source to the receiver.

The information transmitted to the receiver by the signal is the mutual informa-
tion between the signal actually received and the source. This is an objective prop-
erty of the source and signal; we do not need to know anything about the receiver
(the subject) in order to specify it, and it sets an upper limit on the information
that a receiver could in principle get from a signal. We will explain how to quan-
tify it shortly. However, the information that is communicated to a receiver by a
signal is the receiver’s uncertainty about the state of the world before the signal
was received (the receiver’s prior entropy) minus the receiver’s uncertainty after receiv-
ing the signal (the posterior entropy). Thus, its quantification depends on the changes
that the signal effects in the receiver’s representation of the world. The informa-
tion communicated from a source to a receiver by a signal is an inherently subject-
ive concept; to measure it we must know the receiver’s representation of the source
probabilities. That, of course, implies that the receiver has a representation of the
source probabilities, which is itself a controversial assumption in behavioral neuro-
science and cognitive psychology. One school of thought denies that the brain has
representations of any kind, let alone representations of source possibilities and their
probabilities. If that is so, then it is impossible to communicate information to the
brain in Shannon’s sense of the term, which is the only scientifically rigorous sense.
In that case, an information-processing approach to the analysis of brain function
is inappropriate.

The continuous case

So far, we have only considered the measurement of information in the discrete
case (and a maximally simple one). That is to say that each message Paul could

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 10

Information 11

receive was distinct, and it should not have been possible to receive a message “in
between” the messages he received. In addition, the number of messages Paul could
receive was finite – in this case only two. The British could have come by land or
by sea – not both, not by air, etc. It may seem puzzling how Shannon’s analysis
can be applied to the continuous case, like the orchestra broadcast. On first con-
sideration, the amount of prior uncertainty that a receiver could have about an orches-
tral broadcast is infinite, because there are infinitely many different sound-wave
patterns. Any false note hit by any player at any time, every cough, and so on,
alters the wave pattern arriving at the microphone. This seems to imply that the
amount of prior uncertainty that a receiver could have about an orchestral broad-
cast is infinite. Hearing the broadcast reduces the receiver’s uncertainty from infinite
to none, so an infinite amount of information has been communicated. Something
must be wrong here.

To see what is wrong, we again take a very simple case. Instead of an orchestra
as our source, consider a container of liquid whose temperature is measured by an
analog (continuous) thermometer that converts the temperature into a current flow.
Information is transmitted about the temperature to a receiver in a code that
theoretically contains an infinite number of possibilities (because for any two
temperatures, no matter how close together they are, there are an infinite number
of temperatures between them). This is an analog source (the variation in temper-
ature) and an analog signal (the variation in current flow). Analog sources and
signals have the theoretical property just described, infinite divisibility. There is no
limit to how finely you can carve them up. Therefore, no matter how thin the slice
you start with you can always slice them into arbitrarily many even thinner slices.
Compare this to the telegraphy example. Here, the source was discrete and so
was the signal. The source was a text written in an alphabetic script with a finite
number of different characters (letters, numbers, and various punctuation marks).
These characters were encoded by Morse’s code into a signal that used six primit-
ive symbols. Such a signal is called a digital signal.

In the temperature case, there would appear to be an infinite number of tem-
peratures that the liquid could have, any temperature from 0–∞° Kelvin. Further
thought tells us, however, that while this may be true in principle (it’s not clear
that even in principle temperatures can be infinite), it is not true in practice. Above
a certain temperature, both the container and the thermometer would vaporize. In
fact, in any actual situation, the range of possible temperatures will be narrow.
Moreover, we will have taken into account that range when we set up the system
for measuring and communicating the liquid’s temperature. That is, the structure
of the measuring system will reflect the characteristics of the messages to be
transmitted. This is the sense in which the system will know the set of possible
messages; the knowledge will be implicit in its structure.

However, even within an arbitrarily narrow range of temperatures, there are arbit-
rarily many different temperatures. That is what it means to say that temperature
is a continuous variable. This is true, but the multiple and inescapable sources of
noise in the system limit the attainable degree of certainty about what the tem-
perature is. There is source noise – tiny fluctuations from moment to moment and
place to place within the liquid. There is measurement noise; the fluctuations in the

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 11

12 Information

electrical current from the thermometer will never exactly mimic the fluctuations
in the temperature at the point being measured. And there is transmission noise;
the fluctuations in the current at the receiver will never be exactly the same as the
fluctuations in the current at the transmitter. There are limits to how small each
of these sources of noise can be made. They limit the accuracy with which the tem-
perature of a liquid can in principle be known. Thus, where we went wrong in
considering the applicability of Shannon’s analysis to the continuous case was in
assuming that an analog signal from an analog source could give a receiver infor-
mation with certainty; it cannot. The accuracy of analog signaling is always noise
limited, and it must be so for deep physical reasons. Therefore, the receiver of an
analog signal always has a residual uncertainty about the true value of the source
variable. This a priori limit on the accuracy with which values within a given range
may be known limits the number of values that may be distinguished one from another
within a finite range. That is, it limits resolution. The limit on the number of dis-
tinguishable values together with the limits on the range of possible values makes the
source entropy finite and the post-communication entropy of the receiver non-zero.

Figure 1.3 shows how Shannon’s analysis applies to the simplest continuous case.
Before the receiver gets an analog signal, it has a continuous (rather than discrete)
representation of the possible values of some variable (e.g., temperature). In the
figure, this prior (before-the-signal) distribution is assumed to be a normal (aka
Gaussian) distribution, because it is rather generally the case that we construct a
measurement system so that the values in the middle of the range of possible (i.e.,
measured) values are the most likely values. Shannon derived the entropy for a
normal distribution, showing that it was proportional to the log of the standard
deviation, σ, which is the measure of the width of a distribution. Again, this is
intuitive: the broader the distribution is, the more uncertainty there is. After receiv-
ing the signal, the receiver has less uncertainty about the true value of the tem-
perature. In Shannon’s analysis, this means that the posterior (after-the-signal)

After the signal

Pr
ob

ab
ili

ty
 d

en
si

ty

Before the signal

Wa

Wb

Estimated temperature

Figure 1.3 In analog communication, the receipt of a signal alters the receiver’s
probability density distribution, the distribution that specifies the receiver’s knowledge of
the source value. Generally (though not obligatorily), it narrows the distribution, that is,
σσa < σσb, and it shifts the mean and mode (most probable value).

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 12

Information 13

distribution is narrower and higher. The information conveyed by the signal is
proportional to the difference in the two entropies: k(log σb − log σa).

How does the simple case generalize to a complex case like the orchestral broad-
cast? Here, Shannon made use of the Fourier theorem, which tells us how to rep-
resent a continuous variation like the variation in sound pressure produced by an
orchestra with a set of sine waves. The Fourier theorem asserts that the whole broad-
cast can be uniquely represented as the sum of a set of sinusoidal oscillations. If
we know this set – the so-called Fourier decompositions of the sound – we can get
back the sound by simply adding all the sinusoids point by point. (See Gallistel,
1980, for elementary explanation and illustration of how this works; also King &
Gallistel, 1996.) In principle, this representation of the sound requires infinitely many
different sinusoids; but in practice, there are limits on both the sensible range of
sinusoidal frequencies and the frequency resolution within that range. For ex-
ample, there is no point in representing the frequencies above 20 kHz, because
humans cannot hear them. In principle, the number of possible amplitudes for a
sinusoid is infinite, but there are limits on the amplitudes that broadcast sounds
actually do have; and within that attainable range, there are limits on the resolu-
tion with which sound amplitude may be ascertained. The same is true for phase,
the third and final parameter that defines a sinusoid and distinguishes it from other
sinusoids. Thus, the space of possible broadcasts is the space defined by the range
of hearable frequencies and attainable amplitudes and phases. Because there are
inescapable limits to the accuracy with which each of these three space-defining
parameters may be ascertained, there is necessarily some residual uncertainty about
any broadcast (some limit on the fidelity of the transmission). Hence, odd as it seems,
there is a finite amount of prior uncertainty about possible broadcasts and a resid-
ual amount of uncertainty after any transmitted broadcast. This makes the amount
of information communicated in a broadcast finite and, more importantly, actually
measurable. Indeed, communications engineers, following the guidelines laid down
by Shannon, routinely measure it. That’s how they determine the number of songs
your portable music player can hold.

Mutual information

The mutual information between an information-conveying signal and its source is
the entropy of the source plus the entropy of the signal minus the entropy of their
joint distribution. Recall that entropy is a property of a probability (relative fre-
quency) distribution over some set of possibilities. The source entropy is a quan-
tity derived from the distribution of probability over the possible messages (the relative
frequencies of the different possible messages). The signal entropy is a quantity derived
from the distribution of probability over the possible signals (the relative frequen-
cies of the different possible signals). A distribution is the set of all the probabilit-
ies (or relative frequencies), one probability for each possibility. Thus, the sum over
these probabilities is always 1, because one or the other possibility must obtain in
every case and the set contains all the possible cases (all the possible messages or
all the possible signals). In computing the entropy of a distribution, we take each
probability in turn, multiply the logarithm of its reciprocal by the probability itself,

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 13

14 Information

and sum across all the products. Returning to the Paul Revere example, if the prob-
ability, pL, of their coming by land is 0.1 and the probability, pS of their coming by
sea is 0.9, then the source entropy (the basic uncertainty inherent in the situation) is:

pL log2 + pS log2 = (0.1)(3.32) + (0.9)(0.15) = 0.47.

If the two signals, one light and two lights, have the same probability distribution,
then the signal entropy is the same as the source entropy.

The joint distribution of the messages and the signals is the probabilities of all
possible co-occurrences between messages and signals. In the Paul Revere example,
four different co-occurrences are possible: (1) the British are coming by land and
there is one signal light; (2) the British are coming by land and there are two sig-
nal lights; (3) the British are coming by sea and there is one signal light; (4) the
British are coming by sea and there are two signal lights. The joint distribution is
these four probabilities. The entropy of the joint distribution is obtained by the
computation we already described: multiply the logarithm of the reciprocal of each
probability by the probability itself and sum the four products.

The entropy of this joint distribution depends on how reliably Paul’s confederate
carries out the assigned task. Suppose that he carries it out flawlessly: every time
they come by land, he hangs one lantern; every time they come by sea, he hangs
two. Then the four probabilities are pL&1 = 0.1, pL&2 = 0, pS&1 = 0, pS&2 = 0.9 and
the entropy of this joint distribution is the same as the entropy of the source dis-
tribution and the entropy of the signal distribution; all three entropies are 0.47.
The sum of the source and signal entropies (the first two entropies) minus the third
(the entropy of the joint distribution) is 0.47, so the mutual information between
source and signal is 0.47, which is to say that all the information available at the
source is transmitted by the signal.

Suppose instead that Paul’s confederate is terrified of the British and would not
think of spying on their movements. Therefore, he has no idea which way they are
coming, but, because he does not want Paul to know of his cowardice, he hangs
lanterns anyway. He knows that the British are much more likely to go by sea than
by land, so each night he consults a random number table. He hangs one lantern
if the first digit he puts his finger on is a 1 and two lanterns otherwise. Now, there
is no relation between which way the British are coming and the signal Paul sees.
Now the four probabilities corresponding to the four possible conjunctions of British
movements and the coward’s signals are: pL&1 = 0.01, pL&2 = 0.09, pS&1 = 0.09,
pS&2 = 0.81 and the entropy of this joint distribution is:

(0.01) log2 () + (0.09) log2 () + (0.09) log2 () + (0.81) log2 ()

= (0.01)(6.64) + (0.09)(3.47) + (0.09)(3.47) + (0.81)(0.30) = 0.94.

The entropy of the joint distribution is equal to the sum of the two other entropies
(more technically, the entropy of the joint distribution is the sum of the entropies
of the marginal distributions). When it is subtracted from that sum, the difference

1
0.81

1
0.09

1
0.09

1
0.01

1
pS

1
pL

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 14

Information 15

is 0. There is no mutual information between the signal and the source. Whether
Paul knows it or not, he can learn nothing about what the British are doing from
monitoring his confederate’s signal. Notice that there is no subjectivity in the com-
putation of the mutual information between source and signal. That is why we can
measure the amount of information transmitted without regard to the receiver’s
representation of the source and the source probabilities.

Finally, consider the case where Paul’s confederate is not a complete coward. On
half the nights, he gathers up his courage and spies on the British movements. On
those nights, he unfailingly signals correctly what he observes. On the other half
of the nights, he resorts to the random number table. Now, the probabilities in the
joint distribution are: pL&1 = 0.055, pL&2 = 0.045, pS&1 = 0.045, pS&2 = 0.855 and
the entropy of this joint distribution is:

(0.055) log2 () + (0.045) log2 () + (0.045) log2 () + (0.855) log2 ()

= (0.055)(4.18) + (0.045)(4.47) + (0.045)(4.47) + (0.855)(0.23) = 0.83.

When this entropy is subtracted from 0.94, the sum of the entropies of the source
and signal distributions, we get 0.11 for the mutual information between source
and signal. The signal does convey some of the available information, but by no
means all of it. The joint distribution and the two marginal distributions are shown
in Table 1.1. Notice that the probabilities in the marginal distributions are the sums
of the probabilities down the rows or across the columns of the joint distribution.

The mutual information between source and signal sets the upper limit on the
information that may be communicated to the receiver by that signal. There is no
way that the receiver can extract more information about the source from the sig-
nal received than is contained in that signal. The information about the source con-
tained in the signal is an objective property of the statistical relation between the
source and the signal, namely, their joint distribution, the relative frequencies with
which all possible combinations of source message and received signal occur. The
information communicated to the receiver, by contrast, depends on the receiver’s
ability to extract the information made available in the signals it receives (for exam-
ple, the receiver’s knowledge of the code, which may be imperfect) and on the receiver’s
representation of the possibilities and their probabilities.

1
0.855

1
0.045

1
0.045

1
0.055

Table 1.1 Joint and marginal distributions in the case where lantern signal conveys
some information about British route

British route/Lantern signal One lantern Two lanterns Marginal (route)

By land 0.055 0.045 0.1
By sea 0.045 0.855 0.9

Marginal (Signal) 0.1 0.9

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 15

16 Information

Efficient Coding

As illustrated in Figure 1.2c, in a digital broadcast, the sound wave is transmitted
digitally. Typically, it is transmitted as a sequence of bits (‘0’ or ‘1’) that are them-
selves segregated into sequences of eight bits – called a byte. This means that each
byte can carry a total of 256 or 28 possible messages (each added bit doubles the
information capacity). The coding scheme, the method for translating the sound
into bytes, is complex, which is why a digital encoder requires sophisticated com-
putational hardware. The scheme incorporates knowledge of the statistics of the
sound waves that are actually produced during human broadcasts into the creation
of an efficient code. Shannon (1948) showed that an efficient communication code
could only be constructed if one knew the statistics of the source, the relative like-
lihoods of different messages.

An elementary example of this is that in constructing his code, Morse made a
single dot the symbol for the letter ‘E,’ because he knew that this was the most
common letter in English text. Its frequency of use is hundreds of times higher than
the frequency of use of the letter ‘Z’ (whose code is dash, dash, dot, dot). Shannon
(1948) showed how to measure the efficiency of a communication code, thereby
transforming Morse’s intuition into quantitative science.

The routine use of digital transmission (and recordings with digital symbols) of
broadcasts is another example that the space of discernibly different broadcasts ulti-
mately contains a finite and routinely measured amount of uncertainty (entropy).
To a first approximation, the prior uncertainty (the entropy) regarding the sound-
form of a broadcast of a specified length is measured by the capacity (often ex-
pressed in megabytes, that is, a million bytes) of the CD required to record it. The
number of possible broadcasts of that length is the number of different patterns
that could be written into that amount of CD space. If all of those patterns were
equally likely to occur, then that number of megabytes would be the prior entropy
for broadcasts of that length. In fact, however, some of those patterns are vastly
more likely than others, because of the harmonic structure of music and the statist-
ical structure of the human voice and instruments, among other things. To the extent
that the sound-encoding scheme built into a recorder fails to take account of these
statistics, the actual entropy is less than the entropy implied by the amount of disk
space required.

It is, however, often possible to specify at least approximately the amount of infor-
mation that a given signal could be carrying to a receiver. This is a critical point
because efficient codes often do not reflect at all the intrinsic properties of what
it is they encode. We then say that the code is indirect. An appreciation of this
last point is of some importance in grasping the magnitude of the challenge that
neuroscientists may face in understanding how the brain works, so we give an
illustrative example of the construction of increasingly efficient codes for sending
English words.

One way to encode English words into binary strings is to start with the encod-
ing that we already have by virtue of the English alphabet, which encodes words
as strings of characters. We then can use a code such as ASCII (American Standard

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 16

Information 17

Code for Information Interchange), which specifies a byte for each letter, that is a
string of eight ‘0’s or ‘1’s − A = 01000001, B = 01000010, and so on. The aver-
age English word is roughly 6 characters long and we have to transmit 8 bits for
each character, so our code would require an average of about 48 bits each time
we transmitted a word. Can we do better than that? We will assume about
500,000 words in English and 219 = 524,288. Thus, we could assign a unique 19-
bit pattern to each English word. With that code, we need send only 19 bits per
word, better by a factor of 2.5. A code that allows for fewer bits to be transferred
is said to be compact or compressed and the encoding process contains a compression
scheme. The more successfully we compress, the closer we get to transmitting on
average the number of bits specified by the source entropy. Can we make an even
better compression scheme? This last code assumes in effect that English words are
equally likely, which they emphatically are not. You hear or read ‘the’ hundreds
of times every day, whereas you may go a lifetime without hearing or reading
‘eleemosynary’ (trust us, it’s an English word, a rare but kindly one).

Suppose we arrange English words in a table according to their frequency of use
(Table 1.2 shows the first 64 most common words). Then we divide the table in
half, so that the words that account for 50% of all usage are in the upper half and
the remaining words in the lower half. It turns out that there are only about 180
words in the top half! Now, we divide each of these halves in half, to form usage
quartiles. In the top quartile, there are only about 15 words! They account for 25%
of all usage. In the second quartile, accounting for the next 25% of all usage, are
about 165 words; and in the third quartile, about 2,500 words. The remaining
500,000 or so words account for only 25% of all usage.

We can exploit these extreme differences in probability of occurrence to make a
more highly compressed and efficient binary code for transmitting English words.
It is called a Shannon-Fano code after Shannon, who first placed it in print in his
1948 paper, and Fano, who originated the idea and popularized it in a later pub-
lication. We just keep dividing the words in half according to their frequency of
usage. At each division, if a word ends up in the top half, we add a 0 to the string
of bits that code for it. Thus, the 180 words that fall in the top half of the first
division, all have 0 as their first digit, whereas the remaining 500,000 odd words
all have 1. The 15 words in the first quartile (those that ended up in the top half
of the first two divisions), also have 0 as their second digit. The 165 or so words
in the second quartile all have 1 as their second digit. We keep subdividing the
words in this way until every word has been assigned a unique string of ‘0’s and
‘1’s. Table 1.2 shows the Shannon-Fano codes for the first 64 most commonly used
English words, as found in one source (The Natural Language Technology Group,
University of Brighton) on the Internet.

As may be seen in Table 1.2, this scheme insures that the more frequent a word
is, the fewer bits we use to transmit it. Using the Shannon-Fano code, we only need
to transmit at most 19 bits for any one word – and that only very infrequently.
For 40% of all the words we transmit, we use 9 bits or fewer. For 25%, we use
only 5 or 6 bits. With this code, we can get the average number of bits per word
transmitted down to about 11, which is almost five times more efficient than the
code we first contemplated. This shows the power of using a code that takes account

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 17

Table 1.2 Constructing a Shannon-Fano code for English words. Shannon-Fano codes for the
first 64 most common words in the English language.* Also shown is the cumulative percent of
usage. These 64 words account for roughly 40% of all usage in English text. Note that some
words are repeated as they are considered separate usage.

Rank Word % cum % 1 2 3 4 5 6 7 8 9

1 the 6.25% 6.25% 0 0 0 0 0
2 of 2.97% 9.23% 0 0 0 0 1
3 and 2.71% 11.94% 0 0 0 1 0
4 a 2.15% 14.09% 0 0 0 1 1
5 in 1.83% 15.92% 0 0 1 0 0 0
6 to 1.64% 17.56% 0 0 1 0 1 1
7 it 1.10% 18.66% 0 0 1 1 0 0
8 is 1.01% 19.67% 0 0 1 1 1 0
9 was 0.93% 20.60% 0 0 1 1 1 1

10 to 0.93% 21.53% 0 0 1 0 0 0
11 I 0.89% 22.43% 0 0 1 0 1 0
12 for 0.84% 23.27% 0 0 1 0 1 1
13 you 0.70% 23.97% 0 0 1 1 0 0
14 he 0.69% 24.66% 0 0 1 1 1 0
15 be 0.67% 25.33% 0 0 1 1 1 1
16 with 0.66% 25.99% 0 1 0 0 0 0 0
17 on 0.65% 26.64% 0 1 0 0 0 0 1 0
18 that 0.64% 27.28% 0 1 0 0 0 0 1 1
19 by 0.51% 27.79% 0 1 0 0 0 1 0 0
20 at 0.48% 28.28% 0 1 0 0 0 1 1 0
21 are 0.48% 28.75% 0 1 0 0 0 1 1 1
22 not 0.47% 29.22% 0 1 0 0 1 0 0 0
23 this 0.47% 29.69% 0 1 0 0 1 0 1 0
24 but 0.46% 30.15% 0 1 0 0 1 0 1 1
25 ’s 0.45% 30.59% 0 1 0 0 1 1 0 0
26 they 0.44% 31.03% 0 1 0 0 1 1 0 1
27 his 0.43% 31.46% 0 1 0 0 1 1 1 0
28 from 0.42% 31.88% 0 1 0 0 1 1 1 1
29 had 0.41% 32.29% 0 1 0 1 0 0 0 0
30 she 0.38% 32.68% 0 1 0 1 0 0 0 1
31 which 0.38% 33.05% 0 1 0 1 0 0 1 0
32 or 0.37% 33.43% 0 1 0 1 0 0 1 1
33 we 0.36% 33.79% 0 1 0 1 0 1 0 0
34 an 0.35% 34.14% 0 1 0 1 0 1 0 1
35 n’t 0.34% 34.47% 0 1 0 1 0 1 1 0
36 ’s 0.33% 34.80% 0 1 0 1 0 1 1 1
37 were 0.33% 35.13% 0 1 0 1 1 0 0 0
38 that 0.29% 35.42% 0 1 0 1 1 0 0 1 0
39 been 0.27% 35.69% 0 1 0 1 1 0 0 1 1
40 have 0.27% 35.96% 0 1 0 1 1 0 1 0 0
41 their 0.26% 36.23% 0 1 0 1 1 0 1 0 1
42 has 0.26% 36.49% 0 1 0 1 1 0 1 1 0
43 would 0.26% 36.75% 0 1 0 1 1 0 1 1 1
44 what 0.25% 37.00% 0 1 0 1 1 1 0 0 0
45 will 0.25% 37.25% 0 1 0 1 1 1 0 1 0

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 18

Information 19

46 there 0.24% 37.49% 0 1 0 1 1 1 0 1 1
47 if 0.24% 37.73% 0 1 0 1 1 1 1 0 0
48 can 0.24% 37.96% 0 1 0 1 1 1 1 0 1
49 all 0.23% 38.20% 0 1 0 1 1 1 1 1 0
50 her 0.22% 38.42% 0 1 0 1 1 1 1 1 1
51 as 0.21% 38.63% 0 1 1 0 0 0 0 0 0
52 who 0.21% 38.83% 0 1 1 0 0 0 0 1 0
53 have 0.21% 39.04% 0 1 1 0 0 0 0 1 1
54 do 0.20% 39.24% 0 1 1 0 0 0 1 0 0
55 that 0.20% 39.44% 0 1 1 0 0 0 1 0 1
56 one 0.19% 39.63% 0 1 1 0 0 0 1 1 0
57 said 0.19% 39.82% 0 1 1 0 0 0 1 1 1
58 them 0.18% 39.99% 0 1 1 0 0 1 0 0 0
59 some 0.17% 40.17% 0 1 1 0 0 1 0 0 1
60 could 0.17% 40.34% 0 1 1 0 0 1 0 1 0
61 him 0.17% 40.50% 0 1 1 0 0 1 0 1 1
62 into 0.17% 40.67% 0 1 1 0 0 1 1 0 0
63 its 0.16% 40.83% 0 1 1 0 0 1 1 0 1
64 then 0.16% 41.00% 0 1 1 0 0 1 1 1 1

* This list is not definitive and is meant only for illustrative purposes.

Table 1.2 (cont’d)

Rank Word % cum % 1 2 3 4 5 6 7 8 9

of the source statistics. Another important property of a Shannon-Fano code is that
it is what is called a prefix code. This means that no word is coded by a bit pattern
that is the prefix for any other word’s code. This makes the code self-delimiting
so that when one receives multiple words as a string of bits, there is no need for
any form of punctuation to separate the words, and there is no ambiguity. Notice
that this leads to a clarification of the efficiency of the ASCII encoding. The ASCII
encoding of English text is not a prefix code. For example, if one received the text
“andatareallastask,” there would be no way to know with certainty if the intended
words were “and at are all as task,” or “an data real last ask.” Because of this,
the ASCII encoding scheme would actually require each word to end with a space
character (another code of 8 bits), and the total expected bits per word increases
to 7 bytes or 56 bits per word.4

Compact codes are not necessarily a win-win situation. One problem with com-
pact codes is that they are much more susceptible to corruption by noise than non-
compact codes. We can see this intuitively by comparing the ASCII encoding scheme
to the each-word-gets-a-number scheme. Let’s say we are trying to transmit one

4 The Shannon-Fano prefix code, while efficient, is suboptimal and can result in less than perfect com-
pression. The Huffman (1952) encoding scheme uses a tree-like structure formed from the bottom up
based on the probabilities themselves, not just the rankings. It produces a prefix code that can be shown
to be optimal with respect to a frequency distribution that is used irrespective of the text sent, that is,
it does not take advantage of the statistics of the particular message being sent.

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 19

20 Information

English word. In the ASCII scheme, roughly 48 bits encode each word. This is a
total number of 248 possible patterns – a number in excess of 36 quadrillion –
36,000,000,000,000,000. With our each-word-gets-a-number scheme, we send 19
bits per word, resulting in 219 possible patterns or 524,288. If, for argument’s sake,
we assume that our lexicon contains 524,288 possible words, then if one bit is changed
(from a ‘0’ to a ‘1’ or from a ‘1’ to a ‘0’) because of noise on the signal channel,
then the word decoded will with certainty be another word from the lexicon (one
of possibly 19 words), with no chance of knowing (without contextual clues) that
the error occurred. On the other hand, with the ASCII scheme, regardless of the
noise, we will have less than a 1 in 50 billion chance of hitting another word in
our lexicon. Since this “word” will almost certainly not be found in the lexicon, it
will be known that an error has occurred and the communication system can request
that the word be re-sent or likely even correct the error itself. Clearly in a com-
munication system with very noisy channels, using the ASCII scheme would be more
costly in terms of bits, but more likely to get the right message across.

We can help this problem, however, by adding redundancy into our schemes.
For example, with the each-word-gets-a-number scheme, we could send 3 bits for
each 1 bit we sent before, each 3 bits simply being copies of the same bit. So instead
of transmitting the 19 bits, 1001010001100110011, we would transmit 57 bits:

111000000111000111000000000111111000000111111000000111111

In this case, we have decreased the efficiency back to the ASCII scheme, however,
the redundancy has resulted in certain advantages. If any one bit is flipped due to
noise, not only can we detect the error with certainty, we can also correct it with
certainty. If two bits are flipped, then with certainty we can detect it. We would
also have a 55/56 chance of correcting it.

Information and the Brain

Clearly, the tradeoffs between efficiency, accuracy, error detection, and error cor-
rection can lead to tremendous complexities when designing efficient codes in a world
with noise. These issues are made even more complex when one takes into account
the relative frequencies of the messages, as is done with the Shannon-Fano coding
scheme. Computer scientists must routinely deal with these issues in designing real-
world communication schemes. It is almost certainly the case that that the brain
deals with the same issues. Therefore, an understanding of these issues is crucial
to understanding the constraints that govern the effective transmission of information
by means of nerve impulses within the brain.

As noted in connection with Figure 1.2, insofar as the considerations of
efficiency and noise-imperviousness have shaped the system of information trans-
mission within the brain, the brain’s signaling code may be indirect. That is, the
signals may not reflect intrinsic properties of the things (source messages) that they
encode for. For example, first consider an ASCII encoding of a word, such as ‘dog.’
Note that we are talking about the word ‘dog’, not the animal. The word is first

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 20

Information 21

encoded into letters, that is “dog.” This code reflects inherent properties of the word
‘dog’, as the letters (to some degree) reflect phonemes in the spoken word (“d”
reflects the ‘d’ sound). If we encode each letter by an ASCII symbol, we retain this
coding property, as each character has a one-to-one mapping to an ASCII symbol.
This coding scheme is quite convenient as it also has some direct relationships with
many other features of words such as their frequency of usage (smaller words tend
to be more common), their part of speech, their country of origin, and even their
meaning. As we saw, however, this direct encoding comes at a price – the code is
not compact and is not ideal for transmission efficiency.

On the other hand, consider the Shannon-Fano encoding scheme applied to words.
Here, the letters are irrelevant to the coding process. Instead, the code generates
the signals based on the words’ rank order in a usage table, not from anything
related to its sound or meaning (although there are strong and interesting correla-
tions between meaning and relative frequency – something that code breakers can
use to their advantage). Most efficient (compact) codes make use of such relative
frequencies and are therefore similarly indirect.

In addition, in modern signal transmission, it is often the case that encoded into
the signals are elements of redundancy that aid with the problem of noise. One
common technique is to include what are called checksum signals to the encoding
signal. The checksum refers not to what the symbol encodes for, but instead, the
symbol itself. This allows the communication system to detect if a message was
corrupted by noise. It is called a checksum, as it typically treats the data as pack-
ets of numbers, and then adds these numbers up. For example, let’s take the ASCII
encoding scheme. The word ‘dog’ (lower case) would be encoded as 01100100,
01101111, 01100111. Now, we can treat these bytes as binary numbers, giving us
the sequence (in decimal), 100, 111, 103. If we sum these numbers, we get 314.
Because this is a bigger number than can be encoded by one byte (8 bits), we take
the remainder when divided by 255, which is 59. In binary, that is 00111011. If
we prepend this byte to the original sequence, we can (with over 99% certainty),
determine if the signal was corrupted. Such schemes involve computations at both
the source and destination, and they can make the code harder to break.

If coding schemes in the nervous system are similarly indirect, then the neuro-
scientist’s job is hard. We have no assurance that they are not. At present, with a
few small and recent exceptions (Rieke et al., 1997), neurophysiologists are in the
position of spies trying to figure out how a very complex multinational corpora-
tion functions by listening to phone conversations conducted in a communication
code they do not understand. That is because, generally speaking, neuroscientists
do not know what it is about trains of action potentials that carries the informa-
tion, nor exactly what information is being communicated. We’ve been listening to
these signals for a century, but we have only translated minute parts of what we
have overheard.

This brings us to a brief consideration of how Shannon’s analysis applies to the
brain (Figure 1.4). The essential point is that the brain is a receiver of signals that,
under the proper conditions, convey to it information about the state of the world.
The signals the brain receives are trains of action potentials propagating down
sensory axons. Neurophysiologists call these action potentials spikes, because they

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 21

22 Information

look like spikes when viewed on an oscilloscope at relatively low temporal resolu-
tion. Spikes are analogous to electrical pulses that carry information within elec-
tronic systems. Sensory organs (eyes, ears, noses, tongues, and so on) and the sensory
receptors embedded in them convert information-rich stimulus energy to spike trains.
The stimuli that act directly on sensory receptors are called proximal stimuli. Examples
are the photons absorbed by the rods and cones in the retina, the traveling waves
in the basilar membrane of the cochlea, which bend the underlying hair cells, the
molecules absorbed by the nasal mucosa, and so on. Proximal stimuli carry infor-
mation about distal stimuli, sources out there in the world. The brain extracts this
information from spike trains by processing them. This is to say that much of the
signal contains data from which useful information must be determined.

The problem that the brain must solve is that the information it needs about the
distal stimulus in order to act appropriately in the world – the source information
– is not reflected in any simple way in the proximal stimulus that produces the
spike train. Even simple properties of the proximal stimulus itself (how, for exam-
ple, the pattern of light is moving across the retina) are not reflected in a straight-
forward way in the spike trains in the optic nerve, the bundle of sensory axons
that carries information from the retina to the first way-stations in the brain. The

DISTAL
STIMULUS

SENSORY
ENCODER DECODER

PEPRESENTATIONAL
SYSTEM

PROXIMAL
STIMULUS

PHYSICAL NOISE
SOURCE

BIOPHYSICAL NOISE
SOURCE

SENSORY
SIGNAL

RECEIVED
SENSORY

SIGNAL
PERCEPT/

SYMBOL

Figure 1.4 World-to-brain communication. The states of some delimited aspect of the
world correspond to Shannon’s messages. Perceptual psychologists call these states distal
stimuli. Stimulus energy is either reflected off or emitted by the source. This energy
together with contaminating energy from other sources (noise) impinges on sensory
receptors in sensory organs (sensory encoders). Perceptual psychologists call the stimulus
that actually impinges on the receptors the proximal stimulus. The encoders translate the
proximal stimulus into sensory signals, streams of spikes in the sensory axons leading
from sensory organs to the brain. Biophysical noise contaminates this neural signal,
with the result that variations in the spike train are not due entirely to variations in the
proximal stimulus. The sensory-processing parts of the brain are the decoder. Successive
stages of sensory decoding translate incoming sensory signals into, first, a representation
of aspects of the proximal stimulus, and then into a set of symbols that constitute what
psychologists call a percept. This set of symbols represents the distal stimulus in the
brain’s subsequent information processing. The appropriate processing of these symbols,
together with the communication chain that confers reference on them, makes the brain
a representational system.

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 22

Information 23

physical processes in the world that convert source information (for example, the
reflectance of a surface) to proximal stimuli (the amount of light from that surface
impinging on the retina) encode the source information in very complex ways. Many
different, quite unrelated aspects of the world – for example, the reflectance of the
surface and the intensity of its illumination – combine to determine proximal stim-
uli. To extract from the spike train useful facts about a specific source (for exam-
ple, what the reflectance of a particular surface actually is), the brain must invert
this complex encoding and separate the messages that are conflated in the signals
it receives. This inversion and message separation is effected by a sequence of com-
putational operations, very few of which are currently understood.

The modern approach to a neurobiological understanding of sensory transduc-
tion and the streams of impulses thereby generated relies heavily on Shannon’s insights
and their mathematical elaboration (Rieke et al., 1997). In a few cases, it has been
possible to get evidence regarding the code used by sensory neurons to transmit
information to the brains of flies and frogs. The use of methods developed from
Shannon’s foundations has made it possible to estimate how many bits are con-
veyed per spike and how many bits are conveyed by a single axon in one second.
The answers have been truly revolutionary. A single spike can convey as much as
7 bits of information and 300 bits per second can be transmitted on a single axon
(Rieke, Bodnar, & Bialek, 1995).

Given our estimates above of how many bits on average are needed to convey
English words when an efficient code is used (about 10 per word), a single axon
could transmit 30 words per second to, for example, a speech center.5 It could do
so, of course, only if the usage-frequency table necessary to decode the Shannon-
Fano code were stored in the speech center, as well as in the source center.
Remember that both Paul’s confederate (the encoder) and Paul (the decoder) had
to know the lantern code for their system to work. These encoding tables consti-
tute knowledge of the statistical structure of English speech. Central to Shannon’s
analysis of communication is the realization that the structure of the encoding and
decoding mechanisms must reflect the statistical structure of the source. To make
a system with which the world can communicate efficiently, you must build into
it implicit information about the statistical structure of that world. Fortunately, we
know that English speakers do know the usage frequency of English words (even
though they don’t know they know it). The effects of word frequency in many tasks
are among the more ubiquitous and robust effects in cognitive psychology (Hasher
& Zacks, 1984; Hulme et al., 1997; Jescheniak & Levelt, 1994). The information-
theoretic analysis provides an unusual explanation of why they ought to know these
relative frequencies.6

Until the advent of these information-theoretic analyses, few neuroscientists had
any notion of how to go about estimating how many axons it might in principle
take to relay words to a speech center at natural speaking rates (2–8 words/second).

5 Whether transmission rates of 300 bits per second are realistic for axons within the brain (as opposed
to sensory axons) is controversial (Latham & Nirenberg, 2005).
6 This knowledge is, of course, not built in; it is constructed in the course of learning the language.

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 23

24 Information

No one would have guessed that it could be done with room to spare by a single
axon. Understanding how the brain works requires an understanding of the rudi-
ments of information theory, because what the brain deals with is information.

Digital and Analog Signals

Early communication and recording technology was often analog. Analog sources
(for example, sources putting out variations in sound pressure) were encoded into
analog signals (continuously fluctuating currents) and processed by analog re-
ceivers. For decades, neuroscientists have debated the question whether neural
communication is analog or digital or both, and whether it matters. As most
technophiles know, the modern trend in information technology is very strongly in
the digital direction; state-of-the-art transmitters encode analog signals into digital
signals prior to transmission, and state-of-the art receivers decode those digital sig-
nals. The major reason for this is that the effects of extraneous noise on digital
communication and recording are much more easily controlled and minimized. A
second and related reason is that modern communication and recording involves
computation at both the transmitting (encoding) and receiving (decoding) stages.
Much of this computation derives from Shannon’s insights about what it takes to
make a code efficient and noise resistant. Modern information-processing hardware
is entirely digital – unlike the first computers, which used analog components. To
use that hardware to do the encoding and decoding requires recoding analog sig-
nals into digital form. One of the reasons that computers have gone digital is for
the same reason that modern information transmission has – noise control and con-
trol over the precision with which quantities are represented.

Our hunch is that information transmission and processing in the brain is like-
wise ultimately digital. A guiding conviction of ours – by no means generally shared
in the neuroscience community – is that brains do close to the best possible job
with the problems they routinely solve, given the physical constraints on their opera-
tion. Doing the best possible job suggests doing it digitally, because that is the best
solution to the ubiquitous problems of noise, efficiency of transmission, and preci-
sion control.

We make this digression here because the modern theory of computation, which
we will be explaining, is cast entirely in digital terms. It assumes that information
is carried by a set of discrete symbols. This theory has been extensively developed,
and it plays a critical role in computer science and engineering. Among other things,
this theory defines what it means to say that something is computable. It also estab-
lishes limits on what is computable. There is no comparable theory for analog com-
putation (and no such theory seems forthcoming). The theory we will be explaining
is currently the only game in town. That does not, of course, mean that it will not
some day be supplanted by a better game, a better theory of computation. We think
it is fair to say, however, that few believe that analog computation will ultimately
prove superior. There is little reason to think that there are things that can only
be computed by an analog computer. On the contrary, the general, if largely unspo-
ken, assumption is that digital computation can accomplish anything that analog

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 24

Information 25

computation can, while the converse may not be the case. As a practical matter,
it can usually accomplish it better. That is why there is no technological push to
create better analog computers.

Appendix: The Information Content of Rare Versus
Common Events and Signals

Above, we have tacitly assumed that the British move out night after night and
Paul’s confederate spies on them (or fails to do so) and hangs lanterns (transmits
a signal) every night. In doing so, we have rectified an implicit fault in the Paul
Revere example that we have used to explicate Shannon’s definition of informa-
tion. The fault is that it was a one-time event. As such, Shannon’s analysis would
not apply. Shannon information is a property of probability (that is, relative fre-
quency) distribution, not of single (unique) events or single (unique) signals. With
a unique event, there is only one event in the set of messages. Thus, there is no
distribution. Hence, there is no entropy (or, if you like, the entropy is 0, because
the relative frequency of that event is 1, and the log of 1 is 0). The consequences
of the uniqueness were most likely to have surfaced when he or she came to the
case in which there was said to be a 0.1 “probability” of their coming by land and
a 0.9 “probability” of their coming by sea. If by probability we understand relat-
ive frequency, then these are not intelligible numbers, because with a unique event,
there is no relative frequency; it either happens or it doesn’t.7 If we ignore this,
then we confront the following paradox: the information communicated by the lantern
signal is the same whether Paul sees the low probability signal or the high prob-
ability signal, because the prior probability distribution is the same in both cases,
hence the pre-signal entropies are the same, and the post-signal entropies are both
0. If, however, the event belongs to a set of events (a set of messages) with empir-
ically specifiable relative frequencies, then when we compute the entropy per event
or per signal we find that, for rare events, the entropy per event is higher than for
common events, in accord with our intuitions. We get this result because the entropy
is defined over the full set of events, that is, the entropy is a property of the relat-
ive frequency distribution (and only of that distribution, not of its constituents,
nor of their individual relative frequencies). The source entropy in the case of the
British movements (assuming they recur night after night) is a single fixed quan-
tity, regardless of whether we consider the rare occurrences (coming by land) or
the common ones (coming by sea). However, the common occurrences are nine times

7 This is among the reasons why radical Bayesians reject the interpretation of probabilities as relative
frequencies. For a radical Bayesian, a probability is a strength of belief. Although we are sympathetic
to this position, considering how information theory would look under this construal of probability
would take us into deeper philosophical waters than we care to swim in here. As a practical matter, it
is only applied in situations where relative frequencies are in fact defined. Note that whether or not an
event has a relative frequency depends on the set of messages to which it belongs and that in turn depends
on how we choose to describe it. Any event has a relative frequency under at least some description.
This issue of descriptions relates to the question of “aboutness,” which we take up in a later chapter.

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 25

26 Information

more frequent than the rare ones. Therefore, the amount of entropy per common
event is nine times less than the amount of entropy per rare event, because the amount
of entropy per type of event times the relative frequency of that type of event has
to equal the total entropy of the distribution. As the rare events get rarer and rarer,
the total entropy gets smaller and smaller, but the entropy per rare event gets larger
and larger. This is true whether we are considering source entropy or signal
entropy. The entropy per event, which is sometimes called the information content
of an event, is log(1/p), which goes to infinity (albeit slowly) as p goes to 0. Thus,
the entropy of a distribution is the average information content of the events (mes-
sages) over which the distribution is defined.

9781405122870_4_001.qxd 23/1/09 11:18 AM Page 26

2

Bayesian Updating

Shannon’s analysis of communication and the definition of information that
emerges from it are rooted in a probabilistic conceptual framework. In this frame-
work, there are no certainties; everything is true only with some probability. As
we gain information about the world, our estimate of the probabilities changes.
The information we gain is defined by the relation between the probabilities before
we got the signal and the probabilities after we got it. Moreover, as the discussion
of world–brain communication emphasized, the information-carrying signals them-
selves are only probabilistically related to the source states of the world, the states
that the brain must determine with as much accuracy as it can if it is to act effect-
ively in that world (Knill & Pouget, 2004). One may be led to ask whether there
is an analytic relation between these various uncertainties, a relation that plays, or
at least ought to play, a central role in mediating the updating of our probabilistic
representation of the world. There is indeed: it’s called Bayes’ rule or Bayes’ theorem,
depending somewhat on the user’s metamathematical perspective on what we
should regard as the origin or logical foundation of the principle.

Bayes’ rule specifies what ought be the relation between the probability that we
assign to a state of the world after we get a signal (called the posterior probability),
the probability that we assign to that state of the world before we get the signal
(called the prior probability), the probability of getting that signal given that state
of the world (called the likelihood), and the overall probability of getting that signal,
regardless of the state of the world (the unconditional probability of the signal,
which is sometimes called the marginal likelihood because it is the sum over the
likelihoods under all possible states of the world). Bayes’ rule brings together all
the relevant uncertainties, specifying the analytic relation between them.

The rule follows directly from the frequentist definitions of probability and
conditional probability, which is why it is often called simply a rule rather than a
theorem, the honorific, “theorem,” being reserved for relations that follow less directly
and obviously from definitions and axioms. Let Nx be the number of times we have
observed x (say, that a pool ball is black). And let No be the number of observa-
tions we have made (all the balls we have examined). The empirical probability of
x is: p(x) = Nx /No. More technically, in the frequentist tradition, this observed ratio

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 27

Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience C. R. Gallistel
and Adam Philip King © 2010 C. R. Gallistel and Adam Philip King ISBN: 978-1-405-12287-0

28 Bayesian Updating

is an estimate of the true probability, which is the limit approached by Nx /No as
the number of observations becomes indefinitely large. The same comment applies
to all the “empirical” probabilities to be mentioned. Let Nx&y be the number of
times we have observed both x and y (for example, a ball that is both black and
has an ‘8’ on it). The empirical conditional probability of our having observed a
black ball, given that we have observed a ball with an ‘8’ on it, is: p(x | y) = Nx&y /Ny.
This empirical conditional probability is the frequency with which we have observed
x (that the ball was black), considering only those occasions on which we also observed
y (that the ball had ‘8’ on it). The ‘|’ in the notation ‘p(x | y)’ indicates that
what follows is the limiting condition, the other observation(s) that restrict(s) the
instances that we consider in defining a conditional probability. When there are
two things we might observe (x and y), then there are two unconditional probabil-
ities, p(x) and p(y), and two conditional probabilities, p(x | y) and p(y | x) – the prob-
ability of observing black given ‘8’ and the probability of observing ‘8’ given black.
Bayes’ rule is that:

p(x | y) = . (1)

It specifies the relation between the two probabilities and the two conditional prob-
abilities. Thus, it tells us how to compute any one of them from the other three.
We can see that the rule is analytically true simply by replacing the probabilities
with their definitions:

. (2)

On the right of the equals sign in equation (2) are the definitions of p(y | x), p(x)
and p(y) in terms of the numbers of observations of various kinds that we have
made, substituted for the probabilities on the right of equation (1). As indicated,
the Nx’s and No’s on the right of equation (2) cancel out, leaving the expression
on the left of equation (2), which is the definition of p(x | y), the conditional prob-
ability on the left of equation (1). Thus, from one perspective, Bayes’ rule is a
trivially provable analytic truth about the relation between the two probabilities
and the two conditional probabilities that arise when we observe joint occurrences,
such as the joint occurrence of British routes and lantern signals in the previous
chapter.

The Reverend Thomas Bayes, however, interpreted it as a law of logical or ratio-
nal inference in the face of uncertainty. Under this interpretation, it is more con-
troversial, because it requires us to specify a priori probabilities. That is often hard
to do, or at least to justify rigorously, even though in some sense we do clearly
do it when we reason about uncertain propositions. Moreover, this interpretation
is connected to a debate within the theory of probability about the conceptual

N

N

N
N

N
N

N
N

x y

y

x y

x

x

o

y

o

&

&

 =

p(y | x)p(x)
p(y)

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 28

Bayesian Updating 29

foundations of probability theory, a debate about what a probability in some meta-
physical sense, is, or, more practically, how it ought to be defined. According to
the frequentist school a probability is (or ought to be defined as) the limit ap-
proached by the ratio between the total number of observations, No, and the num-
ber of a subset of those observations, Nx , as the number of observations becomes
indefinitely large. This definition assumes that the observations can be repeated
indefinitely many times under some standard, unchanging conditions – an assump-
tion that, if you think about it, is open to doubt on empirical grounds. On this
view, probabilities have nothing inherently to do with our beliefs. According to strong
Bayesians, however, a probability is (or ought to be defined as) a quantity repres-
enting strength of belief, which is constrained to behave so as not to violate a few
common-sense constraints on rational belief and inference. In the words of Laplace
(1819), an early proponent of this view, “Probability theory is nothing but common
sense reduced to calculation” – a dictum that generations of students of statistics
would probably not readily assent to.

The Bayesian approach to probability begins by noting that our empirically rooted
beliefs are rarely if ever categorical; rather, they vary in strength. We doubt that
some things are true; we think other things are rather likely to be true; we feel
strongly that some things are almost certainly true (the less cautious would omit
the “almost”) and that still other things are very unlikely to be true. These beliefs
are about distal stimuli, which, as we have already learned, is psychological jargon
for states of the world that affect our sensory systems only indirectly. Distal stimuli
affect our senses by way of proximal stimuli that bear a complex, noisy, and ambigu-
ous relation to the states of the world about which we entertain beliefs. Given the
modern understanding of sensory processes, anything other than a graded “prob-
abilistic” treatment of our empirically rooted beliefs about distal stimuli (states of
the world) would be foolish. It would ignore the manifest difficulties in the way of
our obtaining true knowledge from sensory experience. These difficulties become
ever more apparent as our understanding of sensory mechanisms and the stimuli
that act on them deepens.

Classical symbolic logic, which specifies normative laws for reasoning – how we
ought to reason – only considers categorical reasoning: All men are mortal. Socrates
is a man. Therefore, Socrates is mortal. We need to extend it by making it quant-
itative so that it is capable of reflecting the graded nature of actual belief: All crows
are black. (At least all the crows I’ve ever seen.) The bird that ate the corn was
almost certainly a crow. Therefore, the bird that ate the corn was probably black.
The Bayesian argues that we must recognize that beliefs are in fact – and, more-
over, ought to be – accompanied by a graded internal (mental or brain) quantity
that specifies our uncertainty regarding their truth. From a mathematical perspect-
ive, graded quantities are represented by real numbers. (Only quantities that get
bigger in discrete steps can be represented by integers.) For a Bayesian, a probab-
ility is a continuously graded subjective quantity that specifies a subjective uncer-
tainty about states of the world, in a receiver whose knowledge of the world comes
from noisy and ambiguous signals. That is, of course, just what Shannon supposed
in his analysis of communication. From this perspective (a radical Bayesian per-
spective), the theory of probability is the theory of how to handle the real numbers

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 29

30 Bayesian Updating

with which we represent subjective (receiver) uncertainties in a logically consistent
and mathematically sound way (Cox, 1961; Jaynes, 2003; Jeffreys, 1931).

On the face of it, the Bayesian approach to probability, unlike the frequentist
approach, does not sufficiently constrain the numbers that represent probabilities.
If probabilities are relative frequencies, then it is obvious why they must be repres-
ented by real numbers between 0 and 1, because Nx/No cannot be less than

0 nor more than 1, given that the x observations are a subset of the o observa-
tions. However, it turns out that the constraints imposed by common sense are more
powerful than one might suppose. The common sense constraints are logical con-
sistency, fairness, and coherence:

1 Logical consistency: If there is more than one reasoning path to the same con-
clusion, the conclusion should not vary with the path taken. It should not be
possible to conclude “A” by one line of reasoning and “not A” by another line.

2 Fairness: All the available evidence must be taken into account.
3 Coherence: Equivalent uncertainties must be represented by the same number.

Unlikely as it may seem, these constraints suffice to deduce Bayes’ formula for the
updating of the strengths of belief, and they strongly motivate mapping strength
of belief into the real numbers in such a way that: (1) possible numerical strengths
range between 0 and 1, and (2) relative frequencies map to the same numbers they
would map to under the frequentist definition of probability (Jaynes, 2003). When thus
derived, Bayes’ rule gets promoted to Bayes’ theorem.

Bayes’ Theorem and Our Intuitions about Evidence

As a formula for the updating of belief, Bayes’ theorem nicely captures our intuitions
about what does and does not constitute strong evidence. These intuitions turn on:
(1) the prior probability: how probable we think something is a priori, on the basis
of logic or extensive prior experience; and (2) relative likelihood: how likely the
evidence is if that something is true versus how likely it is otherwise (see Figure 2.1).

Note first that when the prior probability of the hypothesis is 0, then the poster-
ior must also be 0. If we think something (the hypothesized state of the world) is
impossible, then it is not true no matter what the evidence (no matter how good
or strong the signal, s).

Note secondly, and more interestingly, that if the experience (signal, s) offered
as evidence is common (an everyday experience), it cannot be strong evidence for
any hypothesis. To see this, consider the limiting case where p(s) = 1, that is, we
consider it an absolute certainty that we will observe s no matter what. In that
case, it must also be true that p(s | h) = 1, because p(s) = 1 means that no matter
what else we may observe, we always observe s. But if both p(s) and p(s | h) are
1, then (as we see from scrutinizing Bayes’ formula in Figure 2.1), the posterior
probability must simply be the prior probability.1 The evidence did not change our

lim
No→∞

1 To see this, replace both the likelihood, p(s | h), and p(s) with 1 in the formula in Figure 2.1.

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 30

Bayesian Updating 31

belief at all. Strong evidence is evidence capable of producing a large change in our
belief and weak evidence is evidence that can produce little or no change. As p(s)
approaches 1 (as the signal becomes very common), then p(s | h)/p(s) cannot be much
greater than 1, but p(s | h)/p(s) is the factor relating the posterior probability to the
prior probability, which means that the more common s becomes, the weaker it
becomes as evidence. Thus, commonplace events are not evidence for interesting
hypotheses about the state of the world. Only rare and unexpected events are. This
is, of course, fully consistent with the fact that in Shannon’s formula, the rarer an
event is, the greater its information content, log (1/p).

Among other things, this suggests an explanation of why habituation to frequent
and or unchanging stimuli is a ubiquitous phenomenon in sensory systems and in
animal behavior. Common and/or persistent stimuli are not informative stimuli, and
the information-processing machinery of nervous systems is constructed so as to
discard uninformative signals. Only informative signals get converted into symbols
in memory, because the function of memory is to carry information forward in time
and only informative signals communicate information. Notice, once again, that
the information communicated by a signal depends on what we already know (whereas
the information carried by a signal does not).

If so-called evidence in fact has nothing to do with the hypothesis in question –
if p(s | h) = p(s), that is, if the truth or falsity of the hypothesis has no effect on the
probability of observing s – then again p(s | h)/p(s) = 1, and the posterior probab-
ility is simply equal to the prior probability. More generally, if the truth or falsity
of the hypothesis has little impact on the probability of s, then s cannot be strong
evidence for that hypothesis. This captures our intuition that in order for something
to be evidence for something else, there must be a connection of some kind between
them. The evidence must be relevant.

If p(h), the prior probability of the hypothesis, is high, then p(h | s), the poster-
ior probability, cannot be much higher. Thus, an experience that confirms a hypo-
thesis already considered highly probable is not very informative. This directly reflects
the subjectivity in Shannon’s definition of the information communicated.

Likelihood of the
signal given the

hypothesis

The prior
probability of the

hypothesis

The overall
probability of the

signal

The posterior
probability of the

hypothesis

p(h | s) = p(s | h) p(h)
p(s)

Figure 2.1 Bayes’ rule, with names for the four probabilities involved.

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 31

32 Bayesian Updating

If p(s | h) = 0, then p(h | s) = 0. If the hypothesis says that s cannot occur, but it
does in fact occur, then the hypothesis cannot be true. This is a powerful principle.
It is the key to understanding the impact of many decisive scientific experiments.

If p(s | h) = 1, if the hypothesis says that s must occur, then the lower p(s) is (the
less likely that signal is otherwise), the stronger the evidence that the observation
of s provides for h. In scientific reasoning, this corresponds to the principle that
the confirmation of a counterintuitive prediction (the prediction of an observation
that is judged to be otherwise improbable) is strong evidence in favor of a theory,
provided, of course, that the theory does in fact make that prediction under all
reasonable assumptions about other conditions of the experiment (that is, provided
p(s | h) ≈ 1).

In short, Bayes’ rule encapsulates a range of principles governing how we think
we reason. Whether in fact we regularly reason in quantitative accord with Bayes’
rule is another matter. There are many cases in which we demonstrably do not
(Kahneman, Slovic, & Tversky, 1982; Piattelli-Palmarini, 1994). However, that does
not mean that we never do (Hudson, Maloney & Landy, 2006; Trommershäuser,
Maloney & Landy, 2003). It is wrong to assume that there is a single, central rea-
soning mechanism that comes into play wherever what we might call reasoning occurs.
We have no conscious access to the reasoning underlying our perception of the world,
and information we get by way of recently evolved channels of communication,
like language and print, may not have access to those mechanisms (Rozin, 1976).
Introspection and verbal judgments are poor guides to much of what goes on in
our brain. The non-verbal part may have a better appreciation of Bayes’ theorem
than does the verbal part (Balci & Gallistel, under review).

Using Bayes’ Rule

Shannon’s definition of the information communicated by a signal in terms of the
change in the receiver’s entropy (the change in subjective uncertainty about some
state of the world) leads us to Bayes’ rule. To see the rule in action, we expand
our Paul Revere example. We whimsically and anachronistically suppose that there
were four possible routes by which the British might have come – land, sea, air,
and submarine – and that these were communicated by two successive signals,
each consisting of 1 or 2 lights, according to the following code: <1, 1> = land;
<1, 2> = sea; <2, 1> = air; <2, 2> = submarine. We do this, so that, by consider-
ing what is communicated by only one of the two successive signals (a partial
signal), we have a situation in which more than one state of the world generates the
same signal. This is essential in order to illustrate the critical role of the likelihood
function, the function that specifies how likely a signal is for each different state
of the world.

In this example, there are four different partial signals that Paul could get:
<1, _>, <2, _>, <_, 1> and <_, 2>, where the blank indicates the missing half of
the bipartite signal. Each partial signal leaves Paul less uncertain than he was, but
still uncertain. That is exactly the state of affairs that the brain generally finds itself
in after getting a sensory signal.

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 32

Bayesian Updating 33

Figure 2.2 shows at top left the prior probability distribution, which is the same
in every case, because it represents what Paul knows before he gets any signal. Below
that are four rows, one for each possible partial signal. On the right are the like-
lihood functions for these different partial signals. On the left are the resulting pos-
terior distributions, the state of belief after getting the partial signal. In each case,
the difference in entropy between the posterior distribution and the prior distribu-
tion gives the information conveyed by the partial signal.

For each of the rows in Figure 2.2, Bayes’ rule holds. Consider, for example, the
first row, where the observed partial signal is <1, _>. The prior probabilities for
the four possible states of the world are <0.25, 0.25, 0.25, 0.25>. The probability
of the partial signal is 0.5, because in half of all signals the first signal will be a
single light. The likelihoods of the different possible states of the world giving rise
to that partial signal are <1, 1, 0, 0>. By Bayes’ rule, the posterior probabilities for
the four possible states of the world, after that signal has been seen, are:

, , , = !0.5, 0.5, 0, 0"

Note that the probabilities in the prior and posterior distributions in Figure 2.2
sum to 1, as they must in any probability distribution. A probability distribution
ranges over mutually exclusive and exhaustive possibilities, specifying for each pos-
sibility its probability. Because the possibilities are mutually exclusive and exhaus-
tive, one and only one of them obtains in every case. Thus, the sum of their
probabilities must be 1.

Note, by contrast, that the likelihoods within a likelihood function do not sum
to 1. A likelihood function, unlike a probability distribution, does not give the prob-
abilities of a set of mutually exclusive and exhaustive possibilities. Rather, it gives
the probabilities that different states of the world might produce the same signal
(the same evidence). As in the present case, two different states of the world may
both produce the same signal with likelihood 1, in which case the likelihoods sum
to 2. It is also possible that no heretofore conceived of state of the world produces
the signal in question. In that case, the likelihoods within the likelihood function
for this “impossible” signal would sum to 0. (Then, if the “impossible” signal in
question is in fact observed, we have to enlarge our conception of the possible states
of the world to include a state that generates that signal with non-zero likelihood.)
In short, the likelihoods in a likelihood function may sum to any finite positive
value, because the probability with which one state of the world gives rise to a sig-
nal does not constrain the probability with which other states of the world give
rise to the same signal.

Notice that the posterior probability distributions in Figure 2.2 are rescalings of
the likelihood functions. They have the same shape (relative heights); only the num-
bers on the ordinate differ. The numbers on the ordinate are determined by the
scale factor for the y-axis. In these examples, the posterior probability distributions
and the likelihood functions look the same because (1) the prior probabilities
are all the same, so the products of the prior probabilities and the likelihoods have
the same profile (relative heights) as the likelihoods; and (2) more generally, the

#$(0.25)(1)
0.5

(0.25)(1)
0.5

(0.25)(0)
0.5

(0.25)(0)
0.5

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 33

34 Bayesian Updating

posterior probability distribution is always related to the posterior likelihood
function by a scale factor, which must be such as to make the probabilities in the
posterior distribution sum to 1. This may be seen by examining Bayes’ rule, where
it will be noticed that the scale factor is 1/p(s). (That is to say, the rule can be

Prior distribution
1.0

p

0.0

1.0

0.0

p

1.0

0.0

p

1.0

0.0

p

1.0

0.0
Land Sea Air Sub Land Sea Air Sub

L

1.0

0.0

L

1.0

0.0

L

1.0

0.0

L

Possible states of the world

1.0

0.0

Posterior distribution Likelihood function
Partial
signal

<1, _>

<2, _>

<_, 2>

<_, 1>

Figure 2.2 Bayesian updating. The distribution at the top left is the prior probability
distribution, the probabilities assigned to the different possibilities before the partial signal
is received. The functions on the right are the likelihood functions for each possible
partial signal. They specify for each possible state of the world how likely that partial
signal is. The distributions on the left are the posterior probability distributions. They
specify how probable each state of the world is after a partial signal has been received
and the information it carries integrated with the prior information. p = probability;
L = likelihood.

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 34

Bayesian Updating 35

rewritten p(h | s) = (1/p(s))p(s | h)p(h).) In the example we have been considering
p(s) = 0.5, so the scale factor 1/p(s) = 2. The products of the two non-zero likeli-
hoods and the corresponding probabilities are 0.25. These are the posterior likeli-
hoods, as opposed to the simple likelihoods, which are shown on the right column
of Figure 2.2. When these posterior likelihoods are scaled up by a factor of 2 to
compose the posterior probability distribution, they sum to 1.

The product of the prior distribution and the likelihood function gives the pos-
terior likelihood function, which specifies the relative likelihoods of the different
states of the world after integrating (combining) the prior information and the infor-
mation conveyed by the signal. The posterior likelihood function may always be
converted to the posterior probability distribution by scaling it to make the prob-
abilities sum to 1. Moreover, the odds favoring one state of the world relative to
others may be derived directly from the posterior likelihood function, without first
converting the likelihoods to probabilities. For that reason, the scale factor, 1/p(s),
in Bayes’ rule is often ignored, and the rule is rewritten as a proportion rather than
an equation:2

p(h | s) ∝ p(s | h)p(h), (3)

giving it a particularly simple and memorable form. Notice that now the terms
(p(h | s), p(s | h), p(h)) no longer refer to individual probabilities and likelihoods.
Now they refer to functions, that is, to mappings from the possible states of the
world to the probabilities or likelihoods associated with those states. In shifting
from individual probabilities and likelihoods to functions, we bring in the constraint
that the probabilities within the probability functions must sum to 1. It is that con-
straint that allows us to ignore the scale factor (1/p(s)) in most Bayesian calcula-
tions. The formula in (3) is about as simple as it is possible to get. It says that one
function, the posterior probability distribution, is proportional to the point-by-point
(state-by-state) product of two other functions, the prior probability distribution,
which gives the prior probabilities of different states of the world, and the likeli-
hood function, which gives, for each of those states of the world, the likelihood
(probability) that it will produce the observed signal.

Notice, finally, that the entropy of the prior distribution is 2 bits,

0.25 log2 (1/0.25) = (4)(0.25 log2 (4)) = (4)(0.25)(2), while the entropy of each

posterior distribution is 1 bit, so the partial signal transmits 1 bit of information
in each case.

Informative priors

In our first example, the prior probabilities are said to be uninformative because
they were all equal. That is the state of maximum prior uncertainty (maximum prior
entropy). Very often, we do not start in a state of complete uncertainty, because

4

∑
1

2 ∝ means ‘is proportional to’.

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 35

36 Bayesian Updating

we have evidence of a different kind from other sources (prior information).
Consider, for example, reasoning from the results of diagnostic tests for medical
conditions whose base rate is known from general surveys performed by the gov-
ernment health authorities. In such cases, absent any diagnostic test, and assuming
we have appropriately identified the relevant population from which the person being
diagnosed should be regarded as coming, the prior probability that they have the
condition tested for is simply the base rate for that population. There are about
300,000,000 people in the US, of whom, by widely agreed on estimates, somewhat
less than 1,000,000 are living with an HIV infection. Thus, for a person drawn at
random from the population of the US, there are two possible states (HIV infected
or not) with associated prior probabilities of about 0.003 and 0.997. We know
this before we consider whether any particular person has been tested for AIDS.

Suppose next that there is a diagnostic test for HIV infection that has been shown
to give a positive result in 99.5% of all cases in which the person tested is HIV
positive and a negative result for 99% of all cases in which the person tested is
HIV negative. By the standards governing medical diagnostic tests in general, such
a test would be considered extremely reliable, an “almost certain” indicator (sig-
nal) of AIDS. Suppose we applied the test to the entire population of the US. How
strongly should we believe that someone who tests positive has AIDS? The prior
probability that they do is 0.003; the prior probability that they don’t is 0.997.
These two probabilities constitute the prior probability distribution (and, of
course, they sum to 1). The likelihood of a positive test result if they do is 0.995;
the likelihood of a positive test result if they don’t is 0.01. Thus the likelihood func-
tion for a positive test result is <0.995, 0.01>, and, as usual, the likelihoods do not
sum to 1.

The proportion form of Bayes’ rule,

p(h | s) ∝ p(s | h)p(h) = = !0.002985, 0.00997",

gives us the relative post-test likelihoods that the person has AIDS (the likelihoods,
0.995 and 0.01, multiplied by the respective prior probabilities, 0.003 and 0.997).
Despite the impressive reliability of the test, the odds are less than one in three
(0.002985/0.00997 = 1/3.34) that a person who tests positive has AIDS. In this case,
we have highly informative prior information, which has a huge impact on what
we consider (or should consider) the most probable state of the world given a highly
informative signal (an “almost certain” test).

Notice that the numbers that we got using the proportional form of Bayes’ rule,
0.002985 and 0.00997, are likelihoods, not probabilities; they do not come any-
where near summing to 1. Without converting them to probabilities, we determined
the relative likelihood (odds) of the two possible states, which is all we usually want
to know. From the odds, we can, if we want, determine the probabilities: if the
relative likelihoods (odds) for two mutually exclusive and exhaustive states of the
world are 1:3, then their probabilities must be <0.25, 0.75>, because those are
the unique probabilities that both sum to 1 and stand in the ratio 1:3 one to the
other. This illustrates why the simpler proportional form of Bayes’ rule is so often

!0.995, 0.01"
× !0.003, 0.997"

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 36

Bayesian Updating 37

used – and it illustrates how to get the probabilities from the odds or from the
relative likelihood function by imposing the constraint that the numbers sum to 1.

Parameter estimation

The two examples of Bayesian updating so far considered involved discrete states
of the world and therefore discrete probabilities and likelihoods, which are repre-
sented by numbers that can be at most 1. In very many cases, however, we want
to use a noisy signal to update our estimate of a continuous (real-valued) param-
eter of our situation in the world or, in less egocentric cases, just parameters of the
environment. An example of such a parameter would be the width of the gap between
two buildings, across which we contemplate jumping. Other relevant parameters
of this same situation are the mean and variability of our jump distances (how far
we can jump and how much that distance varies from one attempt to another).
These three parameters determine the probability that our jump would fall short.
This probability is highly relevant to what we decide to do.3

Another such parameter would be how long it has been since we arrived at a
red traffic signal. A second relevant parameter of this situation is how long a func-
tioning traffic light stays red and how much variability there is in that interval.
These parameters play an important role in our deciding whether to chance
advancing through the red light on the hypothesis that it is not functioning. (If you
don’t chance it sooner or later, the driver behind you will blow his or her stack.)

Another such parameter would be how far back we have come since we turned
to head back home. A second relevant parameter in this situation would be how
far we were from home when we started back. Estimates of these parameters are
relevant to our deciding whether or not we have missed the turn into our street.

Still another example of world parameters that we might want to estimate is the
amount of food per unit of time that appears in various locations where we might
forage for food.

Later, we will consider learning mechanisms whose function it is to estimate these
and other critical parameters of our environment and our situation in it. In every
case, information relevant to estimating one or more of these parameters arrives in
dribs and drabs over time. We suppose that each arrival of a bit of relevant infor-
mation leads to a Bayesian update of our current estimate of that parameter. This
is how our brain keeps up with the world (Knill & Pouget, 2004). That is why we
need to understand how Bayes’ rule applies to the case where the possible states
of the world vary continuously rather than discretely.

Suppose we want to estimate the proportion of black balls in a huge urn con-
taining small balls of many colors. This may sound like a discrete problem, because
no matter how big the urn is, it contains a finite number of balls; therefore, the
proportion is a rational number, a ratio between two integers. However, the case

3 This is an example of why Bayesians think that the idea that probabilities and probabilistic reason-
ing come into play only in situations where we can reasonably imagine repeating the experiment a large
number of times (the frequentist’s definition of a probability) is a joke.

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 37

38 Bayesian Updating

we are considering is a toy version of estimating the concentration of, say, CO2 in
the atmosphere, in which case we want to know the number of CO2 molecules
relative to the total number of molecules in the atmosphere. The point is that for
practical purposes, we assume that the parameter, P (for proportion of black balls),
that we seek to estimate is a real number (a continuous variable).

Suppose that a friend with a reputation for reliability has told us that, while they
don’t know at all precisely what the proportion of black balls is, it is unlikely to
be more than 50% or less than 10%. How to translate this vague prior informa-
tion into a frighteningly specific prior probability distribution is not clear, which
is why Bayesian methods arouse so much unease when first used. But one learns
that, provided some care and thought is used in setting up the priors, the details
will not in the end matter much. The most important thing is not to assume a prior
distribution that makes some possibility impossible, because, as we already saw, if
the prior probability is truly zero, then so is the posterior. There is a critical dif-
ference between assuming a zero prior and assuming a very low prior. The latter
allows the low probability value of a parameter to be saved by the data. (Notice
that now possible values of the parameter take the place of possible hypotheses.)
Given good enough data, any prior possibility becomes probable, no matter how
improbable it was once taken to be, as we will see shortly.

With that in mind, we plunge ahead and assume a normal prior probability dis-
tribution centered at 30% (half way between the limits our friend specified) and
with a standard deviation of 7%, which means that the limits specified by our friend
lie almost 3 standard deviations away from the mean. Thus, we judge a priori that
the chances of the proportion being less than 10% are on the order of one in a
thousand, and similarly for the chances of its being greater than 50%. That seems
to pay sufficient respect to our friend’s reputation for truth telling. At the same
time, however, it does not rule out any proportion, because the normal distribu-
tion assigns non-zero probability to every number between minus and plus infinity.
In fact, that is a reason why we might have decided not to use it here, because the
parameter we are estimating cannot be less than 0 nor greater than 1. If we wanted
to be really sophisticated, we would choose a prior distribution that was non-zero
only on the interval between zero and 1 (the beta distribution, for example). However,
the total probabilities that the normal distribution we have naively assumed assigns
to values below 0 and above 1 are very small, so we won’t worry about this tech-
nicality just now.

The prior distribution we have just so boldly and naively assumed is shown at
the top left of Figure 2.3. Note that the numbers on the ordinate are greater than
1, which a probability can never be. This tells us that we have moved from the
realm of discrete probability to the realm of continuous probability. In the latter
realm, our distribution functions specify probability densities rather than probab-
ilities. Probability density distributions share with discrete probability distributions
the critical property that they must integrate to 1. That means that the area under
the curve must equal 1. You can see at a glance that the area under the prior prob-
ability curve in Figure 2.3 must be less than the area of the superposed rectangle
that is as high and wide as the curve. The width of this rectangle is 0.4, because
it spans from 0.1 to 0.5 on the abscissa. The area of the rectangle is its width times

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 38

Bayesian Updating 39

its height. If the height of the distribution were less than 1, the area of the rect-
angle would be less than 0.4, and the area under the curve even less than that, in
which case the curve could not be a probability distribution. You can see that in
order for the area under the curve to be equal to 1, the height of the curve must
be substantially greater than 1, as in fact it is. Thus, probability densities, unlike
probabilities, can be greater than 1. A probability density is the derivative (slope)
at a point of the cumulative probability function, and this derivative can have any
value between 0 and plus infinity. The height of a probability density curve spe-
cifies the maximum rate at which the cumulative probability increases as we move
along the x-axis (the axis specifying the value of the parameter). The cumulative
probability is the probability that the parameter is less than or equal to a given
value on this axis. Whereas probability itself cannot be more than 1, the rate at
which probability increases can be any value up to plus infinity.

Now that we have a prior distribution to represent more or less the knowledge
with which we started (such as it was), we proceed to draw balls from the urn,
note their color, and update/improve our estimate of the proportion of black balls
on the basis of the proportions we have actually observed. Figure 2.3 shows four
stages in the progress of this updating: when we have only a little evidence (from
the first 5 balls drawn), somewhat better evidence (from the first 10), rather good
evidence (from the first 50), and good evidence (from the first 100).

At each stage, we use the evidence we have obtained up to that point to com-
pute a likelihood function (see right side of Figure 2.3). This computation brings
out again the distinction between a likelihood function and a probability distribu-
tion, because we use a discrete distribution function, the binomial distribution func-
tion, to compute a continuous likelihood function. The binomial distribution
function gives the probability of observing k outcomes of a specified binary kind
(e.g., heads in a coin flip) in N observations (flips) when the probability of such
an outcome is assumed to be p. Because the observed outcome must always be an
integer (you can’t get 4.3 heads), the associated probabilities are discrete (that is,
they are probabilities, not probability densities). But we do not now use this func-
tion to calculate the discrete probabilities for different numbers of a specified out-
come. Rather, we use it to calculate how likely a specified outcome – for example,
4 heads in 5 flips – is for different values of p. The values of p vary continuously
(unlike the numbers of possible outcomes). Moreover, the likelihoods that we get
as we let p range across the infinitesimally minute gradations in its possible values
do not integrate (sum) to 1. That is why we call them likelihoods rather than prob-
abilities, even though we use the binomial distribution function in both cases and it
does not, so to speak, know whether it is computing a probability or a likelihood.

Using the binomial distribution in reverse, so to speak, we get the likelihood func-
tions that we show on the right side of Figure 2.3. We don’t give numbers on the
likelihood ordinate, because it is only relative likelihoods that matter (how high
the curve is at one point relative to other points; in other words, the shape of the
curve). Recall that when we are done multiplying a likelihood function point-
by-corresponding-point with the prior distribution function, we scale the ordinate
of the resulting posterior distribution function so as to make the function integrate
to 1.

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 39

Prior distribution

Posterior distribution Likelihood function

4/5

7/10

36/50

74/100

Observed
proportion

Li
ke

lih
oo

d

Pr
ob

ab
ili

ty
 d

en
si

ty

6

4

2

0

6

8

4

2

0

6

8

4

2

0

6

8

4

2

0

7.5

10

5

2.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Possible state of the world
1

Figure 2.3 Computing posterior distribution functions through point-by-point
multiplication of the prior distribution by the likelihood function for the observed
proportion. (Both the numerator and the denominator of the observed proportion are
arguments of the binomial distribution function used to compute the likelihood function.)
For explanation of the light rectangle enclosing the prior distribution function, see text.
The dashed vertical lines are to aid in comparisons.

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 40

Bayesian Updating 41

In Figure 2.3 we see that, despite his reputation for reliability, our friend misled
us. Judging by the posterior distribution after 100 balls have been observed, the
true proportion of black balls appears to be nearer 60% than 30%. It is in a range
our friend thought was very unlikely. However, the more important thing to see is
the power of the data, the ability of the likelihood function, which is based purely
on the data, to overcome a misleading prior distribution. Bayesian updating, which
integrates our friend’s information, bad as it may in retrospect have been, into our
own beliefs about the proportion, does not prevent our arriving at a more or less
accurate belief when we have good data. When our prior belief is in the right ball-
park, when our friends do not lead us astray, integrating the prior knowledge with
such new evidence as we have gets us close to the true state of affairs faster. When
the prior belief is considerably off the mark, integrating it into our current estim-
ate will not prevent our getting reasonably close to the mark when we have good
data. Already, after only 100 observations, the data have moved us to within about
10% of what looks to be the true proportion (roughly 70%), when we judge by
the data alone, ignoring the prior distribution. As anyone who follows opinion polling
knows, a sample of 100 is small when you are trying to estimate a binary pro-
portion. Notice that even a sample of 5, which is pathetically small (“anecdotal”),
moves the mode (what we believe to be the most likely proportion) a noticeable
amount away from its prior location. By the time we get to a sample of 50, the
mode of the posterior is approaching what our friend thought was the upper limit
on plausible values. At that point, we have good evidence that our friend must have
been mistaken. It would not be unreasonable at that point to jettison our prior, in
which case we will now have as good an estimate as if we had not started with a
misleading prior. (Jettisoning the prior is justified whenever the prior becomes unlikely
in the light of the data. In a changing world, this is often the case.) It is because of
the power of the data that Bayesians do not worry too much about details of the
prior distributions they sometimes have to assume in the face of murky evidence.

Summary

Bayesian updating provides a rigorous conceptual/mathematical framework for under-
standing how the brain builds up over time a serviceably accurate representation
of the behaviorally important parameters of our environment and our situation in
it, based on information-carrying signals of varying reliability from different sources
that arrive intermittently over extended periods of time. It is natural in this frame-
work to have several different Bayesian data-processing modules, each working with
a different kind of data, for which likelihood functions are derived in different ways,
but all updating a common “prior” distribution. It is also natural to have hierar-
chically structured belief networks, in which lower-level modules provide evidence
to higher-level modules, which in turn structure the prior hypothesis space of the
lower-level modules in the light of the bigger picture to which only the higher
modules have access (Chater et al., 2006; Pearl, 2000). And, it is natural to model
neural computation in a Bayesian framework (Knill & Pouget, 2004; Rieke et al.,
1997).

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 41

42 Bayesian Updating

The broader meaning of “prior” is the estimate prior to the latest relevant
signal for which we have a likelihood function, where all parameter estimates are
understood to be probability density functions. This last understanding reflects the
fundamental role that a subjective strength of belief – the Bayesian definition of a
probability – plays in a practical representational system reliant on noisy and ambigu-
ous signals from a complex world. In this conceptual framework, there is no such
thing as a belief without a prior, because the property of having a strength (relat-
ive to other beliefs) is intrinsic to being a belief. The prior is by no means immut-
able. On the contrary, the prior is what is updated. The prior is the repository of
what we have so far learned, by various means, from various sources. We need a
memory mechanism to carry this distillation of our previous experience forward in
time so that it may be integrated (combined with) the information we gain from our
future experience.

9781405122870_4_002.qxd 23/1/09 4:41 PM Page 42

3

Functions

The communication between the world and the brain (Figure 1.4) is a mapping
from states of the world to representations of those states. Computational opera-
tions in brains and in other computing machines map their inputs to their outputs.
For example, the multiplication operation maps pairs of quantities (the inputs) to
their products (the outputs). From a mathematical perspective, these mappings are
functions. The notion of a function is at once so simple and so abstract that it can
be hard to grasp. It plays a fundamental role in our understanding of representa-
tion (Chapter 4) and computation (Chapter 7).

A function is a deterministic mapping from elements of one set of distinct entit-
ies, called the domain, to elements from another set of distinct entities, called the
codomain. There is no restriction on what constitutes these entities, which is part
of what makes the notion of a function so abstract. The entities in either the domain
or the codomain may be physical objects such as a specific fish or house, they can
be concepts such as freedom or love, or they can be numbers, whose ontological
status may be debated.

Functions of One Argument

Figure 3.1 gives two examples of functions. The first, f1, pairs a few basic kinds of
animals (dogs, owls, etc.) with a few higher categories (birds, mammals, etc.). The
second, f2, pairs one set of numbers with another set of numbers. On the left side
of each mapping are the domain entities (the set D); on the right side are the codomain
entities (the set C). From a mathematical perspective, the functions themselves are
simply the sets of pairings. Thus, f1 is the set of pairings of the elements in D1 with
elements in C1. The set of pairings, f1, is, of course, distinct from the sets of the
elements that enter into the pairings (sets D1 and C1), just as those sets are them-
selves distinct from the elements that they consist of.

From a practical perspective, however, functions are not simply viewed as a set
of paired entities. Functions of computational interest are almost always described
by algorithms (step-by-step processes) that will determine the mapping defined by
a function. For example, one would like a physically realizable process that determines

9781405122870_4_003.qxd 23/1/09 11:17 AM Page 43

Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience C. R. Gallistel
and Adam Philip King © 2010 C. R. Gallistel and Adam Philip King ISBN: 978-1-405-12287-0

44 Functions

that owl gets mapped to bird (see if it has feathers, check if it lay eggs, test if it is
warm blooded, etc.). An algorithm allows us to determine, given any element in
the range (typically called the input or argument to the function), the correspond-
ing member of the codomain (typically called the output or value of the function).
When we are speaking from a computational perspective (which we explore in detail
in Chapters 6 and 7), we will often refer to an algorithm as an effective procedure
or just procedure for short. However, the terms function, algorithm, and proced-
ure are often used interchangeably and understood from context. Additionally, we
will refer to the effecting of a procedure as a computation. We say that a procedure,
when effected as a computation, determines a function, and that the procedure, as
a physical system, implements the function. The term computation usually implies
that the elements of the domain and range are symbols that encode for other
entities (we will discuss symbols in Chapter 5).

From the perspective of physically realized computation, a procedure is the com-
putational machinery that specifies how several (usually, a great many) physically
realized simpler functions can be put together to achieve a more complex mapping.
Thus, the notion of a function gives us an abstract description of a computing mach-
ine. By means of this notion, we go from the highly abstract to concrete physical
implementations.

A central question in the physical realization of a computation is whether it is
in fact possible to decompose a given abstractly specified function into the struc-
tured execution of physically implemented elementary functions, and, if so, how?
An important insight is that the answer to this question is sometimes “no.” There
are precisely and unambiguously specified functions for which it is in principle impos-
sible to create a machine that implements them. There are other precisely and unam-
biguously specified functions that can in principle be implemented in a machine,
but in practice, their implementation places unsatisfiable demands on physical
resources.

Functions are directional mappings in which each member of the domain gets
mapped to one and only one member of the codomain. This makes the mapping

Dog
Domain (D1)

f1 f2

Codomain (C1) Domain (D2) Codomain (C2)

Bird 13

2

3

1

1
2

3
4

5

6

7

Insect

Mammal

Reptile

Turtle
Walrus

Owl

Hawk

Lizard

Human

Figure 3.1 Two examples of functions. Function f1 maps from the set D1, which consists
of some lower-order classes of animals to the set C1, which consists of some higher order
classes. Function f2 maps from the set D2, which consists of the numbers 1–7, to the set
D2, which consists of the numbers 1, 2, 3 and 13.

9781405122870_4_003.qxd 23/1/09 11:17 AM Page 44

Functions 45

deterministic: specifying an element in the domain determines a unique corresponding
element in the codomain. This directionality is made transparent terminologically
when we refer to an element of the domain as an input and the element that it gets
mapped to as an output. The converse is not true: specifying an element in the
codomain does not necessarily determine a unique corresponding element in the
domain, as is evident from the examples in Figure 3.1. An entity in the codomain
may be paired with more than one element in the domain, or with none. The set
of entities in the codomain that have specified partners in the domain is called the
range of the function. If the range is the same as the codomain, that is, if every
element in the codomain is paired with one or more elements in the domain, the
mapping is said to be onto.

A common notation for specifying the domain and codomain for a particular
function is f: D → C. Either the domain, or the codomain, or both, may have infinitely
many elements. For numerical functions (mappings from numbers to numbers), this
is the rule rather than the exception. Consider, for example, the “zeroing” func-
tion, f0, which maps every real number to 0: f0 : ! → {0}, where ! is the set of all
real numbers. The domain of this function is infinite, whereas its codomain is the
set whose only member is the number 0. Consider, for a second example, the func-
tion that maps every integer to its (perfect) square: fx2: " → ", where " is the set
of all integers. Both its domain and its codomain are infinite sets. Note that in this
example the mapping is not onto. Only the perfect squares are in the range of the
function, and these are a proper subset of the integers: all perfect squares are inte-
gers, but there are infinitely many integers that are not perfect squares. Thus, the
range of this function is not the same as the codomain.

The function that does the inverse mapping – from the perfect squares to their
integer square roots – does not exist. This is because there are two different square
roots for a perfect square (for example, 9 would have to map to both −3 and 3),
and that violates the deterministic property of a function. The output of the mach-
ine for a given input would be indeterminate. There is a mapping that partially
inverts the squaring function, the mapping from the perfect squares to their positive
roots. But this inversion is only partial; it is not a complete reverse mapping. Thus,
the squaring function has no inverse.

If f is a function and x is an input that maps to the output y, we can describe a
particular input–output mapping using the functional notation: f(x) = y. Using the
example of fx2, we would write fx2(3) = 9 and we say that fx2 of 3 equals 9. It is
particularly when using this notation that we refer to the input as the argument to
the function, and the output as the value of the function for the argument. We may
also say that fx2 when applied to the argument 3 returns (or yields) the value 9.
One way to capture the complete mapping in Figure 3.1 is to give all input–out-
put mappings in functional form. So we would have fis_a(Dog) = Mammal,
fis_a(Turtle) = Reptile, fis_a(Walrus) = Mammal, fis_a(Owl) = Bird, fis_a(Hawk) = Bird,
fis_a(Lizard) = Reptile, fis_a(Human) = Mammal.

If distinct members of the domain get mapped to distinct members of the
codomain, that is, if f(a) = f(b) implies a = b, then we say that the function is a
one-to-one function. If a function is both one-to-one and onto, then we say that
the function is a bijection. This term implies that this mapping can be run either

9781405122870_4_003.qxd 23/1/09 11:17 AM Page 45

46 Functions

way (it is bidirectional): it defines a set of pairings in which every member of one
set has a unique corresponding member of the other set. Thus, bijections are invert-
ible: you can always go from an element in the domain to an element in the codomain
and from an element in the codomain to an element in the domain (for example,
f(x) = x + 1 is a bijection).

Composition and Decomposition of Functions

New functions can be constructed by taking the output (range) of one function as
the input (domain) of another. Consider the f2x function, which maps every real
number to its double and the fx2 function, which maps every real number to its
square. If we feed a number to the squaring function, we gets its square, if we then
feed that square to the doubling function, we get the double of that square. In this
way, we have constructed a new mapping, the f2x2 function. This new function pairs
every number with the double of its square. Constructing new functions in this way
is called the composition of functions. It is a major aspect of the writing of com-
puter programs, because the commands in a computer program generally invoke
functions, and the results are then often operated on by functions invoked by later
commands.

Categorization schemes are functions, as f1 in Figure 3.2 illustrates. Categorization
is commonly hierarchical, and this is captured by the composition of functions,
as shown in Figure 3.2.

In composing functions, it usually matters which one operates first and which
second. If we feed numbers to the doubling function first and then to the squaring
function, we map the number 3 to 36, but if we feed first to the squaring function
and then to the doubling function, we map 3 to 18. Thus, the composition of func-
tions is not in general commutative: it is often the case fb · fa ≠ fa · fb, where ·
denotes composition. In alternative notation, fb(fa(x)) ≠ fa(fb(x)). The alternative nota-
tion has the advantage of making it more apparent which function operates first
(the innermost). The example of functional composition in Figure 3.2 shows that
not only is the composition of functions commonly not commutative, it may well
be the case that two functions can compose in one order but not in the reverse
order. In Figure 3.2, one could not first apply the categorization in f2 and then
apply the categorization in f1, because the range of f2 is not in the domain of f1.

The non-commutative property of the composition of functions suggests that
any physically realizable system that computes such functions must be capable of
sequencing in time the order of the individual functions. In turn, this implies that
such computing devices must be capable of carrying the values of functions for-
ward in time such that they can be utilized by functions that are sequenced later.
Most of the functions that brains routinely compute involve the composition of
functions that are determined at different points in time (numerous examples are
in Chapters 11–13). In the language of computer science, one would say that a
physically realized computational device, such as the brain, needs memory to carry
the values forward in time, and that this memory must be capable of being writ-
ten to and read from.

9781405122870_4_003.qxd 23/1/09 11:17 AM Page 46

Functions 47

Functions can often be decomposed into the sequential operation of other func-
tions. Thus, the function f2x2 can be decomposed into f2x · fx2 and the function f(2x)2

can be decomposed into fx2 · f2x. Writing a computer program is in appreciable
measure the art of decomposing a complex function into an appropriate sequence
of less complex functions, which themselves are ultimately decomposed into the
functions provided in the programming language being used. The functions pro-
vided by the programming language are ultimately implemented by the functions
that are natively computed by the physical architecture of the computing device.
This suggests that computation is inherently hierarchical in structure. This hierar-
chical structure allows for efficiency in determining functions. As the example above

Dog
Domain (D1)

Function 1 (f1)

Function 3 (f2 ° f1)

Function 2 (f2)

Codomain (C1)

Domain (D1) Codomain (C2)

Domain (D2) Codomain (C2)

Bird

Mammal

Reptile

Insect

Crustacean

Bird

Mammal Vertebrate

Invertebrate

Reptile

Insect

Crustacean

Turtle
Walrus
Owl

Hawk

Lizard
Human

Ant
Beetle
Crab
Shrimp

Dog
Turtle
Walrus Vertebrate

Invertebrate

Owl
Hawk
Lizard
Human
Ant
Beetle
Crab
Shrimp

Figure 3.2 The composition of two categorization functions yields a third categorization.
Its domain is that of the first function and its codomain is that of the second function.

9781405122870_4_003.qxd 23/1/09 11:17 AM Page 47

48 Functions

shows, if a system has the ability to compose arbitrary functions, then it would
be capable of computing both f2x2 and f(2x)2 without any additional resources to account
for the sequencing. This suggests that in addition to being hierarchical, computa-
tion is also inherently modular: simple functions are often used again and again by
many different, more complex functions.

A most surprising result that emerged from the work of Alan Turing, work that
we will examine in detail in Chapter 7, is that all of the functions that can be phys-
ically implemented as procedures (all computable functions) can be determined through
the use of composition and a very small class of primitive functions. To get a glimpse
into this potential, realize that both f2x2 and f(2x)2 can themselves by decomposed
into the composition of sequential applications of the function fxy that is capable
of multiplying two numbers. Taking this one step further, we note that fxy can itself
also be decomposed into the composition of sequential applications of the function
fx+y. This leads naturally to our next topic.

Functions of More than One Argument

The functions we have looked at so far take one argument and return a single value.
What about a function like multiplication that takes two arguments and returns a
single value? We can easily generalize our definition of a function to include two
or more arguments by letting there be more than one set that defines the domain.
In this way, the actual domain entities become sequences (ordered lists) of elements
from these sets. We write a particular such sequence using functional notation by
separating the arguments by commas. For example, we can write f*(2, 3) = 6. Since
the domain now comes from two separate sets, the arguments to the function are
themselves pairings of elements from these two sets. The set composed of all pos-
sible pairings of the elements in two other sets, A and B, is called their Cartesian
product, and is written A × B. The function that maps all possible pairs of
numbers from the set of natural numbers {0, 1, 2, . . . }, #, to their product is
f* : # × # → #, as its domain is the Cartesian product of the set of natural num-
bers with itself.

Predicates and relations as functions

Using the Cartesian products of sets, we can express functions of an arbitrary num-
ber of arguments. Let’s look at another example function that takes three argu-
ments. Let set P = {Jim, Sandy}, two people. Let A = {Movie, Exercise, Work}, three
activities that one could do. Let D = {Sunday, Monday}, two days of the week, and
let T = {True, False}, concepts of truth and falsehood.

Our function, let’s call it fdid_they, will map from people, activities they might have
done, and days of the week to True or False, with True indicating that that person
did that activity on the given day and False indicating they did not. We therefore
can write: fdid_they : P × A × D → T. This function has as its domain the Cartesian
product of three different sets and as its codomain the set whose only two members
are True and False.

9781405122870_4_003.qxd 23/1/09 11:17 AM Page 48

Functions 49

Properties and relations

Functions such as fdid_they in which the codomain consists of {True, False} are called
predicates. They express properties and relations. A predicate that takes one argu-
ment is called a property. For example, if we have a domain O consisting of objects
{object1, object2, object3}, we can define a predicate fis_blue : O → {True, False} such
that fis_blue(object1) = True if and only if object object1 is blue and False otherwise.
We can think of fis_blue(object1) as telling us whether or not object1 has the prop-
erty of being blue.

A predicate that takes two or more arguments is called a relation. It expresses
the existence of a relationship between the arguments. For example, take the pred-
icate fis_touching: O × O → {True, False}. Here fis_touching(object1, object2) = True
expresses the relationship that object1 is in physical contact with object2.

The Limits to Functional Decomposition

One may wonder whether functions with two (or more) arguments can be decom-
posed into functions with one argument. Generally speaking, they cannot. One can
see why not by considering whether the fis_touching can be decomposed into the com-
position of an ftouches function. This function would take single objects as its argu-
ment and produce as its output an object touched by whatever object was the input.
We might think that we could then replace fis_touching(object1, object2) = True with
ftouches(object1) = object2. We can see this won’t work because while we could have
the situation fis_touching(object1, object2) = True and fis_touching(object1, object3) = True,
we cannot have both ftouches(object1) = object2 and ftouches(object1) = object3.

As this example illustrates, allowing only for one argument restricts the expressive
power of functions. Functions of one argument cannot combine to do the work of
functions with two. Take the integer multiplication function, f*: " × " → ", which
maps pairs of integers to a single integer. It is inherent in this function that the two
arguments are combined into one value and cannot remain separate within two
separate functions. If f*(x, y) = z, there is no way that we can create two functions
f*_part1: " → " and f*_part2: " → " that enable us to determine z without eventually using
some function that can be applied to multiple arguments. Thus, we cannot realize
this and many other two-argument functions by composing one-argument functions.
This elementary mathematical truth is a critical part of our argument as to why
the architecture of a powerful computing device such as the brain must make pro-
vision for bringing the values of variables to the machinery that implements some
primitive two-argument functions. The ability to realize functions of at least two
arguments is a necessary condition for realizing functions of a non-trivial nature.

Functions Can Map to Multi-Part Outputs

Above we used the Cartesian product to create functions that take multiple arguments.
We can construct functions that return multiple values using the same technique. Let’s

9781405122870_4_003.qxd 23/1/09 11:17 AM Page 49

50 Functions

look at the example of integer division. Integer division is similar to real numbered
division except that it only takes integers as arguments and produces an integer instead
of a real number. You can think of it as the most number of times one integer
can be subtracted from the other before the result goes negative. Given fint_division:
" × " → ", we have fint_division(14, 3) = 4. With integer division, there may be an
integer remainder when we have done the last possible subtraction. When we divide
14 by 3, it divides 4 integral times, with a remainder of 2, that is, 14 = (3)(4) + 2.

Therefore, we may want a function that would map from pairs of integers to
two-component outputs, one component is the integer division of the two argu-
ments and one the remainder. We could write this as fint_div_and_rem : " × " → " × "

with fint_div_and_rem(14, 3) = (4, 2).
Our pointing out that multi-component outputs are possible does not contradict

our earlier point that a function cannot have two different outputs. There cannot
be a function that maps from any perfect square to its square root, because every
perfect square has two different square roots, so the mapping would be indeter-
minate, one would not know which square root to expect. It is possible, however,
to have a function that maps from any perfect square to its square roots, because
in this function its square roots are components of a single output. In such a func-
tion, the output forms an ordered pair. The codomain of this function is the Cartesian
product " × ". Note, however, that this function does not invert the mapping from
integers to their squares. The domain of that function is ", whereas the codomain
of the inverse function from the perfect squares to their roots is " × ". In other
words, the function that maps from perfect squares to their roots generates a dif-
ferent kind of entity than the entities that serve as the arguments of the function
that maps from the integers to their squares. Thus, it remains true that the func-
tion mapping from integers to their squares does not have an inverse.

Mapping to Multiple-Element Outputs Does Not Increase
Expressive Power

The capacity to return multi-part outputs does not buy us additional expressive
power. If we have a function that takes x number of arguments and returns y num-
ber of values, we can replace that function with y functions, each taking x num-
ber of arguments and returning one value. For example, we can replace fint_div_and_rem:
" × " → " × " with the two functions fint_division: " × " → " and fint_remainder: " × "

→ ". This would result in fint_division(14, 4) = 3 and fint_remainder(14, 4) = 2. This works
because each output value can be determined independently with no interactions
between the outputs. Therefore, it is not logically necessary to have functions with
more than one output value, whereas it is necessary to have functions with two
inputs.

By combining the concept of functional composition with the fact that we only
need up to two arguments and only one output value, we can use our example
above regarding integer division to show how we can apply some function f^ to
the integer dividend and the integer remainder of integer division. Here we would
use the form: f^(fint_division(x, y), fint_remainder(x, y)).

9781405122870_4_003.qxd 23/1/09 11:17 AM Page 50

Functions 51

Defining Particular Functions

Above, we were fairly informal in defining our function fdid_they. Somewhat more
formally, we could say that fdid_they: P × A × D → T and that if a ∈ P, b ∈ A, and
c ∈ D, then fdid_they(a, b, c) = True if person a did the activity b on day c and fdid_they(a,
b, c) = False if they did not. Another way to define this function would be to use
a look-up table. Look-up tables define and determine a function by giving the explicit
mapping of each input to its output. Table 3.1 shows the three-dimensional look-
up table for fdid_they. The advantage of the look-up table is that it explicitly specifies
the output of the function for each possible input. Under the everyday metaphys-
ical assumption that there are simple empirical truths, our English definition of the
function establishes that it exists, because we assume that there is a simple truth
as to whether a given individual did or did not do a given activity on a given day.
However, our description does not tell us what those truths actually are for the
people and activities and days in its domain. We may believe that there is a truth
of the matter, but that truth may not be knowable. The look-up table, by contrast,
specifies the truth in each case. Thus, a look-up table specification of a function is
a procedure that implements that function: it gives you a means of obtaining the
output for a given input. In a computational machine, that is what we want.

However, the look-up table architecture (the form of the physically instantiated
procedure that implements the function) is impractical if there are a very large num-
ber of possible input combinations, for which an equally numerous set of outputs
must be specified. Consider, for example, using a look-up table to implement the
multiplication function over the infinite set of integers, f*: " × " → ". To imple-
ment it with a look-up table, we would need two separate physical realizations of
every possible integer symbol (one replication for the column headers and one for
the row names), which is clearly impossible. As a practical matter, even if we limit
our implementation to input integers between, say, minus a trillion trillion and plus
a trillion trillion, we cannot possibly build a look-up table that big. It would require
more physical resources than we could ever bring together in a manageable space.
(We call this the problem of the infinitude of the possible. We will return to it repeat-
edly.) Moreover, in building such a look-up-table machine, we would need to pre-
compute and put into the table the result of every possible multiplication, because
look-up table machines require us to put into the machine all the possible outputs
that we may ever hope to obtain back from it. (We call this the problem of pre-
specification. We also return to it repeatedly.)

Thus, if we are going to physically realize computationally important functions,
such as the arithmetic functions, we are going to need architectures that permit us
to make mappings from essentially infinite domains to essentially infinite ranges
using modest physical resources and without having to build every possible output
into the machine in advance. In effect, the machine must be able to tell us things
we don’t know when we have finished building it, such as: What is the product
1,234,581,247 and 7629?

As our first way of defining fdid_they makes clear, function definitions do not neces-
sarily tell us how to determine a particular output value given the arguments to

9781405122870_4_003.qxd 23/1/09 11:17 AM Page 51

52 Functions

the function, they only establish that such a mapping exists. Indeed, we know that
there are many perfectly well-defined functions that, either in principle or in prac-
tice, cannot be computed, that is, the actual mapping specified by the definition of
the function cannot be fully realized by any physically realizable device.

For an example in which practical considerations arise, consider the function
fnext_prime: # → #, which takes a natural number (call it n), and returns the next
prime number (the first prime larger than n). This is a very well-defined function
with no one left in doubt that such a mapping exists. We know many parts of this
mapping. For example, fnext_prime(1) = 2, fnext_prime(8) = 11, and fnext_prime(100) = 101.
However, our knowledge of the complete mapping is limited and probably always
will be. We know that the number of primes is infinite, but at the time of this writ-
ing, we don’t know any particular prime number of greater than 13 million digits.
All known procedures for finding the next prime take longer and longer to execute
as the arguments get bigger and bigger. Therefore, while fnext_prime(108) ⋅ (100 million)
certainly exists, we currently do not know what its value is. It is possible that in
practice, for extremely large values n, we may never be able to determine the value
of fnext_prime(n). Contrast this with the case of fnext_integer(n), where we have a proce-
dure (the successor function, which simply adds 1) that can produce the answer in
the blink of an eye for arbitrarily large n.

An example of a function that cannot be physically realized even in principle is
the function that maps all rational numbers to 1 and all irrational numbers to 0.
There are uncountably many irrational numbers within any numerical interval, no
matter how small. Thus, we cannot order them in some way and begin progress-
ing through the ordering. Moreover, most of the irrational numbers are uncom-
putable. That is, there is no machine that can generate a representation (encoding)
of them out to some arbitrarily specified level of precision. In essence, uncomputable
numbers are numbers that cannot be physically represented. If we cannot physically

Table 3.1 The look-up table for fdid_they

P A D T

Jim Movie Sunday False
Jim Movie Monday False
Jim Exercise Sunday True
Jim Exercise Monday True
Jim Work Sunday False
Jim Work Monday True
Sandy Movie Sunday False
Sandy Movie Monday False
Sandy Exercise Sunday True
Sandy Exercise Monday False
Sandy Work Sunday False
Sandy Work Monday True

9781405122870_4_003.qxd 23/1/09 11:17 AM Page 52

Functions 53

represent the inputs to the machine that is supposed to generate the corresponding
outputs, we cannot construct a machine that will do the specified mapping.

On the other hand, many functions can be implemented with simple machines
that are incomparably more efficient than machines with the architecture of a look-
up table. These mini-machines are at the heart of a powerful computing machine.
An example of such a machine is our marble machine that adds binary number
symbols (see Figure 8.11).

Summary: Physical/Neurobiological Implications of Facts
about Functions

Logical, mathematical facts about functions have implications for engineers
contemplating building a machine that computes. They also have implications for
cognitive neuroscientists, who are confronted with the brain, a machine with spec-
tacular computing abilities, and challenged to deduce its functional architecture and
to identify the neurobiological mechanisms that implement the components of that
architecture. One important fact is that functions of two arguments, which include
all of the basic arithmetic functions, cannot be decomposed into functions of one
argument. A second important fact is that functions of n arguments, where n is
arbitrarily large, can be decomposed into functions of two arguments. A third import-
ant fact is that functions with n-element outputs can be decomposed into (replaced
with) n functions with one-element outputs. What these facts tell us is that a pow-
erful computing machine must have basic components that implement both one-
and two-argument functions, and it must have a means of composing functions.
Moreover, these facts about functions tell us that this is all that is essential. All
implementable functions can be realized by the composition of a modest number
of well-chosen functions that map one or two input elements to an output element.

These logico-mathematical truths about functions tell us a great deal about the
functional architecture of modern computing machines. A critical component of all
such machines is a processing unit or units that implement a modest number of
elementary functions (on the order of 100). Most of these functions map two input
elements to one output element by means of a procedure hard wired into the com-
ponent. Another critical aspect of its architecture makes it possible for the machine
to compose these functions in essentially infinitely various ways. An essential com-
ponent of the compositional aspect of the machine’s architecture is a read/write
memory. The product of one elementary function is written to this memory, where
it is preserved until such time as it becomes one of the inputs to another element-
ary function.

Some obvious questions that these facts about functions pose for cognitive neuro-
scientists are:

1 Are there a modest number of elementary functions in the brain’s computational
machinery, out of which the very large number of complex functions that brains
implement are realized by composition?

2 If so, what are these functions?

9781405122870_4_003.qxd 23/1/09 11:17 AM Page 53

54 Functions

3 How are they implemented and at what structural level? By systems-level struc-
tures (neural circuits)? Or by cellular-level structures (e.g., synapses)? Or by molecu-
lar structures (e.g., microRNAs)?

4 How is the composition of these functions achieved?
5 What is the memory mechanism that makes composition possible over indefinite

time intervals? An essential fact about the composition of functions that underlies
behavior is that there are time lags of indefinite duration between the production
of an output from one function and its use as an input in another function.

What is the architecture that enables the machinery that implements functions
to physically interact with the symbols on which the machinery operates? These
symbols come mostly from memory (point 5). What is the structural relation between
memory, where the symbols reside, and the machinery that implements the mappings
from symbols to symbols? Are the symbols brought to the function-implementing
machinery, thereby minimizing the amount of such machinery required, while max-
imizing demands on symbol fetching? Or is the machinery in effect brought to
the symbols that are to serve as its inputs by replicating the machinery a great many
times? The necessity for implementing two-element functions makes the latter un-
likely, because there would appear to be no way to structure memory so that the
elements of all possible pairs were physically adjacent. The innumerable different
pairs that may become inputs cannot in general be composed of symbols at physic-
ally adjacent locations. Therefore, the architecture must make provision for retriev-
ing from physically non-adjacent locations in memory the two symbols that are to
serve as the input arguments and bringing them to the machinery that maps them
to an output symbol. In short, there must be a means of fetching symbols to the com-
putational machinery that implements two-argument functions. It is not possible to
bring the machinery to the arguments, because, generally speaking, the arguments
will themselves be in two different locations.

9781405122870_4_003.qxd 23/1/09 11:17 AM Page 54

4

Representations

In Chapter 1 we saw that if the world is to communicate information to the brain,
then the brain must be capable of representing and assigning probabilities to the
possible messages that it might receive. Thus, the brain is a representing system
– or a collection of representing systems. The entities in the brain that represent
possible messages are symbols. The aspects of the world that it represents – the
possible messages for which it has symbols – constitute represented systems. There
are processes – sensory processes, for example – that causally connect the brain’s
symbols to their referents outside the brain. There are other brain processes – the
processes that control a directed reach, for example – that pick out the entity in
the represented system to which a symbol in the representing system refers. The
first set of processes implement functions that map from the represented system to
the representing system; the second implement functions that map the other way,
from the representing system to the represented system. The two systems, together
with the functions that map between them, constitute a representation, provided
three conditions are met:

1 The mapping from entities in the represented system to their symbols in the
representing system is causal (as, for example, when light reflected off an object
in the world acts on sensory receptors in an eye causing neural signals that even-
tuate in a percept of the object – see Figure 1.4).

2 The mapping is structure preserving: The mapping from entities in the repres-
ented system to their symbols is such that functions defined on the represented
entities are mirrored by functions of the same mathematical form between their
corresponding symbols. Structure-preserving mappings are called homomorphisms.

3 Symbolic operations (procedures) in the representing systems are (at least some-
times) behaviorally efficacious: they control and direct appropriate behavior within,
or with respect to, the represented system.

The behavioral efficacy of structure-preserving mappings from the represented
system to the representing system makes a functioning homomorphism, which is
the two-word definition of a representation. Our task in this chapter is to explicate
and illustrate this concept – the concept of a representation – because it is central

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 55

Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience C. R. Gallistel
and Adam Philip King © 2010 C. R. Gallistel and Adam Philip King ISBN: 978-1-405-12287-0

56 Representations

to our understanding of computation and the brain. The brain’s computational capac-
ity exists primarily to enable it to compute behaviorally useful representations.

Some Simple Examples

When couched in terms at the above level of abstraction, the concept of a representa-
tion sounds forbidding. Moreover, it has long been controversial within psychology,
cognitive science, neuroscience, and other disciplines concerned with understanding
the mind, the brain, and the relation between them. Behaviorists argued that it should
be dispensed with altogether (Skinner, 1990). Skepticism about the usefulness of
the notion is also common among neuroscientists (Edelman & Tononi, 2000).
Ambivalence about representation also appears in connectionist modeling circles,
where the signal processing that occurs is sometimes said to be “subsymbolic”
(Barnden, 1992; Brooks, 1991; P. S. Churchland & Sejnowski, 1990; Elman, 1991;
Hanson & Burr, 1990; Hinton, McClelland, & Rumelhart, 1986; Rumelhart &
Todd, 1993; Smolensky, 1988).

In practice, however, there need be no mystery surrounding the concept of a rep-
resentation, rigorously defined; they can be extremely simple. Consider, for exam-
ple, the practice of recording the height of a growing child by having him or her
stand against a wall, laying a book flat on the head, butted against the wall, and
making a pencil mark on the wall, using the underside of the book as the guide,
and dating the mark. The graphite streak on the wall is an analog symbol. Its
elevation represents the child’s height as of the date the streak was made. The
process of making the mark is the physical realization of a measurement function.
It maps from the height of a child to the elevation of a mark on a wall. The phys-
ical realization of this function causally connects the elevation of the mark to the
height of the child. The mapping is structure preserving because the ordering
of the marks on the wall (their relative elevation) preserves the ordering of the
heights. This ordering of the marks by their relative elevation becomes behaviorally
efficacious when, for example, it is used by a parent in choosing a clothing size.

In this case, the homomorphism between the things symbolized (heights) and the
symbolic system (marks on the wall) is trivially realized, because there is a natural
physical homomorphism between elevation and height. In some sense, the order-
ing of the symbols and the ordering of the heights to which they refer are the same
because the representing system (mark elevations) and the represented system
(human heights) both have the same physical property (distance from a reference
point). However, we must not therefore make the common mistake of confusing
the symbol with what it represents. The elevation of the graphite streak on the wall
is not the height of the child. Erasing it would not deprive the child of height, and
remaking it lower on the wall would not reduce the child’s height; it would merely
misrepresent it.

The mark-on-the-wall system has it charms as an illustration of a representa-
tion, and it could hardly be simpler, but it is perhaps more instructive to consider a
hi-tech version in which the encoding is not so direct. One can buy electronic scales
with electronic height-slides, like the ones they put on scales in the doctor’s office

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 56

Representations 57

to measure your height while you’re on the scale. The scale maps the force with
which the earth’s gravity acts on your body into a bit pattern, a pattern of high
and low voltages in a register inside a chip. The slider-with-a-digital-transducer maps
your height into another bit pattern. These bit patterns are symbols. The electro-
nics in the scale and the slider, which implement the weight- and height-measuring
functions, causally connect them to the quantities in the word that they encode.
In a super hi-tech version of this, one may imagine a digital weighing and height-
measuring system that would compute your body-mass index or BMI (your weight
divided by the square of your height) and email the resulting bit pattern to your
doctor. The doctor’s computer might then email you back a report outlining an
appropriate diet and exercise plan – all of this without human intervention. Thus,
the representation of your height and weight and your approximately computed posi-
tion on a lean–fat continuum by means of these digital symbols can be efficacious.

This somewhat fanciful hi-tech example is instructive because the homomorphism
between the bit patterns in the computer and its processing of them, on the one
hand, and, on the other hand, your height, weight, and BMI, is by no means
trivially realized. It is created by careful engineering. There is no natural ordering
of bit patterns, the symbols that represent height, weight, and BMI in the hi-tech
example of a representing system. There is no physically straightforward sense in
which 001111 is shorter, lighter, or “leaner” than 010010. Nor is there a straight-
forward sense in which the corresponding patterns of high and low voltages within
the silicon chip are shorter, lighter, or “leaner” than another such voltage pattern.
Height and weight and lean/fat are not properties of binary voltage patterns. If these
patterns of high and low voltage are to serve as symbols of a person’s location
along these dimensions, we are going to have to engineer the representing system
(the chip) so as to create a component that appropriately orders the symbols. We
achieve this ordering by building into the operation of the machine the procedures
that implement arithmetic functions with binary encoded numbers.

One of the elementary relations in arithmetic is the order relation. As noted in
the previous chapter, relations are functions. Let’s define this ordering relation, denoted
‘≥’, as a mapping from all possible pairs of integers to the integers 0 and 1 (f≥ :
! × ! → {0, 1}) such that f≥(x, y) = 0 when x is less than y and f≥(x, y) = 1 other-
wise. Built into the chip on a digital scale is a component that implements this func-
tion on the binary encoding of integers (fbinary(0) = ‘0’, fbinary(1) = ‘1’, fbinary(2) = ‘10’,
fbinary(3) = ‘11’, fbinary(4) = ‘100’, fbinary(5) = ‘101’, fbinary(6) = ‘110’, etc.). The trans-
ducer in the scale that translates a weight into a bit pattern is engineered so that
progressively heavier loads produce bit patterns that encode progressively higher
numbers. This engineering of the transducer and the ordering function creates a
structure-preserving mapping from weights to bit patterns in the chip: If weight-a
is heavier than weight-b, then the bit pattern to which weight-a maps will encode
a greater integer than the bit pattern to which weight-b maps. Thus, when the
two bit patterns are put into the component that implements the numerical order
function, it will generate a 1.

The art and science of constructing measuring instruments is centered on the
creation of mappings from non-numerical quantities (weight, height, length, humidity,
fat : lean ratio, etc.) to numbers in ways that preserve as much structure as possible.

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 57

58 Representations

The more structure that is preserved – that is, the more arithmetic processing that
can validly be done on the resulting numbers – the better the measurement pro-
cedure (Krantz, Luce, Suppes, & Tversky, 1971; Stevens, 1951). Bad measurement
procedures or mechanisms preserve very little structure, thereby limiting the use-
fulness of the resulting numbers.

These days, the numbers are in a binary encoding, unless they are intended for
human consumption. They are in binary form because there is readily available
at very little cost machinery that can arithmetically manipulate numbers thus
encoded. This machinery implements all the two-argument arithmetic functions –
the functions that, together with the one-argument negation function, are the foun-
dations of mathematics. It also implements a modest number of other elementary
one- and two-argument functions. There is also readily available at very little cost
devices – random access memories – that can store vast quantities of the bit pat-
terns that serve as both the inputs to and the outputs from this machinery. This
cheap and ever more compact memory machinery preserves bit patterns in a form
that permits their ready retrieval. The ability of the machinery that implements the
elementary one- and two-argument functions to offload the results to memory and
quickly get them back again whenever needed makes it possible for that machinery
to implement the composition of its elementary functions. That makes it possible
to construct procedures that implement extremely complex functions.

From an information-theoretic perspective, the possible weights that a scale can
measure are a set of possible messages. And the possible bit patterns to which the
scale may map them, together with the symbolic operations that may validly be
performed with those patterns, are the receiver’s representation of the set of pos-
sible messages. The more structure that is preserved in the mapping from weights
to bit patterns, the more information is thereby communicated to the chip.

The process by which the bit pattern for the body-mass index is derived from
the measurements of weight and height is instructive. First the bit pattern for height
is entered into both inputs of a component of the machine constructed so as to
implement the mapping from the Cartesian product of binary encodings of num-
bers to the binary encoding of their numerical products. This component imple-
ments the f* : "+ × "+ → "+ (multiplication of the positive integers) discussed in
the previous chapter. In this case, the operation of this component gives the binary
encoding of the square of your height. This symbol – newly generated by the mul-
tiplying component – is stored in memory. Then it is fetched from memory and
entered into the dividend register of a component constructed to implement the divi-
sion function. The bit pattern for your weight is entered into the divisor register
of the dividing component, and the component cranks out the bit pattern that is
their quotient. This quotient is the body-mass index. It is widely used in medicine,
but also much disparaged because it is not a very good measure; there is very little
arithmetic that can validly be done with it.

However, as a measure of the amount of fat relative to the amount of muscle
and bone in a body, the body-mass index is clearly superior to the two numbers
from which it was computed. Neither of the inputs to the dividing component was
an index of a person’s location along the lean–fat dimension, because a 2.7 meter-tall
man who weighs 90 kilos is considered lean, while a 1.5 meter woman who weighs

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 58

Representations 59

86 kilos is considered overweight. Thus, the numerical ordering of either of the
inputs is not an ordering on the basis of the lean/fat attribute. The ordering of the
body-mass-index symbols created by means of computations on the height and weight
input symbols is ordered in accord with the relative amount of body fat within a
given measured individual (and, statistically, also with this quantity across individuals):
As your BMI goes up, so, generally speaking, does the mass of your fat relative to
the mass of your muscle and bone. That is why your physician – or even her com-
puter – can use it to judge whether you are anorexic or morbidly obese.

The derivation of a number that crudely represents the relative amount of fat
and lean illustrates the distinction between an implicit and an explicit encoding (Marr,
1982). A person’s approximate position on a lean–fat dimension is implicit in sym-
bols that specify their weight and height, but not explicit. Computation with the
symbols in which the information is implicit generates a symbol in which a crude
index of that position is explicit; the real-world position of a person along a lean–fat
dimension is given by the position of the corresponding symbol along a symbolic
dimension. And this symbolically represented information can be utilized in med-
ical decision making with impact on one’s health. Thus, it is a functioning homo-
morphism (albeit a weak one) constructed by computation. This is very generally
the story about what goes on in the brain, the story of what it is about the brain’s
activity that enables animals to behave effectively in the experienced world.

In the more general and more realistic case, both brains, and computers that are
coupled to the external world by devices somewhat analogous to ears and eyes (that
is, microphones and cameras), constantly receive a steady stream of signals carry-
ing vast amounts of information about the environment. As explained in the first
chapter (Figure 1.4), the information that is behaviorally useful is almost entirely
implicit rather than explicit in the first-order sensory signals that the brain gets from
the huge array of transducers (sensory receptors) that it deploys in order to pick
up information-bearing signals from its environment. The information that the brain
needs must be extracted from these signals and made explicit by complex computa-
tions constructed from the composition of elementary functions.

Notation

In this section, we elaborate some notation that will prove useful in referring to
the different components that together constitute a representation. For the more
formally inclined, the notation may also help to make the concept of a representa-
tion clearer and more rigorous. Our concept of a representation is closely based
on the mathematical concept of a homomorphism, which is important in several
branches of mathematics, including algebra, group theory, and the theory of meas-
urement. Historically, the first homomorphism to be extensively developed and recog-
nized as such was the homomorphism between algebra and geometry, to which we
will turn when we have developed the notation.1

1 Technically, the relation between algebra and geometry is an isomorphism, which is an even stronger
form of homomorphism.

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 59

60 Representations

A representation is a relationship that holds between two systems, a represent-
ing system and a represented system. Let B denote a representinG system and U
denote the representeD system. Notationally, we distinguish the two systems both
by the difference in letters (G vs. D) and by the hat (^) vs. the partial left arrow
on top. We also use these latter symbolic devices (hats vs. partial left arrows) to
distinguish between what is in the representing system and what is in the repres-
ented system. We put what is in the representing system under hats because the
representing system we are most interested in is the brain, and also because, in stat-
istical notation, the hat is commonly used to distinguish a symbol for an estimated
value from a symbol for the true value of which it is an estimate. This seems appro-
priate because symbols and processes in the brain are merely approximations to
the aspects of the environment that they represent. Things in the represented sys-
tem have partial left arrows, because in the representations we are most interested
in (brain–world representations), these are things out in the world that map to things
in the head by way of the brain’s many functions for establishing reference to its
environment. We imagine the world to stand symbolically to the right of the brain,
so processes that map from the world to the brain map leftward.

A representing system, B, consists of a set D of symbols and another set C of
procedures. ‘Procedures’ is the word with the most felicitous connotations when
discussing symbolic operations, but when the discussion concerns physical “proced-
ures” in the world or in the brain, ‘processes’ often seems the more appropriate
word. Fortunately, it also begins with ‘p’, so when using words for the things
designated by one or another form of our ‘p’ symbols, we will use ‘procedure’ or
‘process’ depending on the context. The procedures/processes – the Es in the set C
– are functions on subsets of D. Thus, for example, if the subset of symbols in D
encode numerical values, then the numerical ordering procedure is defined on them.

A represented system, U, consists of a set V of “entities” – called thus because
they need not be physical and the otherwise noncommittal word ‘things’ tends to
connote physicality – and a set, W, of functions defined on subsets of V. Thus, for
example, if the subset is people, then their pairwise ordering by height is a func-
tion defined on them. If these heights are appropriately mapped to numerical sym-
bols (if height is appropriately measured), then the numerical ordering procedure
defined on the resulting set of symbols and the ordering of the heights to which
those symbols refer constitute a homomorphism.

We use the lower-case letters F, E, Y, and Z to denote individual entities or func-
tions within these sets of entities or functions.

The inter-system functions (processes) that map from the entities in the repres-
ented system to their symbols in the representing system we denote by n. The full
left arrow reminds us of the direction of these inter-system mappings – from the
represented system to the representing system.

Functions that map the other way, from symbols in the represented system to
entities in the represented system, we denote by r. Again, the direction of the full
right arrow reminds us of the direction of the inter-system mapping – from the rep-
resenting system to the represented system. These functions are “onto” functions
for the trivial reason that we restrict the entities in a set denoted by V to only those
entities that have a representative (a symbol that refers to them) in the representing

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 60

Representations 61

system. Thus, a fortiori every entity in the set is in the range of the mapping from
a set of symbols to the entities they refer to.

Still other inter-system functions map from functions in the represented system
to functions in the representing system. These we denote by m. It may help to recall
at this point that the concept of a function is extremely abstract; it is a mapping
from whatever you like to whatever you like. Functions are themselves entities (sets
of pairings), so other functions can map from these entities (these functions) to other
entities (other functions). In the homey example with which we began our discus-
sion of representation, the ordering function on heights maps to the ordering func-
tion on mark elevations.

Finally, functions that map the other way – from functions in the representing
system to functions in the represented system – we denote by q. Our notation is
summarized in Table 4.1, whose columns remind us of the constituents of a rep-
resentation, to wit, a represented system, a representing system, and the functions
that map back and forth between them.

Table 4.1 Notation for representations

Representing system (b)

D (a set of symbols)

F (a symbol in a set)

C (the set of procedures
that map symbols to
symbols)

E (a function defined
on a set of symbols)

b ↔ u functions

n (the full set of processes/functions
that causally connect referents to
the symbols for them)

r (the full set of processes/functions
that pick out the referents of symbols)

P a single function mapping an Y
to an F (a referent to its symbol)

T a single function mapping an F
to an Y (a symbol to its referent)

m (the full set of mappings from
procedures in the represented system
to corresponding functions in the
representing system

q (the full set of mappings from
procedures in the representing system
to the corresponding functions in
the represented system)

O a single function that maps an Z to
a E (e.g., a relation in the represented
system to a corresponding relation in
the symbolic system)

S a single function that maps a E
to an Z

Represented system (u)

V (a set of entities
referred to by symbols)

Y (an entity in the set
of entities referred
to by some set of
symbols)

W (the set of functions
to which the set of
symbolic processes
refer)

Z (a function defined
on the set of entities to
which a set of symbols
refers)

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 61

62 Representations

Both of the functions that map from the representing system to the represented
system, r and q, are trivially onto functions (also called surjections or surjective
functions), but, generally speaking, they are not one-to-one. They map each sym-
bol or each function to only one entity or only one function (otherwise they wouldn’t
be functions!), but they can and often do map more than one symbol to the same
entity in the experienced world (the represented system). An example of this, much
discussed in philosophical circles, is the mapping from ‘evening star’ and ‘morning
star’ to heavenly bodies.

The evening star is the first star to appear at dusk, while the morning star is the
last to disappear at dawn. Of course ‘evening star’ and ‘morning star’ are typo-
graphic symbols (patterns of ink on a page or pixels on a computer screen), not
something in the sky. Moreover, these patterns of ink on paper refer directly not
to anything in the sky but to concepts humans have in their heads, the concepts
evoked by the language ‘first star to appear at night’ and ‘last star to disappear at
dawn.’ As it happens – who knew? – the physical entities to which these concepts
refer are not stars; they’re a planet, namely, Venus. Thus, we have in our heads
two different symbols that map to the same referent, when we take the represented
system to be the visible heavenly bodies. Because not everyone knows this, it is
possible for someone to believe things about the evening star that they do not believe
about the morning star. That’s why this example and others like it (e.g., ‘water’
and ‘H2O’) are much discussed in philosophical circles. What this shows about
representations is that the validity and therefore the behavioral usefulness of the
functions that map symbols to symbols within a representing system – the validity
of the computations performed on its symbols – depends on the functions that map
from the referents to the symbols and back again.

The functions r and q that map symbols in the representing system to entities
in the represented system and procedures in the representing system to functions
in the represented system must preserve structure. Let Feve be the symbol for the
evening star in a set of symbols, Ddusk_stars, for the stars that one sees come out one
by one as dusk falls. Let Eearlier be a function that pairwise orders the symbols in
this set. It is a function of the form: Eearlier : Ddusk_stars × Ddusk_stars → Ddusk_stars, into which
we feed pairs composed of the different symbols for different dusk stars and out
of which comes one member of each pair. Let Yeve be the evening star itself (Kant’s
“das Ding an sich”), an entity in the set of entities, Vdusk_stars composed of the heav-
enly bodies that become visible as dusk falls. (Unlike the members of Ddusk_stars, the
members of Vdusk_stars are not symbols!) Let Zearlier be a pairwise ordering of heavenly
bodies on the basis of how soon they become visible as dusk falls. In contrast
with the arguments of Eearlier, the arguments of Zearlier are not symbols, they are the
things themselves: Eearlier and Zearlier are distinct functions because they are defined
on different domains and have different codomains. This is of course trivial, but
the tendency to confuse symbols with the things they refer to is so pervasive that
it must be continually cautioned against. It is a serious obstacle to the understanding
of representations. Finally, let Tdusk_stars : Ddusk_stars → Vdusk_stars be the function that picks
out the referents (the heavenly bodies) of the symbols in the set of symbols for
the dusk stars, and Sordering : Eearlier → Zearlier be the function that maps the ordering
function defined on this symbol set to the order function defined on our set of

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 62

Representations 63

heavenly bodies to which they refer. Now, finally, we can formally define homo-
morphism: Our two sets (Ddusk_stars and Vdusk_stars), together with the ordering func-
tions defined on them (Eearlier and Zearlier), and the two functions that map between
the things with hats and the things with partial left arrows (Tdusk_stars and Sordering)
constitute a homomorphism iff:

Premise: if for every other symbol, Fother, in Ddusk_stars, Eearlier (Feve, Fother) → Feve (In
other words, if for every pairing of Feve with any other symbol in the set, Eearlier

gives as output Feve.)

Implication: then for every other heavenly body, Yother in the set, Vdusk_stars,
Zearlier(Yeve, Yother) → Yeve. (In other words, then for every pairing of Yeve with any
other heavenly body, Yeve is visible before Yother.)

This implication need not hold! In specifying the function Eearlier, all we said was
that it returns one member of the input pair; we did not say which. If it is the
wrong ordering function, it will return the wrong member of each pair, the sym-
bol that refers to a star that appears later, not earlier. (Putting “earlier” in the sub-
script just serves to distinguish the function from others defined on the set; it hints
at but does not in fact specify the mapping.) Thus, if Eearlier is the wrong ordering
function, the mappings from the representing system to the represented system will
not preserve structure. The mapping will also not preserve structure if the function
Tdusk_stars maps Feve to the wrong heavenly body, say, Mars or Polaris, instead of Venus.
Thus, only when symbols pick out the appropriate referents and only when sym-
bolic operations get mapped to the appropriate non-symbolic relations does one
get a homomorphism, a structure-preserving mapping.

Notice that it is perfectly possible for the representing system to correctly rep-
resent the evening star as a planet while misrepresenting the morning star as a star,
even though both symbols refer to the same entity out there in the world. The rep-
resenting system may contain or be able to generate a great many correct pro-
positions about both the evening star and the morning star, but not have any
proposition that asserts the identity of the entities to which the two different sym-
bols refer. Thus, it may entertain conflicting beliefs about one and the same thing
out there in the world because: (1) the beliefs that it entertains are physically real-
ized by symbols for that thing, not by the thing itself; (2) it may have multiple sym-
bols for the same thing, generated by different mapping functions from and back
to the thing itself; and (3) homomorphisms depend both on the functions that map
from the world to the symbols and back again and on the procedures that operate
on those symbols. Thus one may simultaneously believe (1) that water dissolves salt;
(2) that H2O denotes a substance whose molecules are composed of two hydrogen
and one oxygen atom; (3) that NaCl denotes a substance whose molecules are com-
posed on one sodium and one chlorine atom; (4) that liquid H2O does not dissolve
NaCl. This phenomenon gives rise to what philosophers call referential opacity:
Symbols may not necessarily be substituted for other symbols even though they both
refer to the same thing. In our statements about this benighted chemistry student,
we cannot replace ‘water’ with ‘liquid H2O’ and remain true to his states of belief.

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 63

64 Representations

The Algebraic Representation of Geometry

Pride of place among representations goes to the representation of geometry by
algebra. It was the first representation to be recognized as such, and it has been
without question the most productive: it has been a powerful engine of mathematical
development for centuries. Moreover, it is taught in almost every secondary school,
so it is a representation with which most readers are familiar. A quick review of
this representation will firm up our grasp on what a representation is.

The algebraic representation of geometry is a relation between two formalized
symbolic systems: geometry, which was first formalized by Euclid, and algebra, whose
formal development came many centuries later. The formalization of mathemat-
ical systems may be seen in retrospect as an essential step in intellectual progress
toward understanding the physical realization of computation and reasoning, a cen-
tral concern of ours. Formalization is the attempt to strip the process of reasoning
about some delimited domain down to simple elements and determine what can
and cannot be rigorously constructed from those simple foundations. The idea, first
seen in Euclid, is to begin with a modest number of definitions (setting up the things
to be reasoned about), axioms, and specified rules of deduction, which are chosen
to be both intuitively obvious and so simple as to have a machine-like inevitability,
a mechanical relation between what goes in and what comes out, what is assumed
and what is concluded. The idea is furthermore to develop a rich system that rests
securely on these simple foundations. Thus, Euclid in effect gave us the concept
of a formal system. Without that concept, we could not have a rigorous concept
of representation, because a representation is a relation between two formally described
systems.

Euclid’s geometry is a symbolic system, because he worked with idealizations like
points and lines that have no physical realization, although they can be usefully
regarded as abstracting out some formal essence from physical things. A point in
Euclid’s system has, by definition, no extent, and, a line has no width and may be
extended indefinitely. These attributes imply that points and lines are not things
in the physical sense of thing, which requires (at least, outside rarified scientific
circles) that a physical thing have mass and extension. You cannot make a
“point” that has no extension. If you somehow did, you would not be able to
verify that you had made it, because something with no extension cannot affect
our senses. Similarly, you cannot draw a line with no width, much less extend it
a trillion kilometers.

Some simple procedures and instruments (very simple machines) for implement-
ing what we now call models of these procedures (that is, physical realizations)
were an essential part of Euclid’s system. The drawing of a straight line was one
such procedure. The instrument for physically implementing it was an unmarked
straight edge. One of Euclid’s elementary building blocks (axioms) was that any
two points can be joined by a straight line. A model of the line that joins them
is constructed by laying a straight edge so that it contacts both points. The line
joining the two points consists of all those points that also contact the straight
edge. Thus, we are given a procedure for generating a line, given two points (it

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 64

Representations 65

being tacitly assumed that the points are distinct). The drawing of a circle was another
such procedure. Another of Euclid’s axioms was that given any straight line
segment (line joining two points), a circle can be drawn having the line segment
as its radius and one of the points as its center. The instrument for implementing
the procedure for constructing a circle from a line segment is the compass. The
compass allows us to reproduce line segments; it guarantees that the radii of the
circle (all the lines from its center to its circumference) are the same length. Euclid
allowed into his system only procedures that could be accomplished with these two
instruments.

Euclid built his geometric procedures (functions) by composition: first perform
this procedure, then perform another procedure on the results of that procedure,
and so on. For example, one of his procedures began with a line and a point not
on the line and showed how to construct a line through the point that was parallel
to the line. (In later versions of his system, the assertion that this was always pos-
sible and that there was only one such line was often taken as the fifth axiom in
place of an axiom of Euclid’s that had essentially the same role in his system.) So,
at this point in the development of the system, we have a draw-a-parallel-line-through-
a-point function, which takes a line and a point not on it as inputs and generates
as output a line parallel to the input line that passes through the input point.

Euclid showed how to compose this function with a few other simple functions
to get a ruler-marking function that took as input a line segment of arbitrary length
(the ruler to be marked) and divided it into n equal segments (the units), where n
could be any integer greater than one (Figure 4.1). The first procedure was to take
the straight edge and lay off a line not parallel to the line to be ruled but passing
through one of its end points. The second procedure was to take the compass, set
it to some length (it does not matter what), and mark off on the just constructed
second line n segments, every one of which is equal to the compass length, hence
to the length of every other segment. (The compass is the instrument that imple-
ments the elementary procedure by which a line segment is made exactly as long
as another.) This constructs a final point on the second line, the point at the end
of the n equal segments. The third procedure (function) uses the straight edge to
draw the line segment from this point to the other end of the line to be ruled. Finally,
the draw-a-parallel-line-through-a-point procedure is used to draw a line parallel
to this line through each of the points marked off by the compass on the second
line. The points where these lines intersect the line to be ruled divide that line into
n equal segments. This is an illustration of a geometric function (the ruling func-
tion), created through the composition of elementary geometric functions (draw-
ing a line with a straight edge, marking off a segment with a compass). It is defined
on the domain of line segments and positive integers greater than 1. Its output is
the line segment divided into n equal subsegments.

Part of the reason the representation of geometry by algebra is so instructive is
that all of the above seems far removed from algebra, which was developed out
of the formalization of procedures for finding specified relations between numbers.
The homomorphism between algebra and geometry is far from evident, unlike
the homomorphism between height and mark elevations when the usual procedure
for marking height is followed. The first to perceive the possibility of an algebraic

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 65

66 Representations

representation of geometry were Descartes and Fermat, who had the insight at about
the same time, but quite independently, in the first half of the seventeenth century.
They realized that the points in geometry could be mapped to numerical symbol
structures (ordered pairs or triplets of numbers) that we now call vectors and that
the lines and other curves in Euclid’s geometry (the conic sections) could be
mapped to equations (another basic symbolic structure in algebra) and that these
mappings could be structure preserving: With the right mappings, algebraic pro-
cedures would correctly anticipate the results of the corresponding geometric
procedures. The realization that it was possible to construct within algebra a
structure-preserving representation of geometry was one of the most important devel-
opments in the history of mathematics.

The mapping from points to vectors is effected with the aid of what we now call
a Cartesian coordinate framework (Figure 4.2). Vectors are denoted by an ordered
list of real numbers enclosed in angle brackets, for example !2.3, 4". The ordering
of the numbers within the brackets is critical: this particular vector represents the
point that is 2.3 units to the right of the y-axis and 4 units above the x-axis. Reversing
the order of the numbers gives a vector !4, 2.3" that represents a different point,
the point 2.3 units above the x-axis and 4 units to the right of the y-axis.

The use of Cartesian coordinates to assign number pairs to the points in a plane
is an example of a function that causally connects referents (the points) to corre-
sponding symbols (the vectors). It is a P function in our notation for repres-
entations (a member of the set P of all such functions). The infinite set of points
in the plane is its domain and the Cartesian product # × # is its range (all pos-
sible pairs of real numbers). The mapping is one-one and onto. Every point maps
to one and only one vector, and every vector maps to one and only one point.

Second line (first use of straight edge)

Third line
(second use of straight edge)

Lines parallel to third line
and through the n points
marked off on second line
by using the compass n times

Line segment to be ruled

First use of compass

Second use

Figure 4.1 Euclid’s procedure for ruling a line segment into n equal units (segments).

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 66

Representations 67

There would be little motivation for mapping points to vectors if it were not for
the fact that lines and curves of geometric interest can be mapped to equations of
algebraic interest. This mapping makes geometric procedures, such as the proced-
ure for constructing a line or a circle, representable by algebraic procedures, such
as the procedure for finding all the solutions to the corresponding equation. For
example, the heavy line slanting downward to the right in Figure 4.2 can be mapped
to the simple equation written above it, using the coordinates of any two points
that define it. In this case, we use the two points whose coordinates are !x1 = −2,
y1 = 1.25" and !x2 = 2, y2 = −1.75". From these coordinates we can obtain the
coefficients, A, B, and C for the following equation, which is called the general
equation of a line:

Ax + By + C = 0,
where A = −(y2 − y1), B = (x2 − x1) and C = x1y2 − x2y1

substituting

−(−1.75 − 1.25)x + (2 − (−2))y + (−2)(−1.75) − (2)(1.25) gives
3x + 4y + 1 = 0 (1)

+y

4

3

2

1

<2.3, 4>

<0, 0>

<2, –1.75>

<–2, 1.25>

y = –0.75x – 0.25

<–π, –e>

–4
–x +x

–3 –2 –1

–1

–2

–3

–4

–y

1 2 3 4

Figure 4.2 Mapping points and lines in the plane to vectors with the aid of Cartesian
coordinates.

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 67

68 Representations

This gives us an algebraic procedure that maps from the coordinates of any two
points to an equation that holds for all and only the points on the (unique) line
that passes through those two points. This equation implements in the algebraic
system the function implemented in the geometric system by laying a straight edge
so that it contacts two points. That procedure in the geometric system picks out
the unique infinite set of points that compose the straight line determined by those
two points. The geometric set is composed of all those points that fall on the straight
edge. In the algebraic system, solving the equation for that line – finding the unique
infinite set of pairs of numbers for which the equation is valid – gives you the coor-
dinates of all and only the points on the line.

The x and y in equation (1) are irrelevant; they are simply place holders for the
inputs. What distinguishes one such equation from another are the coefficients. (The
realization that it is the coefficients, not the unknowns, that really matter is basic-
ally the step required to go from algebra to linear algebra.) Thus, equation (1)
maps pairs of unequal 2D vectors to ordered triplets of real numbers that repres-
ent the line passing through the two points represented by the two vectors. It is
not a procedure (function) that specifies for every distinct line a unique set of
coefficients, because when we use as inputs to equation (1) different pairs of 2D
vectors from the same line we get different coefficients. They are, however, all scalar
multiples of one another: any one is related to any other by a scale factor, a real
number that when multiplied times each member of one triplet gives the members
of the other triplet.

We can make the procedure (function) specified by equation (1) into one that
gives a unique triplet of coefficients for each distinct line by normalizing by one of
the coefficients, say B. If we divide all three coefficients by the second, we get a
new set of coefficients in which the second coefficient is always 1 (because B/B =
1) and so can be ignored. This set of coefficients is unique. Moreover, the nega-
tion of the first coefficient of the two coefficients, −A /B, gives the slope, a, of the
line, and the negation of the second, −C /B gives its intercept, b, in the more famil-
iar equation y = ax + b. This two-coefficient symbol, !a, b" for a line is useful for
many computational purposes, but it cannot represent the lines that are parallel to
the y-axis. All the points on any one of these infinitely many lines have the same x
coordinates, so the second coefficient in the general equation, B, is zero. If it were not
for this problem, we could represent all possible lines with a two-coefficient sym-
bol. However, a two-element symbol (or data structure, as we will later call it) does
not have enough structure to represent all the lines; for that we need three elements.
We can get a unique three-coefficient symbol by dividing the coefficients given us
by equation (1) by the sum of the squares of the first two coefficients, A2 + B2. The
resulting coefficient triple is unique: a given line always maps to the same triplet,
no matter which two points on the line we take as the inputs to the procedure.

Now, let us take stock, using the notation for representations that we developed
above:

• U, the represented system, is (a portion of) Euclid’s system of plane geometry.
• The representing system, B is (a portion of) an algebraic system, sometimes called

analytic geometry, that is used to represent plane geometry.

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 68

Representations 69

• Let P be the set of all points in a plane and £ the set of all possible lines in that
plane. Euclid’s procedure, Zstraight-edge: P × Pp ≠ p → £ maps all possible pairs
of distinct points to all possible lines. It is a function in geometry, which is the
represented system.

• PDescartes: P → !#, #" is Descartes’ procedure for mapping points to pairs of real
numbers (2D vectors), which we call the coordinates of a point. The mapping
is a bijection (one-one and onto): every point maps to a vector and every vec-
tor maps to a point. This function maps from the represented system to the rep-
resenting system.

• PDescartes2: P × Pp ≠ p → !#, #" × !#, #"!r, r" ≠ !r, r" maps all possible pairs
of distinct points to all possible pairs of unequal vectors. It, too, maps from the
represented system to the representing system.

• Let Eline : !#, #" × !#, #"!r, r" ≠ !r, r" → #, #, ## (r = r = r) be the formula
in equation (1), augmented by normalization. This is a function within the rep-
resenting system (algebra). It maps from all possible pairs of unequal 2D vec-
tors, !#, #" × !#, #"!r, r" ≠ !r, r", to all the 3D coefficient vectors in which
not all coefficients are equal, !#, #, #: (r = r = r)".

• Pline : P × P → !#, #, #: (r = r = r)" = Eline · PDescartes2 is the composition of Eline

and ÉDescartes2. It maps all line-defining pairs of points to all the corresponding
3D coefficient vectors. It, too, is a bijection: every distinct 3D vector whose dimen-
sions are not all equal represents one and only one line, and every line is
represented by one and only one such vector.

• Let Sline : Zstraight-edge → Eline be the function that associates Euclid’s straight-edge
procedure for picking out the line defined by two points with the algebraic pro-
cedure for finding the coefficients of the line given the coordinates of two of its
points.

• Let âline : Eline → Zstraight-edge be the function that associates the procedure in the
algebraic system of finding solutions to the general equation of a line with the
straight-edge procedure for laying off a line in Euclid’s system.

• The inverse mappings from 2D vectors to points and from 3D vectors to lines
and from the algebraic procedure, Eline, to the corresponding geometric proced-
ure, Zstraight-edge, are TDescartes, Tline and Sline.

Our algebraic system consists of two sets – the set of all pairs of real numbers
and the set of all triplets of (not all equal) real numbers and a procedure for map-
ping pairs of 2D vectors to 3D vectors. The corresponding portion of Euclid’s sys-
tem also consists of two sets and a procedure – the set of all points in a plane, the
set of all lines in that plane, and the procedure for mapping points to lines. These
two systems together with the functions that map back and forth between them
constitute homomorphisms, because the mappings are structure preserving: a point
is on one of Euclid’s lines iff its coordinates are solutions to the equation for that
line (and vice versa).2 The algebraic structure recapitulates the geometric structure.

2 Because the homomorphism runs both ways, it is actually an isomorphism, which means that either
system may be used to represent the other. It is this that makes graphs such a useful tool in mathem-
atical reasoning.

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 69

70 Representations

Enlarging the representation

Two points also determine a circle. One serves as the center. The distance between
it and the other defines the radius. There is a formula, which we won’t burden the
reader with, that maps from the coordinates of two points to the coefficients of
the general equation of the circle that has one of the points as its center and the
distance between the two points as its radius. The general equation for a circle has
the form:

x2 + y2 + Ax + By + C = 0. (2)

The solutions to this equation are all and only the coordinates of the points on a
particular circle. Which circle is specified by the values of the coefficients, A, B,
and C. The x and y are again irrelevant; what distinguishes one circle from another
are the coefficients. Thus, the symbol for a circle is also a coefficient triplet (a 3D vec-
tor). By their intrinsic form (an ordered triplet of real numbers), these triplets can-
not be distinguished from the triplets that are the symbols for lines. If they are to
play their proper role in the representing system, however, they must be distinguished
from the symbols for lines, because the symbols for lines are used in procedures
of the kind specified in equation (1) while the symbols for circles are used in pro-
cedures of the kind specified in equation (2). The representing system must have
a means of keeping track of which symbols are appropriate to which uses. We
discuss the logic for accomplishing this in Chapter 5 (Symbols) and in Chapter 9
(Data Structures).

When we add to the representing system the functions that map coordinate pairs
to circles, we enrich its capabilities. Now, we can answer geometric questions such
as: Does this line intersect that circle? Is this line tangent to this circle, and, if so,
at what point? The answer to the first geometric question translates into the alge-
braic question whether there are two vectors that are solutions to both the equa-
tion for the given line and to the equation of the given circle. If so, the line intersects
the circle at the two points whose coordinates are those two vectors. If the line is
tangent to the circle, there will be only one vector that is a solution to both equa-
tions, and that vector is the coordinates of the point at which the line is tangent
to the circle. Here, again, we see that the mappings back and forth between the
geometric system and the algebraic system are structure preserving. Indeed, Euclid’s
entire system can be algebraically represented. Table 4.2 lays out some of the foun-
dations of this representation.

The function of a representation is to allow conclusions about the represented
system to be drawn by operations within the representing system. A famous exam-
ple of this use of the algebraic representation of geometry within pure mathem-
atics concerns the geometric question whether there exists an effective geometric
procedure for squaring the circle. The question was posed as early as 500 BC. It
remained unsolved until 1882 – and not for lack of trying. Many top-of-the-line
mathematicians had a go at it in the 24 centuries during which it remained
unsolved. An effective geometric procedure is (by definition) one that can be carried
out using only a compass and a straight edge (an unmarked ruler) and that gives

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 70

ˆ

Representations 71

an exact result. Thus, the problem in squaring the circle is to specify a geometric
procedure by which one can use a compass and straight edge to construct a square
whose area is exactly equal to the area of a given circle – or else to prove that
there cannot be such a procedure. The representation of geometry by algebra is so
tight that it was first proved that the circle could be squared if-and-only-if π is the
solution to an algebraic equation. Then, in 1882, Lindeman proved that π is not
the solution to any algebraic equation, thereby proving that the circle cannot be
squared.

The algebraic representation of geometry is the foundation of all computer
graphics, illustration software, and computer-aided design software. Every time a
computer draws a line or circle or more complex curve on its screen, it makes
use of the algebraic representation of geometry. There can be no doubt about the
utility of this representation. If ever there was a functioning homomorphism, it is
this one.

The behavioral evidence from the experimental study of insect navigation implies
that there is a comparable representation even in the minute brains of ants and
bees (Gallistel, 1998; 2008). The challenge for neuroscience is to identify the phys-
ical realization of the brain’s symbols for points (locations) and oriented lines (courses
between locations) and the neurobiological mechanisms that operate on these symbols.

Table 4.2 Algebraic representation of geometry

Algebraic system (b) Geometric system (u)

Algebraic symbols (ï) Geometric entities (ç)
Vectors r = !r1, r2" Points
Pairs of vectors & = (r1, r2) Line segments
Real number triples (coefficients) (r1, r2, r3) Lines
The positive real numbers, # + Distances
Real number triples (coefficients) (r1, r2, r) Circles
The real numbers, # Angles
Logical 1 and 0 Truth and falsehood

Algebraic functions (P) Geometric functions (F)
!A1, B1" = ?!A2, B2" where A and B are Are two lines parallel?

normalized coefficients in equation for a line
r2 − r11 = ?r2 − r12 Are two line segments equal?
r + rt, where rt is a translation vector Translation
rR, where R is a rotation matrix Rotation

9781405122870_4_004.qxd 23/1/09 11:17 AM Page 71

5

Symbols

Symbols – at least those of interest to us – are physical entities in a physically real-
ized representational system. The effectiveness of that system depends strongly on
the properties of its symbols. Good physical symbols must be distinguishable, con-
structable, compact, and efficacious.

Physical Properties of Good Symbols

Distinguishability

Symbols must be distinguishable one from another because the symbol that refers
to one thing must be handled differently at some point in its processing from a
symbol that refers to another thing. This can only happen if the symbols are dis-
tinguishable on some basis. The properties that allow symbols to be distinguished
in the course of computation – without regard to their referents (that is, their seman-
tics) – are their syntactic properties. Syntactic properties derive from two aspects
of a symbol: its intrinsic (physical) form and/or its location in space or in time.
The symbol ‘1’ differs from the symbol ‘0’ in its form. Here and in the rest of the
chapter when we enclose a symbol in single quotes, we refer to the pattern of ink
on paper or the difference in electrical potential at a bit location in a bit register
– the physical instantiation of the symbol – not the entity to which it refers. Thus
the ‘1’ and ‘0’, ‘V’ and ‘I’, and the nucleotide sequences GAT (guanine, adenine,
thymine) and CTG (cytosine, thymine, guanine) are distinguishable one from the
other on the basis of their form, without regard to their location. On the other
hand, there is no telling ‘V’ qua letter of the alphabet from ‘V’ qua Roman numeral
for 5 on the basis of form alone. And there is no telling apart the triplet ‘2,5,2’
qua symbol for a line from ‘2,5,2’ qua symbol for a circle from ‘2,5,2’ qua sym-
bol for a point in a three-dimensional space. These formally identical numeral triplets
are three different symbols that must be processed in different ways, but they can-
not be distinguished on the basis of their intrinsic form. Similarly, there is no telling
the nucleotide sequence TAT on the coding strand of DNA from the same sequence
on the non-coding strand, even though the one is a symbol for the amino acid tyros-

9781405122870_4_005.qxd 23/1/09 11:16 AM Page 72

Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience C. R. Gallistel
and Adam Philip King © 2010 C. R. Gallistel and Adam Philip King ISBN: 978-1-405-12287-0

Symbols 73

ine, while the other is not. These two codons are distinguishable only by their loca-
tion within the double helix, not by their form.

Because they are physical entities, symbols have a location in space and time.
More often than not, there are other symbols surrounding or bracketing them
in space and/or preceding and following them in time, creating a spatio-temporal
context. Their context – where they are in space and time relative to other sym-
bols – very often serves to distinguish one symbol from another, as in the follow-
ing examples:

(1) ‘I had to check my watch.’
‘I wrote a check to the bank.’

(2) ‘Kate is 70 inches high.’
‘Terrance is 70 inches high.’

(3) ‘MLCCXXVI’
‘MLCCXXIV’

In the first example, ‘check’ is a symbol for an action in the first sentence and a
symbol for a thing in the second. These are different symbols but identical in their
form. They are distinguished from one another by the spatial context in which they
occur. If the sentences were spoken rather than written, the spoken words would
again be identical in form (they are homophones, pronounced the same), but they
would be distinguished one from another by their temporal context (the words that
are spoken before and after). The second example is subtler, because the two form-
ally identical symbols are different tokens for the same type. The first symbol
refers to the height of Kate, while the second refers to the height of Terrance. They
are not one and the same symbol because they have different referents, but their
forms are identical. They are distinguished only by their spatial context (if written)
or temporal context (if spoken). In the third example, whether ‘I’ is a symbol for
a number that is to be added to the numbers represented by the other symbols in
the string of Roman numerals or subtracted depends on whether it occurs before
or after the symbol for the next larger symbolized number. This is an example of
the positional notation principle. In Roman numerals, the principle is used spor-
adically, whereas in Arabic numerals, the principle that the significance of a given
symbol form depends on its position in the symbol string is the foundation of the
entire system for constructing symbols to represent numbers: The rightmost ‘9’
in ‘99’ represents 9 while the leftmost ‘9’ represents 90. It is context not form
that distinguishes these instances of the form ‘9’.

In the memory of a conventional computer, symbols are mostly distinguished by
their spatial context, that is, by where they are, rather than by their form. The byte
‘01000001’ represents the printed character ‘A’ in some memory locations, while
it represents the number 65 in others, but this cannot be discerned from the byte
itself; its form is the same in the different locations. The distinguishability of the
symbol for ‘A’ from the symbol for 65 depends on location in memory, which is
to say on spatial context.

9781405122870_4_005.qxd 23/1/09 11:16 AM Page 73

74 Symbols

This principle has long been recognized in neuroscience. It was originally called
the law of specific nerve energies, but is now called place coding. Place coding means
that it is the locus of activity that determines the referent of neural activity, not
the form of that activity. Activity in the visual cortex is experienced as light, no
matter how that activity is produced, and no matter what its spatio-temporal form
(how the action potentials are distributed in space and time). It is, of course, usu-
ally produced by light falling on the retina, but it can be produced by pushing on
the eyeball hard enough to excite the optic nerve mechanically. In either case, it
will be experienced as light. Similarly, activity in the auditory cortex will be experi-
enced as sound, no matter what the spatio-temporal form of that activity. Most
basically, an action potential is simply an action potential. Different messages are
not encoded by varying the form of the action potentials that carry them from the
sense organs to the brain. They are distinguished by spatial-temporal context: which
axons they travel in (spatial context) and where they fall in time relative to the
action potentials that precede and follow them (temporal context).

Constructability

The number of symbols actually realized in any representation at any one time will
be finite, because a physically realized system has finite resources out of which to
construct its symbols. The number of atoms in a brain is a large number, but it is
a finite number. It seems unlikely that a brain could use more than a fraction of
its total atoms for symbols. Moreover, it seems unlikely that it could make one
symbol out of a single atom. Thus, a brain may contain a large number of sym-
bols, but nothing close to an infinite number of them. On the other hand, the num-
ber of symbols that might have to be realized in a representational system with any
real power is for all practical purposes infinite; it vastly exceeds the number of ele-
mentary particles in the universe, which is roughly 1085 (or 2285), give or take a few
orders of magnitude. This is an example of the difference between the infinitude
of the possible and the finitude of the actual, a distinction of enormous importance
in the design of practical computing machines. A computing machine can only have
a finite number of actual symbols in it, but it must be so constructed that the set
of possible symbols from which those actual symbols come is essentially infinite.
(By ‘essentially infinite’ we will always mean greater than the number of element-
ary particles in the universe; in other words, not physically realizable.) This means
that the machine cannot come with all of the symbols it will ever need already formed.
It must be able to construct them as it needs them – as it encounters new referents.

This principle should be kept in mind when considering the many suggestions
that the brain represents different entities by means of innate neural circuitry that
causes a single “gnostic” neuron (or in some schemes a population of neurons) to
be activated (cf. Konorski, 1948, for the term “gnostic neuron”). The idea is that
these neurons are selectively tuned to their referents by means of the specific struc-
ture of the hierarchical neural circuitry that connects them to sensory input
(e.g., to the retina). These stories about the neurobiological realization of percepts
are sometimes called “grandmother neuron” schemes, because they imply that the
symbol for your grandmother is a neuron that is “tuned to” (selectively activated

9781405122870_4_005.qxd 23/1/09 11:16 AM Page 74

Symbols 75

by) your grandmother. The term “grandmother neuron” is quasi-satirical. It calls
attention to the problem we are here discussing, namely, that this approach to sym-
bolization assumes an unrealistic amount of pre-specified circuit structure. Suppose
your grandmothers die before you are born; will you go around your whole life
with grandmother neurons that are never activated? This rhetorical question
emphasizes the fact that you need a scheme that constructs symbols for your grand-
mothers if and when you actually have them. Whatever the internal symbol is that
specifically refers to your grandmother (or your car, your couch, bicycle, girlfriend,
and so on ad infinitum), it must have been constructed for that purpose when the
need to refer to that entity arose. These symbols cannot have been already physic-
ally realized and assigned in advance to their referents via some prewired mapping
function from sensory input indicative of that referent to the activation of the neuron
specific to that referent.

When the grandmother neuron scheme is applied to the representation of quant-
itative variables (for example, numerosity), it assumes that there are neurons innately
dedicated to the representation of specific quantities (Dehaene & Changeux, 1993;
Nieder, Diester, & Tudusciuc, 2006). The brain learns to respond appropriately to
a given quantity by associating neurons tuned to that quantity with neurons whose
activation leads to a response (see Chapter 15). These models for how the brain
symbolizes to-be-remembered quantities assume that the brain comes with a set of
different symbols (different neurons) for different quantities already physically real-
ized (pretuned to the quantity they are to refer to). This seems unlikely from a com-
putational perspective. There are very many different possible quantities that a brain
may have to represent and very many different instances of the same quantity.
Consider how many different instances of the discrete quantity 2 a brain may have
to deal with – how many different tokens for the type 2. Is the brain like some old
lead-type print shop, which had to have on hand as many instances (tokens) of the
symbol ‘e’ as would ever have to be set in one page? Or can it create tokens for 2
as the need arises, as in a computer? The same consideration arises with all of the
quantities that a brain needs to represent. It is apt to encounter many different
instances of durations of approximately 10 seconds and many different instances
of distances of approximately 5 meters. It would seem that it must have a means
of constructing symbols for these different instances of a given quantity as the need
arises, so that it uses physical resources to store only the information it has actu-
ally gained from experience. It does not have physical memory resources pre-specified
for every different piece of information it might acquire. We will return to this con-
sideration repeatedly. As we will see in Chapters 14 and 15, it is rarely considered
by neural network modelers.

Compactness

The basic form of its symbols, the elements out of which they are constructed, and
the means by which one symbol is distinguished from another are considerations
of great importance in the design of a computing device. Some designs make much
more effective use of physical resources than do others. Suppose, for example, that
we want to construct symbols to represent different durations (elapsed intervals,

9781405122870_4_005.qxd 23/1/09 11:16 AM Page 75

76 Symbols

something we know brains routinely represent, see Chapter 12). The symbols are
to be constructed by placing marbles into rows of hemispherical holes on a board.
One principle that we might use to map from distinguishable durations to distin-
guishable symbols is to have each row be the symbol for a different duration and
increment the number of marbles in a row by one for each additional second of
duration symbolized by that row. We call this the analog principle because there
is a natural ordering on the symbols (the length of the row of marbles) that cor-
responds to the ordering of the durations they encode: An interval that lasted 3
seconds is symbolized by a row 3 marbles long; an interval that lasted 1,004 sec-
onds is symbolized by a row of 1,004 marbles. We are immediately struck by the
discouraging size of the bag of marbles that we will need and the length of the
board. The problem with this design is that the demand on these physical resources
grows in proportion to the number of durations that we want to distinguish.

The same resources can be put to much better use by a symbol-construction scheme
in which the number of distinguishable symbols grows exponentially with the phys-
ical resources required. (Put another way, the physical resources required grow
logarithmically with the number of distinguishable symbols.) With a row of only
10 holes, and using at most 10 marbles, we can create 210 = 1,024 different sym-
bols, if we use the binary encoding of number function. There are 1,024 different
patterns of ‘1’s and ‘0’s that may be created in a string 10 binary digits long. We
can put a marble in a given position in the row of 10 holes just in case the binary
encoding of the number of seconds of duration has a 1 in that position and leave
the hole unoccupied just in case the binary encoding of a duration has a 0 in that
position. This scheme makes exponentially more effective use of physical resources
in the creation of symbols for numerical quantity. This means that the more differ-
ent symbols we need, the greater the factor by which the second design is superior
to the first design. If we need a thousand distinguishable symbols for quantities, it
is 100 times more efficient; if we need a million distinguishable symbols, it is more
than 50,000 times more efficient.

Again, it is instructive to consider the import of this consideration in a neuro-
biological context. Two encoding schemes account for most of the proposals for
how neural signaling distinguishes different states of the world. The first proposal
is rate coding: different values along some dimension of experience, for example,
the severity of a painful stimulus, are represented by different rates of firing in the
axons that transmit pain signals to the brain. The second proposal is place coding:
different states of the world are represented by the firing of different neurons. We
touched on this above when we mentioned schemes in which different neurons are
tuned to different numerosities, so that the locus (place) of neural activity varies
as a function of the number of items in a set. There is abundant electrophysiolog-
ical evidence in support of both of these schemes. Thus, it seems almost certain
that for some purposes nervous tissue does transiently represent states of the world
in both these ways. However, as a general story about symbolization in memory
and communication between processing loci, both of these schemes fail the com-
pactness test: the demand on physical resources (spikes and neurons) is proportionate
to the number of different entities for which different symbols or signals are needed.

9781405122870_4_005.qxd 23/1/09 11:16 AM Page 76

Symbols 77

Indeed, this is quite generally true for analog symbols, symbols in which the quan-
tity or intensity of symbol stuff grows in proportion to the size of the message set
that a given quantity of symbol stuff can represent or transmit.

Consider, for example, the use of action potentials (spikes) to transmit quantit-
ative information. The most commonly considered encoding is rate coding. In a
rate code, it is only the number of spikes within some unit of time that matters;
the intervals between spikes within that unit of time and/or which spikes are in
which axons does not matter. Of course, the brain cannot, in general, wait very
long to get the message. Thus, the unit of time over which it counts spikes cannot
be large. Let us take one second as the unit, for the purpose of illustration. By a
generous estimate, a neuron can fire 1,000 spikes in one second. (A more reason-
able estimate would be nearer 100.) Thus, using a rate code, one neuron can trans-
mit at most 1,000 different messages in one second. The number of spikes that will
on average be transmitted within the counting interval grows in proportion to the
number of messages that can be transmitted. If 1,000 messages can be transmitted
and the different messages are all transmitted with equal frequency, the average
number of spikes per second would be 500. (Average spiking rates that high are
never in fact observed.) Suppose we use a time code instead, that is, a code in which
the atomic elements are the intervals between spikes, and that the mechanism that
receives the spikes can only distinguish two interspike intervals, 10 ms and 30 ms.
Thus, like the binary code, this time code has only two atomic (irreducible) sym-
bols. Different messages are represented by different sequences of these two inter-
spike intervals within any one-second interval. If we assume that the encoding of
the messages is maximally efficient, so that on average there are equal numbers of
the two intervals per message, then one neuron can transmit 1,000 ms/20 ms = 50
bits per second, that is 250 = 1015 different messages in one second. The average
number of spikes per second will therefore be a much more realistic 50 spikes
per second (rather than 500 as in the rate code). This method of using spikes to
transmit messages is about 12 orders of magnitude more efficient and demands an
average firing rate that is an order of magnitude less than using a rate encoding.
It requires much less in the way of physical resources (energy and time expended
in transmitting spikes) than does the rate code. This is a staggering difference in
efficiency. It brings into strong relief the fact that we do not in fact know what the
coding scheme for information transmission by means of spikes is. The rate code
is an untested assumption, which has been made so often by so many different
researchers that it has come to be taken as an established fact. (For a state-of-
the-art analysis of this fundamental issue, and a review of the modest amount of
relevant experimental research, see Rieke et al., 1997.)

We know from behavioral reaction time studies that the assumption of a one-
second counting interval is too generous. Sports as we know them would be impos-
sible if it took the nervous system that long to send one message. A commonly
suggested variant of the rate code assumes that the nervous system uses many axons
in parallel to send its messages. In this case, again assuming a maximal firing rate
of 1,000 spikes per second, 1,000,000 messages can be sent in 30 ms if one has
30,000+ axons at one’s disposal. But here, again, the physical resources required

9781405122870_4_005.qxd 23/1/09 11:16 AM Page 77

78 Symbols

– the number of axons – increases in proportion to the size of the set of possible
messages. By using time encoding on each axon and a binary code across the axons,
one could do the same job with only 20 axons.

The question of the coding scheme by which spikes transmit information has been
discussed by neuroscientists for decades, albeit without resolution. By contrast, the
question of the coding scheme by which the information is carried forward in time
to be used to inform behavior in the indefinite future has not been discussed at all.
In other words, the question of the code used by neural signals is a recognized ques-
tion, but the question of the code used by neural symbols is not, probably because
there is so much uncertainty about what the neurobiological realization of symbols
is. If, as is widely assumed, the information gained from past experience is carried
forward in time by means of changes in synaptic conductance, then one cannot
avoid a number of questions. How is information encoded into those changed con-
ductances? Is the symbolization compact? Does the number of synapses required
grow in proportion to the size of the set of messages that may need to be carried
forward? Or does it grow in proportion to the logarithm of the size of the mes-
sage set? These questions are of fundamental importance to our understanding
how the brain computes, because symbols are literally the stuff of computation.
Computational mechanisms take symbols as their inputs and produce symbols as
their outputs.

Efficacy

Because symbols are the stuff of computation, they must be physically efficacious
within the mechanisms that implement basic functions. That is, the outputs pro-
duced by computational mechanisms (the physical realizations of functions) must
be determined by their inputs. The two binary patterns of voltage levels (the low
and high levels) that are entered into the two registers of a solid-state machine that
implements the basic functions of arithmetic must determine the voltage pattern
that appears at the output. If one neuron is the symbol for one number and another
neuron is the symbol for another number, then we need to understand how these
two neurons can serve as inputs to a neurobiological mechanism that will produce
as its output the neuron that symbolizes the number that is the sum of those two
numbers. When we put it this way – when we focus on causal efficacy – we real-
ize that it does not make sense to say that a neuron is the symbol for something,
because neurons do not combine to produce other neurons. It would make sense
to say that activity in the first neuron is the symbol for one number and activity
in the other neuron is the symbol for the other number (place coding of number).
Then, we can readily imagine synaptic mechanisms that would combine these activ-
ities to generate activity in another neuron, the activity of which was the symbol
for the sum. However, neural activity (spiking) exists in order to transmit infor-
mation from place to place, from one processing locus to another. It is singularly
ill suited to serve as a mechanism for preserving large amounts of information for
indefinite temporal durations (we return to this issue in Chapters 10, 14, and 16).
To treat spiking activity as symbols is to confuse signals with symbols.

9781405122870_4_005.qxd 23/1/09 11:16 AM Page 78

Symbols 79

The only mechanism that has been widely entertained as the mechanism by which
information is preserved for later use in the indefinite future is a change in synaptic
conductance. We just saw that there has been no consideration of how such
changes might encode, for example, quantitative information (durations, distances,
numerosities, and so on). There has also been no attention to the question of how
such changes could determine the course of combinatorial operations, such as
the arithmetic operations. If one pattern of synaptic conductances symbolizes one
previously experienced interval and another pattern of conductance in a different
population of synapses symbolizes a another interval experienced on a different occa-
sion, what is the mechanism that combines those two patterns of synaptic con-
ductances to determine a pattern of synaptic conductances that symbolizes the sum
or difference of those two remembered intervals? We know that brains do com-
pute the sums and differences of separately experienced temporal intervals (see Chapter
12). When we consider how hypothesized physical changes in neural tissue can carry
forward in time an encoding of the durations of two separately experienced inter-
vals, we must also ask how those changes could become causally effective in the
mechanisms that can compute the sums and ratios of the encoded intervals? There
has to be a story about how these symbols (these information-encoding changes in
structure) become physically effective within computational mechanisms.

Symbol Taxonomy

Preparatory to discussing the procedures that operate on symbols in the next
chapter, we develop a simple taxonomy:

• atomic data
• data strings
• nominal symbols
• encoding symbols
• data structures

Atomic data are the irreducible physical forms that can be constructed and dis-
tinguished in a representing system. These data alone or in collections can become
information-bearing symbols when and if they are given a referent and constrained
to play a specific role in computations. Typical examples of atomic data are the 2
bit values used in computers, the 10 digits used in numbers, the 26 letters used in
words, and the 4 nucleotides used in DNA.

Data strings are the ordered forms composed of one or more of these atomic
elements: a sequence of bits, a sequence of numerals, a sequence of digits, a sequence
of nucleotides. The ordering allows for the compact symbols discussed above. A
mechanism of concatenation for forming strings (or conceivably, structures with
a more complex topology than that of a linear sequence) appears unavoidable. A
machine with a very rich store of symbols must have a means of forming them out
of a not too numerous store of atomic data. No language in the world has a word

9781405122870_4_005.qxd 23/1/09 11:16 AM Page 79

80 Symbols

for the message, “After the circus, I’m going to the store to get a quart of skim
milk.” No system for representing discrete numbers represents 1,342,791 with a
single digit or number name. Minimizing the number of atomic data is desirable in
any symbol system as it reduces the complexity of the machinery required to dis-
tinguish these data. This is why computers use just two atomic data and likely why
nucleotide sequences use only four.

The need for string formation and string preservation is itself a strong constraint
on the physical realization of a computing machine. The ordering of the elements
in the string (or more generally, the topology of the elements, how they connect
one with another) must be reflected in the physical realization of the symbols in a
manner that makes this topology constructable and causally effective. That is, it
must be possible for the mechanisms of computation to form string structures and
to be causally affected by the string structures. We see this principle at work clearly
in the structure of the double helix, where the elements (nucleotides) out of which
coding forms (codons) are constructed are placed in sequence, as are the codons
themselves. In both cases, the sequence is (largely) determinative of the structure
of the protein coded for.1 Giving the elements a topological structure, so that their
order or arrangement matters, is exactly what the analog principle does not allow
for. When the atomic data are simply “placed in a bag” to form symbols, the only
way to distinguish one symbol from another is to count the number of each ele-
ment. As seen above, this is simply too inefficient to compose the number of sym-
bols that a brain must represent.

Nominal symbols are data strings that map to their referents in the represented
system in an arbitrary way, a mapping that is not constrained by any generative
principles. The Arabic digits, for example, are nominal symbols for the numbers
that they represent. There is no principle that dictates that 2 should be represented
by ‘2.’ The ink pattern ‘2’ is not an instance of two-ness. The same is not true for
the Roman numeral ‘II’, as it can be decoded by the principle used for construct-
ing the Roman numerals. We call symbols such as ‘2’ nominal symbols because
their relation to their referent is arbitrary in the same way that names are arbit-
rarily related to their referents. There was nothing about the horse named Barbaro
that dictated that his name be ‘Barbaro’. If we overlook sex typing in given names,
there is nothing about the men named John that dictates or even suggests that ‘John’
should be their name.

Encoding symbols, by contrast, are related to their referents by some organized
and generative principles. For example, the binary number encoding procedure dic-
tates that ‘10’ is the binary symbol for 2. (The elements, ‘0’ and ‘1’ in this data
string are, on the other hand, nominal symbols for 0 and 1.) Encoding schemes for
mapping from referents to their symbols always have a purely nominal component,
namely the process that distinguishes the atomic data. In the binary number sys-
tem, the manner in which the numbers map to the symbols that refer to them is
intimately connected to the manner in which those symbols are processed. This need
not be the case, however. A retail store may keep its inventory by recording the

1 Alternative post-transcriptional splicings make it not completely determinative in some cases.

9781405122870_4_005.qxd 23/1/09 11:16 AM Page 80

Symbols 81

manufacturer’s serial numbers for the items it has in stock. The serial numbers
are usually strings composed of digits and letters. Inquiry generally reveals that the
manufacturer has a system for determining the string that will be assigned to a
particular item. The system may use certain letters to specify certain features of the
item and the numbers may be assigned on the basis of the item’s serial order of
manufacture. However, the attributes of the item and its manufacturing history that
determine its serial number need not be entities in the retailer’s represented system.
Thus, the elements within the symbol string may have no meaning so far as the
retailer’s representing system is concerned. In the retailer’s representation, the ele-
ments of which the symbol strings are composed have no referential substructure
and no syntactic roles; they serve only to differentiate one symbol (and, hence, its
referent) from another symbol (with a different referent).

Data structures, which are often called expressions in the philosophical and logical
literature, are symbol strings (or, possibly, structures with a more complex topology
than that of a one-dimensional string) that have referents by virtue of the referents
of the symbols out of which they are composed and the arrangement of those sym-
bols. For example, the referent of the Cartesian vector !−2.5, 3.01", that is, the point
to which it refers, derives from the referents for the two numbers of which the string
is composed (the denoted distances from the axes of a set of Cartesian coordinates
on a plane) and from the order of those two numbers, which comes first and which
second. Similarly, the event referred to by ‘John hit Mary’ derives from the refer-
ents of ‘John’, ‘hit’, and ‘Mary’, but also from the ordering of these words; ‘Mary
hit John’ refers to a different event. We devote an entire chapter to describing the
physical realization of data structures in a conventional computer (Chapter 9).

It is difficult to distinguish sharply between encoding symbols and data struc-
tures on purely formal grounds, because an encoding symbol is a kind of minimal
data structure. In both cases, there must be a body of principles (usually called a
grammar) that constrains the construction of the expressions for a given referent
and makes it generative. The generativity is what makes it possible for finite sym-
bolic resources to pick out any referent from an infinitude of possible referents.
The distinction between encoding symbols and data structures (symbolic expres-
sions) generally arises from a structural feature of the system that physically imple-
ments representations. In a computer, there are only two atomic data (‘0’ and ‘1’).
The rules for encoding a magnitude into strings of these data create the first higher-
level unit, the word, which is the lowest level of symbol in which a programmer
ordinarily works. The number of possible symbols at this level is extremely large
(264 in a 64-bit machine) because the number of distinguishable symbols needed
at this level is extremely large. Data structures are composed of these symbolic
units (these words).

One sees the same necessity for a hierarchical system of generative symbolic units
at work in the structure of the DNA code. The number of possible symbols at the
lowest level is only 43 = 64, which is the number of possible codons, the lowest
level of molecular symbols that have referents. Codons, which are triplets of neu-
cleotides (the primitive data), refer to amino acids, but there are only 20 amino
acids, so the codon code is degenerate; more than one codon may refer to the same
amino acid. The number of possible symbols that may be constructed from the codons

9781405122870_4_005.qxd 23/1/09 11:16 AM Page 81

82 Symbols

is extremely large because the number of possible referents, that is, possible pro-
teins, is extremely large. The number of possible genetic data structures (genetic
cascades) is vastly larger still.

Summary

If we take seriously the idea that the brain represents aspects of the experienced
world, and if we are interested in how it does so, then we must be concerned to
understand the physical properties of the brain’s symbols. What properties endow
them with the essential properties of good symbols: distinguishability, construct-
ability, compactness, and efficacy?

What makes one symbol distinguishable from another? Is it the form? Or the
spatio-temporal context? ‘1’ and ‘0’ are distinguished by their form, but
‘01000001’ qua symbol for the letter ‘A’ is distinguished from ‘01000001’ qua sym-
bol for 65 only by its (relative) location in the memory of a computer, that is, only
by spatial context. In known artificial and biological representational systems, the
number of symbols distinguishable on the basis of form alone is small. The ability
of the system to distinguish between symbols rests largely on the utilization of spatio-
temporal context: symbols for different entities are distinguished by their location
in space and time relative to other symbols. The binary representation of number
is a simple instance: there are only two distinguishable forms, ‘0’ and ‘1’. These
two forms are used to construct symbol strings in which the power of 2 to which
a ‘1’ refers is determined by where it falls within the string. The all-or-none law
for the propagation of an action potential suggests that neural signaling also rests
on the principle that at the most elementary level, the distinguishable forms are the
minimum possible, namely, two; there either is an action potential or there is not
(within some symbolically significant interval).

The number of entities for which a powerful representational system might need
a symbol is infinite (greater than the number of elementary particles in the know-
able universe). But any physically realized system can only devote finite resources
to the realization of its symbols. Therefore, a representational system cannot have
pre-specified symbols for all the entities for which it may need symbols. That is
why it is essential that there be a scheme for constructing symbols as the need for
them arises. An elementary manifestation of this problem and this solution is the
digital camera. The number of images for which it might need a symbol is infinite,
but the number of images for which it will actually need a symbol is finite. The
camera constructs a symbol for an image during the interval when the shutter is
open. If it is a six-megapixel camera, the symbol consists of 6 million 24-bit bin-
ary numbers. The number of different symbols of this kind (the number of differ-
ent pictures that may be taken with a 6-megapixel camera) is infinite, just as is
the number of possible images. But, of course, the number of different pictures
that even the most avid photographer will take is finite, because there are only
2,680,560,000 seconds in a long lifetime, and no one takes a picture every second
of every day. The ratio of this number to the number of possible pictures, that is,
the ratio 2,680,560,000/(224)6,000,000 is effectively 0. (If you put this computation into

9781405122870_4_005.qxd 23/1/09 11:16 AM Page 82

Symbols 83

Matlab™, you get 0, because it codes (224)6,000,000 as infinite.) Thus, there is liter-
ally no comparing the number of pictures that a person could actually take with a
6-megapixel camera to the number of pictures that could in principle be taken with
that camera. The camera can represent an infinite range of possibilities with finite
resources, because it constructs its symbols on demand. The possibilities are in-
finite, but the actualities are finite.

For related reasons, symbols should be compact: the scheme for constructing sym-
bols on demand should be such that the physical resources devoted to the realiza-
tion of a symbol should increase only as the logarithm of the number of possible
entities to which it could refer. This consideration makes commonly considered
neurobiological coding schemes, such as rate coding and place coding, improbable
as general solutions. In both of these schemes, the number of physical elements (spikes
or neurons) required increases linearly with the number of messages in a set of pos-
sible messages. By contrast, the number of possible pictures that a digital camera
can take grows exponentially with the number of pixels. That is why a small and
cheap camera can take infinitely more pictures than any one will ever in fact take
(indeed, infinitely more than all of humanity will ever take). Similarly, the number
of polypeptides or proteins that a sequence of codons can code for grows expon-
entially with the number of codons (as the nth power of 20), which is why there
is literally no limit to the number of possible proteins (or polypeptides) or humans
and animals.

What the bit patterns from a camera and the codon sequences in a DNA
molecule (double helix) also have in common is that they are physically efficacious
within a computational system. The outcome of decoding procedures depends on
their form, that is, on the arrangement of their elements. This property is absent
in a number of coding schemes in the connectionist (neural network) literature.
Modelers do not always distinguish between their own ability to determine differ-
ent states of the world by examining the state of the network (which neurons are
active and which are not) and the question of whether the information the modeler
gleans from the different states of the network is physically efficacious within
computational operations relevant to the supposedly represented system, and, if so,
how. Whenever information about the world is implicit in the intrinsic properties
of individual elements rather than explicit in their readable activity or structure,
the question arises how that information can affect the course of computations,
because the other parts of the system do not have access to the intrinsic properties
of the elements. The sequence of codons in a DNA molecule is readable; it deter-
mines the sequence of amino acids in a polypeptide or protein. The fact that a hypo-
thesized neuron in a timing network reaches its peak firing rate only 5 seconds
after an impulse input is not readable by other neurons (see later Chapter 15). The
modeler knows what the intrinsic properties of the different neurons are, but the
other neurons in the system do not. When the activity of a neuron is said to code
for something, one must ask how it codes for it. By what mechanism does that
activity enter into computational operations in an appropriate way?

Finally, consideration of the structure of diverse symbol systems leads to a hier-
archical taxonomy of symbols: At the bottom are the atomic elements, like the 4
nucleotides in the DNA code and the ‘1’ and ‘0’ in the codes used by computers.

9781405122870_4_005.qxd 23/1/09 11:16 AM Page 83

84 Symbols

These may or may not have referents. These elements are used to construct data
strings, like the codons (nucleotide triplets) in DNA or the 8-, 16-, 32-, or 64-bit
words in a computer. Data strings are typically the lowest level at which reference
is assigned. The assignment may be essentially arbitrary, in which case the data
strings become nominal symbols (literally, names). Or, there may be an encoding
scheme in which a rule-governed process assigns data strings to the entities they
represent. The binary encoding of number is an example of the latter. In such cases,
the elements of the string may themselves have referents. In the binary scheme, the
referent of an atomic symbol (‘1’ or ‘0’) within the string refers to the presence or
absence of a given power of 2 in a sum of powers of 2. Which power it refers to
depends on its position in the string. We call symbols generated by an encoding
scheme encoding symbols.

Finally, either nominal or encoding symbols (data strings to which referents have
been assigned) are formed into data structures (aka expressions) that refer both by
virtue of the referents of the constituent symbols and by their arrangement in time
and or space.

9781405122870_4_005.qxd 23/1/09 11:16 AM Page 84

6

Procedures

We now have a clearer understanding of the properties of physical symbols. In the
represented system, U, the entities can be anything, real or imagined, but in the
representing system, B, the symbols must be physically instantiated and distinguishable
forms. We now need to understand the properties of the functions in C that play
a role in physically realized representational systems.

As our understanding of symbols in D changed when we considered desirable phys-
ical properties, so must our understanding of the functions in C. In this chapter we
explore the properties of computable and physically realizable functions in a rep-
resentational system. Computing functions is what allows functions to be put to
productive use, just as distinguishing symbols and establishing referents for them
is what allows symbols to be put to productive use.

Algorithms

As discussed in Chapter 3, function definitions may establish that a mapping exists
from members of the domain to members of the codomain without necessarily
giving a method or process to determine the output for a given input.

A clear and unambiguous method or process that allows one to determine robot-
ically the input/output mappings of a function is called an algorithm. For exam-
ple, the long multiplication method that grade school children are taught is an
algorithm to determine the symbol for the product of two numbers. We saw some
geometric algorithms in Chapter 4, such as the algorithm for determining a line
segment that is 1/n of another line segment, where n is any integer (Figure 4.1).

To take a common example, let’s say you have an endless supply of coins, denom-
inated 25 cents, 10 cents, 5 cents, and 1 cent. Let’s define a “change-giving” func-
tion that maps an amount of money 99 cents or less to the minimal group of coins
that equal the given amount. Forty-three cents would map to one of the 25-cent
coins, two of the 10-cent coins, one of the 5-cent coins and three of the 1-cent
coins. Forty-three 1-cent coins would give the right amount of change, but not the
minimal number of coins. This function is what cashiers must routinely determine
(if they don’t want to burden you with piles of pennies) when giving back change

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 85

Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience C. R. Gallistel
and Adam Philip King © 2010 C. R. Gallistel and Adam Philip King ISBN: 978-1-405-12287-0

86 Procedures

for a purchase. These days, the function is generally implemented by a computer
in the cash register, which then dispenses the change from a coin holder. While
well defined, the definition for this function does not give us a method for deter-
mining it. Here is an algorithm that determines this function for an amount owed:

1 Take the largest coin of n cents where n ≤ the amount owed.
2 Reduce the amount owed by n cents.
3 If the amount owed is 0 cents, return all coins taken and stop.
4 Go back to State (line) 1.

The basic operating principle is to start in State 1 (line 1), and do each state in
order (unless told otherwise). State is a general term that refers to a discernible
stage that a process (procedure) is in during which it will act in some specified way.
Each numbered line above describes a state. The reader is invited to try a few exam-
ples of applying this algorithm. In general, we suggest going through the process
of trying any algorithms shown to convince yourself that they determine the func-
tion they are supposed to. This will also give you a feel for the mechanical and
mindless nature of the processes – what ultimately allows them to be instantiated
by bio-molecular and bio-physical processes.

In this change-giving algorithm we see a number of themes that we will see again
in various incarnations: There are a series of distinct states that the algorithm
proceeds through. The state determines what we do at a certain moment in time.
There is the composition of functions, because later steps depend on the results of
earlier steps. There are a number of functions that are embedded within the larger
algorithm such as subtraction (reduction) and the ≤ relation. The algorithm returns
to a previously visited state (go back to State 1). The algorithm eventually stops
and returns an answer. The algorithm makes “decisions” (if) based on the current
situation.

The fact that this algorithm depends on other functions for which there is no
algorithm presented should give us pause. How do we determine “if the amount
owed is 0 cents” or “the largest coin of n cents where n ≤ amount owed?”
Ultimately, if we are going to flesh out algorithms in the detail that will be needed
to understand how the brain might determine such functions, we will have to flesh
out all of the pieces of such algorithms with processes that leave no room for inter-
pretation, and demand no need for understanding the English language. In the next
chapter, we will show a formalism, the Turing machine, which can be used to express
algorithms in a form that leaves nothing open to interpretation.

Any particular algorithm determines one function; however any particular func-
tion can be determined by many possible algorithms. Another algorithm that deter-
mines the change-giving function is a look-up table. It has 99 entries. Table 6.1
shows a few of them. To determine the function, one simply looks up the answer
(output) in the table. If using this algorithm, the cashier would have a little card
on which was written the coins that should be returned for each possible change
amount. The cashier then simply finds the required change on the card and returns
the coins associated with it.

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 86

Procedures 87

Procedures, Computation, and Symbols

The algorithms we are interested in will describe the process by which the output
of a function in C is determined given the arguments to the function. All of the
functions in C must have algorithms for them, as one cannot make productive use
of a function unless one can determine the output for any permissible input. Since
every function in C maps physical symbols to physical symbols, the algorithms will
be applied to physical symbols as input and produce physical symbols for their out-
put. Ultimately, the algorithms will be instantiated as a physical system/process that
acts on the symbols and produces other symbols. We will call symbol processing
algorithms effective procedures, or just procedures for short. We can think of the
procedures in C as being a set of physically realized functions, and continue to use
the functional terminology.

We call the process of putting into action a procedure a computation. We also
say that the procedure computes the output from the given inputs and computes
the function. Just as it was the case for defining functions, there is no universally
sanctioned way to describe a procedure that can compute a function. That said, a
small set of procedural primitives used compositionally appears to suffice to deter-
mine any function. We saw a glimpse of this possibility in the themes from our
change-giving example.

As we saw in the last chapter, if we are to create numerous symbols in B that
can be put to productive use by procedures, we will have to build them out of com-
ponent pieces (data). Additionally, we saw that using concatenation with a com-
binatorial syntax, we could get much more bang for our buck in terms of how
many symbols could be constructed per physical unit. This reasoning applies to both
nominal and compact symbols. Using combinatorial syntax, one can produce dn

symbols from d atomic symbols and strings of length n.
The input symbols must be distinguished by detecting their syntax, that is, their

form and their spatial or temporal context. Their referents cannot come into play,
because the machinery that implements a function (procedure) only encounters the
symbols themselves, not their referents. This gives symbols an important property
that is not shared by the entities they represent: symbols share a common atomic
structure (a common representational currency), which is used to compute functions

Table 6.1 Partial look-up table for change making

Change owed (in cents) Minimal group of coins (in cents)

3 (1, 1, 1)
26 (25, 1)
37 (25, 10, 1, 1)
66 (25, 25, 10, 5, 1)
80 (25, 25, 25, 5)

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 87

88 Procedures

of those symbols. This makes the description of procedures in C potentially much
more uniform and capable of being formalized than are the functions for the entit-
ies that the procedures represent. Functions and entities in the represented system
take a bewildering variety of physical and non-physical forms, but the machinery
in the representing system that implements the corresponding functions on the
symbols for those entities is most often constructed from a modest set of basic
components.

An elementary neurobiological manifestation of this important principle is seen
in the fact that spike trains are the universal currency by which information is trans-
mitted from place to place within neural tissue. A spike is a spike, whether it trans-
mits visual information or auditory information or tactile information, etc. This
common signal currency enables visual signals carrying information about location
to be combined with auditory signals carrying information about location. This
combination determines the activity of neurons in the deep layers of the superior
colliculus. We similarly imagine that there must be a common currency for carry-
ing information forward in time, regardless of the character of that information.
We return to this question in Chapter 16.

Similarly, the fact that the system of real numbers can be used to represent both
discrete quantities, such as the number of earthquakes in Los Angeles in a given
amount of time, and continuous quantities, such as the given amount of time, makes
it possible to obtain a symbol that represents the rate of earthquake occurrence.
The symbol is the real number obtained by dividing the integer representing the
number of earthquakes by the real number representing the amount of time. If
the integers were not part of the system of real numbers (the system of symbols on
which the arithmetic functions are defined), this would not be possible (Leslie, Gelman,
& Gallistel, 2008). Indeed, the emergence of the algebraic representation of geo-
metry created a common-currency crisis at the foundations of mathematics, because
there were simple geometric proportions, such as the proportion between the side
of a square and its diagonal or the proportion between the circumference of a
circle and its diameter, that could not be represented by the so-called rational
numbers. As their name suggests, these are the numbers that suggest themselves to
untutored reason. The algebraic representation of geometry, however, requires the
so-called irrational numbers. The Greeks already knew this. It was a major reason
for their drawing a strong boundary between geometry and arithmetic, a boundary
that was breached when Descartes and Fermat showed how to represent geometry
algebraically. In pursuit of what Descartes and Fermat started, mathematicians in
the nineteenth century sought to rigorously define irrational numbers and prove
that they behaved like rational numbers. They could then be added to the repres-
entational currency of arithmetic (the entities on which arithmetic functions oper-
ate), creating the so-called real numbers.

It is not always easy to find procedures for a given function. There exist well-
defined functions for which no one has devised a procedure that computes them.
Given a well-defined notion of what it means to be able to compute a function (we
will discuss this is the next chapter), there are functions where it has been proven
that no such procedures exist. Functions that cannot be computed under this notion
are referred to as uncomputable. Other functions have procedures that in theory

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 88

Procedures 89

compute them, but the physical resources required render the procedures imprac-
tical. Other procedures are rendered impractical by the amount of time that it would
take the procedure to compute the function. Functions for which all possible pro-
cedures that compute them have such spatial or temporal resource problems are
called intractable functions.1 There is a large set of computationally important func-
tions for which the only known procedures to solve them are not practical, and
yet it is not known whether these functions are intractable.2

The lack of efficient procedures for finding the prime factors of large numbers
is the basis for many of the encryption systems that protect your information as it
moves back and forth across the internet. These schemes take advantage of the fact
that while it is trivial to compute the product of any two prime numbers, no mat-
ter how large they may be, the known procedures for computing the inverse func-
tion, which specifies for every non-prime number its prime factors, become
unusable as the inputs become large. Given a large number that is not itself prime,
we know that there exists a unique set of prime factors and we know procedures
that are guaranteed to find that set if allowed to run long enough, but for very
large numbers “long enough” is greater than the age of the universe, even when
implemented on a super computer. Functions whose inverses cannot be efficiently
computed are called trap-door functions, because they allow one to go one way
but not the other.

In short, there is a disconnect between the definition of a function and the abil-
ity to determine the output when given the input. The disconnect runs both ways.
We may have a system that gives us input/output pairs and yet we do not have a
definition/understanding of the function. Science is often in this position. Scientists
perform experiments on natural systems that can be considered inputs and the
natural system reacts with what may be called the outputs. However, the scientists
may not have an independent means of determining and thereby predicting the
input–output relationship. Scientists say in these cases that they don’t have a model
of the system. We would say that we don’t have a representational system for the
natural system.

Coding and Procedures

As we mentioned previously, the use of concatenated symbols that share a set of
data elements (e.g., ‘0’ and ‘1’) as their constructive base suggests that procedures
in C may be able to take advantage of this common symbol-building currency. This

1 Typically, the line between tractable and intractable functions is drawn when the procedures needed
to implement them need an amount of spatial or temporal resources that grows exponentially in the
number of bits needed to compactly encode the input.
2 This is the class of (often quite useful) functions that are grouped together under the heading NP-
Complete. If any one of these functions turns out to have a feasible procedure, then all of them do.
The tantalizing nature of this makes the question of whether there is a feasible such procedure one of
the most famous open questions in computer science, called the P = NP problem. The general consen-
sus is that these functions are intractable, yet no one has been able to prove this.

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 89

90 Procedures

does not imply, however, that the particular encoding used for the symbols is irrel-
evant with respect to the procedures. In fact, there is a very tight bond between
the procedures in C and the encoding of the symbols in D.

If the code used is nominal, the nominal symbols cannot be put to productive
use by taking advantage of aspects of their form. They can only be used product-
ively in a mapping by distinguishing the entire data string (string of atomic ele-
ments) that constitutes the symbol and then using a look-up table to return the
result. This is because the string used to form a nominal symbol is arbitrary – any
string can be substituted for any other without loss or gain of referential efficacy.
When a large number of nominal symbols is used, it becomes impractical to dis-
tinguish them. Encoding symbols, however, can be distinguished efficiently using
what we will call compact procedures.

To see the force of this consideration, we examine potential representational
systems involving the integers, N = {1, 2, . . . , 1030}, using nominal and encoding
systems, and two arithmetic functions, the parity function fis_even: N → {false, true},
and the addition function f+ : N × N → N. Each datum (element in a symbol string)
will come from the set {‘0’, ‘1’}, and we call each datum a bit. The symbols for
true and false will be ‘1’ and ‘0’, respectively. Our procedures then will be of the
form fis_even : D⊗ → {0, 1}, where D⊗, the input, is a string of bits and the output is
a single bit, and f+ : D⊗ × D⊗ → D⊗, where the inputs are two strings of bits and
the output is a string of bits.

Procedures using non-compact symbols

Preparatory to considering procedures for fis_even and f+ that use compact symbols,
we consider briefly the possibility of using non-compact encodings. One simple way
to represent integers is the hash-mark or unary code in which the number of ‘1’
bits is equal in numerosity to the number it encodes. We can reject this out of hand,
because we must be able to operate on a number as large as 1030 and there are
only on the order of 1025 atoms in the human brain. Even if we devoted every atom
in the brain to constructing a unary symbol for 1030, we would not have the phys-
ical resources. Unary symbols are not compact.

An analog symbol would have the same problem. Analog symbols share a prop-
erty with non-combinatorial digital system in that they both produce an increase
in the physical mass of the symbols that is linearly proportional to their repres-
entational capacity. Like the unary symbols, the most efficient use of physical
resources for analog symbols would be one whereby each symbol is distinguished
by the number of atoms that compose it. We could then use weight to distinguish
the symbol for one integer from the symbol for another integer (assuming that all
the atoms were atoms of the same substance). The problem with using analog sym-
bols to represent our integers is twofold. First, such symbols are not compact, so
there are not enough atoms in the brain to represent what may need to be repres-
ented. Second, no weighing procedure could distinguish the weight of 1029 atoms
from the weight of 1029 + 1 atoms. In short, non-compact symbols (digital or
analog) are not practical as the basis for a representational system whose symbols
must each be capable of representing a large number of different possible states of

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 90

Procedures 91

the represented system; their demand on resources for symbol realization is too high,
and the symbols soon become indistinguishable one from the next.

With a combinatorial syntax for (compact) symbol formation, the form of the
symbol is varied by varying the sequence of atomic data (for example, ‘0’s and ‘1’s),
with each different sequence representing a different integer. If we form our sym-
bols for the integers in this way, we need a symbol string consisting of only 100
bits to represent any number in our very large set of integers (because 2100 > 1030).
The demands on the physical resources required to compose the symbol for a sin-
gle number go from the preposterous to the trivial.

Procedures for fis_even using compact nominal symbols

Before discussing procedures for fis_even, we must consider how we will encode our
large (1030) set of integers, because procedures are code-specific. The decision to
use compact symbols does not speak to the question of how we encode number
into these symbols – how we map from the different numbers to the different bit
patterns that refer to them. We consider first the procedural options when we use
a nominal mapping for the integers, one in which there are no encoding principles
governing which bit patterns represent which numbers. Table 6.2 shows fis_even defined
for one possible nominal mapping for the integers 0–7. The bit patterns shown in
the second column (the input symbols), can be shuffled at will. The only constraint
is that the mapping be one-to-one: each integer must map to only one bit pattern
and each bit pattern must represent only one integer. The question is, what does
a procedure fis_even look like if we use this kind of nominal coding of the integers?
Part of what gives this question force is that the codings assumed by neurobiolo-
gists are commonly nominal codings: the firing of “this” neuron represents “that”
state of the world.

Whatever procedure we use for determining fis_even, it will have to distinguish every
one of the 100 data elements that comprise the input symbol. In addition, since
there is no principled way to determine the correct output from the input, we have
no choice but to use a look-up table. That is, we must directly implement Table 6.2.
We first consider a procedure that distinguishes the elements sequentially, moving

Table 6.2 The parity function fis_even with a nominal binary code for the integers 0–7

Integer (base 10) Nominal binary code Parity

0 001 1
1 100 0
2 110 1
3 010 0
4 011 1
5 111 0
6 000 1
7 101 0

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 91

92 Procedures

through the input string from right to left. As we move through the input, we
will change from state to state within the procedure. Each state then will provide
a memory of what we have seen so far. When we reach the last symbol, we will
know what the output should be based on the state we have landed in. In effect,
we will be moving through a tree of states (a binary search tree) that branches after
each symbol encountered. Figure 6.1 shows the tree that corresponds to the given
nominal mapping. Different input strings will direct us along different paths of the
tree, in the end generating the pre-specified output for the given input (the symbol
‘1’ or the symbol ‘0’, depending on whether the integer coded for is even or odd).

Here is the procedure that implements the search tree shown in Figure 6.1:

1 Read bit 1. If it is a ‘0’, go to state 2. If it is a ‘1’, go to state 3.
2 Read bit 2. If it is a ‘0’, go to state 4. If it is a ‘1’, go to state 5.
3 Read bit 2. If it is a ‘0’, go to state 6. If it is a ‘1’, go to state 7.
4 Read bit 3. If it is a ‘0’, output ‘1’. If it is a ‘1’, output ‘0’. Halt.
5 Read bit 3. If it is a ‘0’, output ‘0’. If it is a ‘1’, output ‘1’. Halt.
6 Read bit 3. If it is a ‘0’, output ‘1’. If it is a ‘1’, output ‘0’. Halt.
7 Read bit 3. If it is a ‘0’, output ‘1’. If it is a ‘1’, output ‘0’. Halt.

We see a number of the same themes here that we saw in the change-making
algorithm. There are two related properties and problems of look-up table proced-
ures that are of great importance.

Combinatorial explosion. The search tree procedure has the unfortunate prop-
erty that the size of the tree grows exponentially with the length of the binary strings
to be processed, hence linearly with the number of different possible inputs. As we
see graphically in Figure 6.1, each node in the tree is represented by a different
state that must be physically distinct from each other state. Therefore, the number
of states required grows exponentially with the length of the symbols to be pro-
cessed. We used combinatorial syntax to avoid the problem of linear growth in

h i j

a0

0 1

0 1

1 10 0 1 10 0

0 1 0 1 0 1

0 1

1
Read bit 1

Read bit 2

Read bit 3

Output

b c

fed g

k l m n o

Figure 6.1 Binary search tree for determining the parity of the first eight integers using
the nominal binary encoding in Table 6.2.

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 92

Procedures 93

required symbol size. However, because we have used a nominal encoding of the
numbers, the problem has come back to haunt us in our attempts to create a pro-
cedure that operates productively on the symbols.

Pre-specification. Intimately related to, but distinct from the problem of com-
binatorial explosion is the problem of pre-specification in procedures based on a look-
up table approach. What this means is that in the procedure, for every possible
input (which corresponds to the number of potential symbols used for the input)
it was necessary to embed in the structure of a state the corresponding output sym-
bol that will be returned. This implies that all of the possible input/output pairs
are determined a priori in the representing system. While one can certainly figure
out whether any hundred-bit number is even, it is not reasonable to require the
creator of the procedure to determine this in advance for all 2100 numbers. The prob-
lem with procedures based on look-up tables is that they are not productive; they
only give back what has been already put in.

One may wonder whether the problem of processing a large number of nominal
symbols goes away if one uses a parallel search procedure rather than a sequential
procedure. We raise this question in part because, first, it is often argued that the
brain is so powerful because it engages in massive parallel processing, and, second,
many neural network models for implementing function are based on learned con-
tent-addressable memory nets. Content-addressable memories are look-up tables in
which the different possible results are accessed through parallel search (see Figure 6.2).

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1

0

1

0

1

0

1

0

Figure 6.2 A content-addressable memory makes possible parallel search. The string
to be processed is fed in at the top. All three bits go simultaneously to the three input
nodes at each memory location. Each input node is activated only if the input bit it sees
matches it. If all of the nodes at a given location are activated, they generate the output
bit stored at that location, the bit that specifies the parity of the number represented by
that location in the content-addressable memory. (The ordering of the binary numbers
in this illustration plays no role in the procedure.)

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 93

94 Procedures

As is apparent in Figure 6.2, a parallel search procedure, using a content-
addressable memory table in lieu of a binary search tree, does not avoid either the
combinatorial explosion problem or the problem of pre-specification. If anything,
it makes the situation worse. The content-addressable memory requires a physic-
ally distinct memory location for every possible input string (leading to a combin-
atorial explosion). The hardware necessary to implement a comparison between
an input bit and a bit stored at every location must also be replicated as many
times as the length of the input. In addition, we have to store at that location the
output bit specifying the parity of the integer to which that location is “tuned”
(the pre-specification problem).

State memory

The sequential procedure illustrates a concept of central importance in our under-
standing of the possible architectures of computing machines, the concept of state
memory. A state of a computing device is a hard-wired capacity to execute a par-
ticular function given a certain context. Each state essentially implements a mini
look-up table of its own, and by moving from state to state, a machine can map
a pre-specified set of inputs to a pre-specified set of outputs (implementing a larger
look-up table). At any one time it is in one and only one of its possible states. Which
state it is in at any given time depends on the input history, because different inputs
lead to different state transitions. Take, for example, a typewriter (or, these days,
a keyboard, which is not as favorable for our purposes, because the physical basis
for its state changes are not apparent). When the Shift key has not been depressed
(previous input), it is in one state. In that state it maps presses on the keys to their
lower-case symbols. When the Shift key has been depressed, it maps the same inputs
to their upper-case outputs, because the depressing of the Shift key has shifted the
machine into a different state. In an old-fashioned typewriter, depressing the Shift
key raised the entire set of striking levers so that the bottom portion of the strike
end of each lever struck the paper, rather than the top portion. The fact that the
machine was in a different state when the Shift key was depressed was, therefore,
physically transparent.

In the tree search procedure for determining parity, the procedure travels down
one branch of the tree, and then another and another. The branch it will travel
down next depends on the state it has reached, that is, on where it is in the tree.
The tree must be physically realized for this procedure to work because it is the
tree that keeps track of where the procedure has got to. Each time the procedure
advances to a new node, the state of the processing machinery changes.

The state that the procedural component of a computing machine is in reflects
that history of the inputs and determines what its response to any given input will
be. It is therefore tempting to use the state of the processing machinery as the mem-
ory of the machine. Indeed, an idea that has dominated learning theory for a cen-
tury – and hence the attempt to understand learning and memory neurobiologically
– is that all learning is in essence procedural and state based. Experience puts
neural machines in enduringly different states (rewires them to implement a new

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 94

Procedures 95

look-up table), which is why they respond differently to inputs after they have had
state-changing (rewiring) experiences. Most contemporary connectionist modeling
is devoted to the development of this idea. A recurring problem with this approach
is, like the look-up tables they result in, these nets lack productivity: in this case
one only gets back what experience has put in. (For an extensive illustration of
what this problem leads to, see Chapter 14.)

While the use of look-up tables is in many cases either preposterously inefficient
or (as in the present case) physically impossible, look-up tables are nonetheless an
important component of many computing procedures. As the content-addressable
example (Figure 6.2) suggests, a look-up-table procedure can involve accessing mem-
ory only once, whereas a procedure implemented by composing many elementary
functions, with each composition requiring reading from and writing to memory,
may take much longer.

Take, for example, the use of sine and cosine tables in a video game, where speed
of the procedures is a top priority. Computing the sine and cosine of an angle is
time intensive. For example, one formula for sin(x) where x is in radians is given

by sin(x) = x − + − + While one can limit the number of terms used,

it may still take a fair amount of time to compute and the denominators become
very large integers very quickly.

What is often done to overcome this speed problem is to make a look-up table
for enough angles to give a reasonably good resolution for the game. For example,
one might have a look-up table procedure that determines the sine function for each
integral degree from 1 to 360. Then one only need find the closest integral angle
to the input that is stored in the look-up table and use this for an approximation.
One can take the two closest integral angles and then use linear interpolation to
get a better and still easily computed estimate.

Procedures for fis_even using compact encoding symbols
When symbols encode their referents in some systematic way, it is often possible
to implement functions on those symbols using what we call a compact procedure.
A compact procedure is one in which the number of bits required to communicate
the procedure that implements a function (the bits required to encode the algorithm
itself) is many orders of magnitude less than the number of bits required to com-
municate the look-up table for the function. And usually, the number of bits required
to communicate a compact procedure is independent of the size of the usable domain
and codomain, whereas in a look-up table procedure, the number of bits required
grows exponentially with the size of the usable codomain and domain. We have
begun our analysis of procedures with the parity function because it is a striking
and simple illustration of the generally quite radical difference between the informa-
tion needed to specify a compact procedure and the information needed to specify
the look-up table procedure. As most readers will have long since appreciated, the
parity-determining procedure for the conventional binary encoding of the integers
is absurdly simple:

x7

7!
x5

5!
x3

3!

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 95

96 Procedures

Read bit 1. If it is a ‘0’, output ‘1’. If it is a ‘1’, output ‘0’. Halt.

This function of flipping a bit (turning 0 to 1 and 1 to 0) is the function fnot in
Boolean algebra (fnot(0) = 1, fnot(1) = 0). It is one of the primitive operations built into
computers.3 When communicating with a device that has a few basic functions built
in, the procedure could be communicated as the composition foutput(fnot(ffirst_bit(x))).
This expression only has four symbols, representing the three needed functions and
the input. Because these would all be high-frequency referents (in the device’s
representation of itself), the symbols for them would all themselves be composed
of only a few bits, in a rationally constructed device. Thus, the number of bits required
to communicate the procedure for computing the parity function to a (suitably
equipped) device is considerably smaller than 102. By contrast, to communicate the
parity look-up table procedure for the integers from 0 to 1030, we would need to use
at least 100 bits for each number. Thus, we would need about (102)(1030) = 1032

bits to communicate the corresponding look-up table.
That is more than 30 orders of magnitude greater than the number of bits needed

to communicate the compact procedure. And that huge number – 30 orders of mag-
nitude – is predicated on the completely arbitrary assumption that we limit the inte-
gers in our parity table to those less than 1030. The compact procedure does not
stop working when the input symbols represent integers greater than 1030. Because
we are using a compact encoding of the integers, the size of the symbols (the lengths
of the data strings) present no problem, and it is no harder to look at the first bit
of a string 1,000,000 bits long than it is to look at the first bit of a string 2 bits
long. In short, there is no comparison between the number of bits required to com-
municate the compact procedure and the number of bits required to communicate
the look-up table procedure that the compact procedure can in principle compute.
The latter number can become arbitrarily large (like, say 1010,000,000) without put-
ting any strain on the physical implementation of the compact procedure. Of course,
a device equipped with this procedure never computes any substantial portion of
the table. It doesn’t have to. With the procedure, it can find the output for any input,
which is every bit as good (indeed, much better, if you take the pun) than incor-
porating some realized portion of the table into its structure.

The effectiveness of a compact procedure depends on the symbol type on which
it operates. When we use nominal symbols to represent integers, then there is no
compact procedure that implements the parity function, or any other useful func-
tion. Nominal symbolization does not rest on an analytic decomposition of the ref-
erents. An encoding symbolization does. When the form of a symbol derives from
an analytic decomposition of the encoded entity, then the decomposition is explic-
itly represented by the substructure of the symbol itself. The binary encoding of
the integers rests on the decomposition of an integer into a sum of successively higher
powers of 2 (for example, 13 = 1(23) + 1(22) + 0(21) + 1(20) = 8 + 4 + 0 + 1). In this
decomposition, the parity of an integer is explicitly represented by the rightmost

3 We conjecture that it is also a computational primitive in neural tissue, a conjecture echoed by the
reflections expressed in the T-shirt slogan, “What part of no don’t you understand?”

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 96

Procedures 97

bit in the symbol for it. That makes possible the highly compact procedure for
realizing the parity function.

Because this point is of quite fundamental importance, we illustrate it next with
a biological example: If the nucleotide-sequence symbols for proteins in the DNA
of a chromosome were nominal symbols, then we would not be able to deduce
from those sequences the linear structures of the proteins they represent. In fact,
however, the genetic code uses encoded symbols. The encoding of protein struc-
tures by nucleotide sequences rests on an analytic decomposition of the protein into
a linear sequence of amino acids. Within the nucleotide sequences of the double-
helical DNA molecule of a chromosome, different nucleotide triplets (codons) rep-
resent different amino acids, and the sequence of codons represents the sequence
of the amino acids within the protein. The decomposition of proteins into their
amino acid sequences and the explicit representation of this sequence within the
genetic symbol (gene) for a protein makes possible a relatively simple molecular
procedure for assembling the protein, using a transcription of the symbol for it as
an input to the procedure. A small part of the genetic blueprint specifies the struc-
ture of a machine (the ribosome) that can construct an arbitrarily large number of
different proteins from encoded symbols composed of only four atomic data (the
A, G, T, and C nucleotides). The combinatorial syntax of these symbols – the fact
that, like bits, they can be made into strings with infinitely various sequences – makes
them capable of representing an arbitrarily large number of different proteins.
Whatever the codon sequence, the transcription procedure can map it to an actual
protein, just as the parity function and the about to be described addition function
can map the binary encoding of any integer or any pair of integers to the symbol
for the parity or the symbol for the sum. Biological coding mechanisms and the
procedures based on them, like computer coding mechanisms and the procedures
based on them, are informed by the logic of coding and compact procedures. This
logic is as deep a constraint on the realization of effective molecular processes as
is any chemical constraint.

Procedures for f+

When working with symbols that refer to a quantity, the addition function is exceed-
ingly useful because under many circumstances quantities combine additively (or
linearly, as additive combination is often called). As always, the procedure depends
on the encoding. If we use a unary (analog) code – symbols that have as many ‘1’s
as the integer they encode – the adding procedure is highly compact: you get the
symbol for the sum simply by concatenating (stringing together) the addends (the
symbols for the integers to be added). Or, if one thinks of the two numbers as
being contained in two “bags,” then one would get the sum by simply pouring the
two bags into a new bag. The problem with this approach is not in the procedure
– it could not be more compact – but rather in the symbolization (the encoding).
As we have already seen, it leads to exponential growth in use of resources, so it
is physically impractical. If we attempt to use a nominal coding, the symbols will
be compact but we will be forced into constructing a look-up table procedure which
will succumb to combinatorial explosion.

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 97

98 Procedures

As we did with parity, we will pursue the use of encoding symbols by employ-
ing the binary number system for integers. So what would be a compact procedure
for determining f+? One approach is essentially the method that we learn in grade
school. The numbers (as usually represented in the decimal number system) are placed
one on top of the other, right justified so that the numerals line up in columns.4

Starting from the right, each column is added using another addition procedure,
f++ , to produce a number. This is not an infinite regress, as the sub-procedure is
itself a look-up table. Since there will be carries, we may have to handle adding
three numbers in each column. To make this process uniform (and thereby sim-
plify our procedure), we place a ‘0’ at the top of the first column, and then for
every column thereafter either a ‘0’ if there is no carry, or a ‘1’ if there is a carry.
We also add a ‘0’ to the left end of both addends so that we can handle one last
carry in a uniform fashion. To add the three numbers in each column, we use func-
tional composition with f++ – f++(f++(carry_bit, addend1_bit), addend2_bit) – to add
the first two digits and then add this result to the third digit.

Below is a procedure that computes the addition function (f+). Figure 6.3 shows
the results of this computation on the inputs ‘0011’ (3) and ‘1011’ (11).

1 Place a ‘0’ at the top of the first (rightmost) column and the left end of both
addend1 and addend2.

2 Start with the rightmost column.
3 Add the top two numbers in the current column using f++.
4 Add the result from State 3 to the bottom number in the current column using

f++. (Here we are using functional composition of f++ with itself.)
5 Place the first (rightmost) bit of the result from State 4 in the bottom row of

the current column.
6 Place the second bit of the result from State 4 at the top of the column to the

left of the current column. If there isn’t a second bit, place a ‘0’ there.
7 Move one column to the left.
8 If there are numbers in the current column, go back to state 3.
9 Output the bottom row. Halt.

4 Note that relative spatial positioning allows one to discern the top number as the first addend and
the bottom as the second addend. Addition being commutative, this distinction is not relevant; how-
ever for subtraction, for example, distinguishing between the minuend (the top number) and the
subtrahend (the bottom number) is critical.

0110
00011
01011
1110

carry
addend1

addend2

sum

3
11
14

Figure 6.3 The results of computing f+ on the input 3 and 11 (represented in binary).
All of the data created during the computation are shown in italics.

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 98

Procedures 99

The procedure for f++, which is used within f+, can be implemented as a look-up
table (Table 6.3). Note that this does not make f+ non-compact. The embedded
look-up table does not grow as a function of the input; f++ only needs to deal with
the addition of three bits. Our addends can increase without bound without chang-
ing how we deal with each column. Here, state memory is not only useful, it is
necessary. All procedures require some state memory, just as they require some struc-
ture that is not a result of experience. This is a direct reflection of the fact that if
any device is to receive information, it must have an a priori representation of the
possible messages that it might receive.

The compact procedure f+ allows for the efficient addition of arbitrarily large inte-
gers. Like the compact procedure for fparity, it does this by using compact symbols
and taking advantage of the analytic decomposition of the referents. Whereas look-
up-table approaches are agnostic as regards the encoding, compact procedures only
function appropriately with appropriately encoded symbols. There is a tight bond
between the encoding procedure that generates the symbols and the procedures that
act on them.

When you get your nose down into the details of the procedures required to imple-
ment even something as simple as addition operating on compact symbols, it is some-
what surprising how complex they are. There is no question that the brain has a
procedure (or possibly procedures) for adding symbols for simple quantities, like
distance and duration. We review a small part of the relevant behavioral evidence
in Chapters 11 through 13. Animals – even insects – can infer the distance and
direction of one known location from another known location (Gallistel, 1990; 1998;
Menzel et al., 2005). There is no way to do this without performing operations on
vector-like symbols formally equivalent to vector subtraction (that is, addition with
signed integers). Or, somewhat more cautiously, if the brain of the insect can com-
pute the range and bearing of one known location from another known location
without doing something homomorphic to vector addition, the discovery of how
it does it will have profound mathematical implications.

It cannot be stressed too strongly that the procedure by which the brain of the
insect does vector addition will depend on the form of the neurobiological symbols
on which the procedure operates and the encoding function that maps from dis-
tances and directions to the forms of those symbols. If the form is unary – or, what is
nearly the same thing, if addition is done on analog symbols – then the procedure

Table 6.3 Look-up table for f++

a b f++(a, b)

0 0 0
0 1 1
1 0 1
1 1 10

10 0 10
10 1 11

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 99

100 Procedures

can be very simple. However, then we must understand how the brain can repres-
ent distances ranging from millimeters to kilometers using those unary symbols.
To see the problem, one has simply to ponder why no symbolization of quantity
that has any appreciable power uses unary symbols (hash marks). The Roman
system starts out that way (I, II, III), but gives up after only three symbols. Adding
(concatenating) hash marks is extremely simple but it does not appeal when one
contemplates adding the hash-mark symbol for 511 to the hash-mark symbol for
10,324. Thus, the question of how the brain symbolizes simple quantities and its
procedures/mechanisms for performing arithmetic operations on those quantities
is a profoundly important and deeply interesting question, to which at this time
neuroscience has no answer.

Two Senses of Knowing

In tracing our way through the details of the procedures for both fis_even and f++, we
came upon a distinction between knowing in the symbolic sense and the “knowing”
that is implicit in a stage (state) of a procedure. This is in essence the distinction
between straightforward, transparent symbolic knowledge, and the indirect, opaque
“knowing” that is characteristic of finite-state machines, which lack a symbolic
read/write memory. Symbolic knowing is transparent because the symbols carry infor-
mation gleaned from experience forward in time in a manner that makes it access-
ible to computation. The information needed to inform behavior is either explicit
in the symbols that carry it forward or may be made explicit by computations that
take those symbols as inputs. Contrast this with the procedural “knowing” that
occurs, for example, in the search tree implementation of fis_even. State 5 “knows”
that the first bit in the input was a ‘0’ and the second bit was a ‘1’, not because it
has symbols carrying this information but instead because the procedure would never
have entered that state were that not the case. We, who are gods outside the pro-
cedure, can deduce this by scrutinizing the procedure, but the procedure does not
symbolize these facts. It does not make them accessible to some other procedure.

We see in our compact procedure for f+ both forms of knowing. The look-up
table sub-procedure for f++, implemented as state memory, would only “know” what
the first bit it received was by virtue of the fact that it was in a particular state.
On the other hand, consider the knowing that takes place within the main proced-
ure when it begins to add a new column. It knows what the carry bit is because
that information is carried forward by a symbol (the bit) placed at the top of the
current column earlier during the computation. f+ can be in State 3 with a ‘0’ in the
carry position or a ‘1’ in the carry position. This information is known explicitly.

We put the state-based form of knowing in quotation marks, because it does not
correspond to what is ordinarily understood by knowing. We do not place the sym-
bolic form of knowing in quotation marks, both because it corresponds to the ordin-
ary sense, and because we believe that this symbolic sense of knowing is the correct
sense when we say such things as “the rat knows where it is” or “the bee knows
the location of the nectar source” or “the jay knows when and where it cached
what” (see later chapters).

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 100

Procedures 101

It is important to be clear about these different senses of knowing, because they
are closely related to a long-standing controversy within cognitive science and related
fields. The anti-representational tradition, which is seen in essentially all forms of
behaviorism, whether in psychology or philosophy or linguistics or neuroscience,
regards all forms of learning as the learning of procedures. For early and pure
expressions of this line of thought, see Hull (1930) and Skinner (1938, 1957). At
least in its strongest form (Skinner, 1990), this line of thinking about the processes
underlying behavior explicitly and emphatically rejects the assumption that there
are symbols in the brain that encode experienced facts about the world (such as
where things are and how long it takes food of a given kind to rot). By contrast,
the assumption that there are such symbols and that they are central players in the
causation of behavior is central to the what might be called mainline cognitive sci-
ence (Chomsky, 1975; Fodor, 1975; Fodor & Pylyshyn, 1988; Marcus, 2001; Marr,
1982; Newell, 1980).

The anti-representational behaviorism of an earlier era finds an echo in con-
temporary connectionist and dynamic-systems work (P. M. Churchland, 1989;
Edelman & Gally, 2001; Hoeffner, McClelland, & Seidenberg, 1996; Rumelhart
& McClelland, 1986; Smolensky, 1991). Roughly speaking, the more committed
theorists are to building psychological theory on neurobiological foundations, the
more skeptical they are about the hypothesis that there are symbols and symbol-
processing operations in the brain. We will explore the reasons for this in subsequent
chapters, but the basic reason is simple: the language and conceptual framework
for symbolic processing is alien to contemporary neuroscience. Neuroscientists can-
not clearly identify the material basis for symbols – that is, there is no consensus
about what the basis might be – nor can they specify the machinery that imple-
ments any of the information-processing operations that would plausibly act on
those symbols (operations such as vector addition). Thus, there is a conceptual chasm
between mainline cognitive science and neuroscience. Our book is devoted to explor-
ing that chasm and building the foundations for bridging it.

A Geometric Example

The tight connection between procedures and the encodings that generate the
symbols on which they operate is a point of the utmost importance. We have illus-
trated it so far with purely numerical operations in which the symbols referred to
integers. This may seem too abstract a referent. Do the brains of animals represent
numbers? Traditionally, the answer to this question has been, no, but research on
animal cognition in recent years has shown that rats, pigeons, monkeys, and apes
do in fact represent number per se (Biro & Matsuzawa, 1999; Boysen & Berntson,
1989; Brannon & Terrace, 2002; Cantlon & Brannon, 2005, 2006; Gallistel, 1990;
Hauser, Carey, & Hauser, 2000; Matsuzawa & Biro, 2001; Rumbaugh &
Washburn, 1993). Nonetheless, a non-numerical illustration involving symbols
for something arguably less abstract and something whose representation is clearly
a foundation of animal behavior is desirable. In our final example, we turn to the
processing of geometric symbols, symbols for locations. There is overwhelming

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 101

102 Procedures

behavioral evidence that animals represent locations, because the representation of
locations is a sine qua non for effective navigation, and animals of all kinds, includ-
ing most particularly insects, are gifted navigators (T. S. Collett, M. Collett, & Wehner,
2001; Gallistel, 1998; Gould, 1986; Menzel et al., 2005; Tautz et al., 2004; J. Wehner
& Srinivasan, 2003; R. Wehner, Lehrer, & Harvey, 1996).

Like anything else, locations may be encoded in different ways. Whatever way
they are encoded, the encoding will make some procedures simple and others com-
plex. Which procedures are simple and which complex will depend on the encod-
ing. The Cartesian encoding of locations (Figure 6.4a) decomposes a location into
its signed (that is, directed) distances from two arbitrarily chosen orthogonal axes.
An alternative is to decompose locations into a radial distance and an angular dis-
tance (Figure 6.4b). In navigation, this decomposition is called the range and bear-
ing of a point from the origin. To effect this encoding of locations, we fix a point
on the plane, called the origin or pole. The range is the distance of the location
from this point. To be able to specify the bearings of locations, we draw a ray
(line segment bounded at one end) from the pole running off arbitrarily far in some
direction. This direction is often chosen with salient generally valid directional
referents in mind, such as, for example, north, which is the point in the sky around
which all of the heavenly bodies are seen to rotate, because it is the point toward
which one end of the earth’s axis of rotation points. This line is called the polar
axis. The second coordinate in the polar encoding of location (the bearing of a
location) is the angular distance through which we must rotate the polar axis
in order for it to pass through that location. For the sake of familiarity, we will
specify angular distances in degrees, even though radians would be preferred for
computational purposes.

4

3

2

1 <0, 0>

<2.3, 4>(a) (b)
4

r

3

2

1 <0, α>

330

<4.61, 330>

<4.15, 130>

13
0°

rsinα = .75rcosα – .25

–x +x
–4 –3 –2 –1

–1

–2

–3<–π, –e>

<–2, 1.5>

y = –.75x – .25

<2, –1.75>

–4
–y

+y

1 2 3 4

Figure 6.4 Two different ways of encoding locations and lines into vectors. (a) The
Cartesian encoding. (b) Polar encoding.

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 102

Procedures 103

An awkwardness in this mapping is that there are an infinity of angular distances
for any one location – thus, an infinite number of symbols that map to the same
referent. First, we can rotate the polar axis either counterclockwise (as we do in
Figure 6.4b) or clockwise. Either way, it will eventually pass through whatever loca-
tion we are encoding, but the angular distance component of our vector symbol
will have a different absolute value and a different sign, depending on which way
we choose to rotate the polar axis. To forestall this, we may specify that the rota-
tion must be, say, counterclockwise. This does not solve the problem of multiple
symbols for the same referent because the polar axis will again pass through the
point if we rotate it by an additional 360° or 720°, and so on. To prevent that,
we must stipulate that only the smallest of the infinite set of angular distances is
to be used as the second component of the symbol. Alternatively, we may use the
sine and cosine of the bearing.

Another awkwardness of this encoding is that there is no specifiable angular dis-
tance for the polar point itself. Thus, the symbol for this point is different from
the symbol for all other points. For some purposes, this is more than a little
awkward. Nonetheless, for other purposes, this encoding is preferred because it makes
the procedures for obtaining some very useful symbols extremely simple. Something
that a navigator often wants to know is the distance and direction of a location
(for example, the nest or the hive or the richest source of food or the nearest port
when a storm threatens). Neither the distance nor the direction of a location from
the origin (or from any other point) is explicit in the Cartesian encoding. They must
be determined by means of a tolerably complex procedure applied to the vector
that symbolizes the location. In Cartesian encoding, to determine the distance (range)

of a point from the origin <0, 0> to the point <x, y>, we must compute .
To determine its direction (bearing), we must compute arcsin(y/x). By contrast, both
quantities are explicit in the polar encoding of location. As in the case of deter-
mining parity from the binary encoding of an integer, we can read what we need
directly from the symbol itself; the range (linear distance) of the location is repres-
ented by the first element of the vector symbol, the bearing (angular distance) by
the second element. There are many other procedures that are simpler with the polar
encoding than with the Cartesian encoding. On the other hand, there are many
more procedures that are simpler with the Cartesian encoding than the polar encod-
ing, which is why the Cartesian encoding is the default encoding.

The important point for our purpose is that if you change the encoding, then
you must also change the procedures that are used to compute distance and every-
thing else one wishes to compute. If one does not make suitable changes on the
computational side, then the homomorphism breaks down; doing the computations
no longer yields valid results. When you try to map from the computed symbols
back to the entities to which they refer, it does not work. This point is of funda-
mental importance when considering proposed systems for establishing reference
between activity in neurons or any other proposed neural symbol and the aspects
of the world that the activity is supposed to represent. One must always ask, if
that is the form that the symbols take, how does the computational side of the sys-
tem work? What are the procedures that when applied to those symbols would
extract behaviorally useful information?

x y2 2 +

9781405122870_4_006.qxd 23/1/09 11:16 AM Page 103

7

Computation

In the last chapter, we saw how one could perform computations on symbols. The
descriptions of the procedures had elements (themes) in common but did not put
forth a common framework. They were ad-hoc and informally presented. For exam-
ple, the procedure for addition involved sub-procedures that were not specified: How
does one determine if there are two bits in a solution? How does one find the top
column? How does one know which column is the “current” column? The pro-
cedures hinted at the possibility of physical instantiation, but they left doubts as
to whether they could ultimately be implemented by a purely mechanical device.

And if they could be implemented, are we to believe that the brain would be
composed of ever more such elaborate devices to accomplish its diversity and com-
plexity of tasks? Put another way, is the brain a Rube Goldberg contraption where
each component is a uniquely crafted physical mechanism designed to solve a par-
ticular idiosyncratic problem? Very unlikely. Wherever one finds complexity, sim-
plicity is sure to follow.1 It is a ubiquitous property of complex systems, both natural
and engineered, that they are built upon simpler building blocks. And, this prop-
erty tends to be hierarchical in nature. That is, the simpler building blocks them-
selves are often constructed from even simpler building blocks.

Could a single conceptual framework handle the many different computational
problems that one could face? We saw that a set of primitive data, through com-
binatorial interaction, could serve all of our symbolic needs. Is there a similar set
of computational primitives that can serve all of our computational needs? In the
last chapter we gained an intuitive understanding of the nature of procedures that
perform computations on symbols. Such concepts have existed for a long time; the
word algorithm derives from the Persian Mathematician al-Khwarizmi who lived
during the ninth century AD. Formalizing the concept of a procedure and what
type of machine could implement these procedures without human aid, however,
had to wait until the twentieth century.

1 Credit to Perlis (1982): “Simplicity does not precede complexity, but follows it.”

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 104

Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience C. R. Gallistel
and Adam Philip King © 2010 C. R. Gallistel and Adam Philip King ISBN: 978-1-405-12287-0

Computation 105

Formalizing Procedures

Twelve years before Shannon published his paper laying the foundations of infor-
mation theory, Alan Turing published his paper (Turing, 1936) laying the founda-
tions of the modern understanding of computation. Turing started from the intuition
that we know how to compute something if we have a step-by-step recipe that,
when carefully followed, will yield the answer we seek. Such a recipe is what we
have called a procedure. The notion of a procedure was important for those work-
ing on the foundations of mathematics, because it was closely connected to an under-
standing of what constitutes a rigorous proof. Anyone who has scrutinized a complex
and lengthy proof is aware of how difficult it is to be sure that there is not a cheat
somewhere in it – a step that is taken that does not follow from the preceding steps
according to a set of agreed upon rules.

Turing’s enterprise, like Shannon’s, was a mathematical one. He did not intend
nor attempt to build an actual machine. Turing wanted to specify the elements out
of which any procedure could be constructed in such an elementary and precise
manner that there could be no doubt that each element (each basic step) could be
executed by a mindless machine. The intuition here is that a machine cannot cheat,
cannot deceive itself, whereas our minds do routinely deceive themselves about the
cogency of their reasoning. Thus, he faced a twofold challenge: first, to specify some
very simple operations that could obviously be implemented on a machine; and sec-
ond, and by far the greater challenge, to make the case that those operations sufficed
to construct any possible procedure, and were capable of performing all possible
computations.

So far as we know, Turing succeeded. He created a formalization that defined
a class of machines. The elements from which these machines were constructed
were of such stark simplicity that it was clear that they were realizable in physical
form. The machines that are members of this class are now referred to as Turing
machines, and to date, the formalism has withstood any attempt to find a pro-
cedure that could not be identified with a Turing machine. By mathematically
specifying the nature of these machines, and demonstrating their far-reaching
capabilities, he laid a rigorous foundation for our understanding of what it means
to say something is computable: Something is computable if it can be computed
by a Turing machine. Part of the fascination of his work is that it showed that
some perfectly well-defined functions were not computable. Thus, his formulation
of what was computable had teeth; it led to the conclusion that some functions
were computable and some were not. His work was closely related to and inspired
by the slightly earlier work of Kurt Gödel, showing that there are (and always will
be) perfectly well-formed formulas in arithmetic that cannot be proved either to be
true or false using “finitistic” proof methods – despite the fact that, by inspection,
the statements in question must in fact be true. Finitistic proofs do not make use
of any steps that involve reasoning about the infinite, because mathematicians had
come to mistrust their intuitions about what were and were not legitimate steps in
reasoning about the infinite.

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 105

106 Computation

We say that Turing succeeded “so far as we know,” because his success cannot
be proven. He was trying to make our notion of what is and is not computable
rigorous. Since the notion of being computable is not itself rigorous, how can one
say whether a rigorous formulation fully captures it? One could, however, show
that he had failed by specifying a computation that a human (or machine), yet not
a Turing machine, could carry out. In this regard, Turing’s formulation has stood
the test of time. Almost 70 years have passed since he published his formulation.
In that time, there has been a dizzying development of computing machines and
intense study of computation and its foundations by engineers, logicians, and math-
ematicians. So far, no one has identified a computation that we – or any other known
thing – can do that no Turing machine can. We have developed computations of
a complexity undreamed of in Turing’s day, but they can all be done by a Turing
machine. In fact, they all are done on modern computers, which are examples of
universal Turing machines – Turing machines that can emulate any other Turing
machine. This does not necessarily mean that we will never discover such a com-
putation. Brains solve a number of computational problems that we do not cur-
rently know how to program a computer to solve – face recognition for example.
Perhaps brains can do computations that a Turing machine cannot do. But, if so,
we have no clue as to how they do it. Nothing we currently understand about
computation in the brain presents any challenge to a Turing machine. In fact, all
current formally specified models of what goes on in brains are implemented on
contemporary computers.

The thesis that a Turing machine can compute anything that is computable is
now called the Church-Turing thesis, because Alonzo Church, Turing’s thesis advi-
sor, developed a closely related logical formalism, the lambda calculus, intended,
like Turing’s, to formalize the notion of a procedure. Church’s work was done more
or less simultaneously with Turing’s and before Turing became his graduate stu-
dent. In fact, Turing went from Cambridge to Princeton to work with Church when
he discovered that they were both working on the same problem. That problem
was Hilbert’s Entscheidungsproblem (decision problem), the problem of whether
there could be a procedure for deciding whether a proposition in arithmetic was
provable or not – not for proving it, just for deciding whether it was provable. The
conclusion of both Church and Turing’s work was that there cannot be such a
procedure. That is, the decision problem was uncomputable. A closely related result
in Turing’s work is that there cannot be a computer program (procedure) for decid-
ing whether another computer program will eventually produce a result (right or
wrong) for a given input. This is called the halting problem. His result does not
mean that the halting problem cannot be solved for particular programs and
inputs. For simple programs, it often can. (For example, if the first thing a Turing
machine does is to halt, regardless of the input, then there is no question that it
halts for all inputs.) What the result means is that given any possible pair consist-
ing of a (description of a) Turing machine and an input to be presented to that
machine, no procedure can always determine if the given Turing machine would
halt on the given input.

Both Gödel and Church believed that Turing’s machines were the most natural
formalization of our intuitive notions of computation. This belief has been borne

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 106

Computation 107

out, as Turing’s machines have had by far the greatest influence on our understand-
ing of computation. Turing’s work and the vast body of subsequent work by
others that rests on it focuses on theoretical computability. It is not concerned to
specify the architecture of a practical computing machine. Nor is it concerned to
distinguish between problems that are in principle computable, but in practice not.

The Turing Machine

A Turing machine has three basic functional components: a long “tape” (the sym-
bolic memory), a read/write head (the interface to the symbolic memory), and a
finite-state processor (the computational machinery) that essentially runs the show.

The tape. Each Turing machine (being itself a procedure) implements a function
that maps from symbols to symbols. It receives the input symbol(s) as a data string
that appears on a tape. Turing’s tape serves as the symbolic memory, the input,
and the output for each procedure. The input symbol(s) get placed on the tape, the
procedure is run, and the resulting output is left on the tape. He had in mind the
paper tapes found in many factories, where they controlled automated machinery
– the head of the teletype machine stepping along the tape at discrete intervals.
Similarly, Turing’s tape is divided into discrete (digital) cells. Each cell can hold
exactly one of a finite number of (digital) atomic data. Successive cells of such data
can thereby create the data strings that are the foundation of complex symbols.
Turing imagined the tape to be infinitely long, which is to say, however long it had
to be to accommodate a computation that ended after some finite number of steps.
Turing did not want computations limited by trivial practical considerations, like
whether the tape was long enough. This is equivalent to assuming that the machine
has as much symbolic memory as it needs for the problem at hand. He also assumed
that the machine had as much time as it needed. He did not want it to be limited
by essentially arbitrary (and potentially remediable) restrictions on its memory capac-
ity, its operating speed, or the time allowed it.

The number of data (the elements from which all symbols must be constructed)
used for a particular Turing machine is part of the description of that machine.
While one can get by (using sub-encoding schemes) using just two atomic data (osten-
sibly ‘0’ and ‘1’), it is often easier to design and understand Turing machines by
using more atomic data. We will start by using these two atomic data along with
a “blank” symbol (denoted ‘•’) that will be the datum that appears on all cells that
have never been written to. We will add more atomic data if needed to make our
examples clear, keeping in mind that the machines could be redesigned to use only
two atomic data. Thinking toward potential physical instantiation, one could imag-
ine that the atomic data are realized by making the tape a magnetic medium and
that each cell can contain a distinguishable magnetic pattern.

As previously noted, we enclose symbols such as ‘1’, ‘0’, and ‘•’ in single quotes
to emphasize that they are to be regarded as purely arbitrary symbols (really data),
having no more intrinsic reference than magnetic patterns. In particular, they are
not to be taken to represent the numbers 0 and 1. In fact, in the example we will
give shortly, a single ‘1’ represents the number 0, while the number 1 is represented

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 107

108 Computation

by ‘11’. This, while no doubt confusing at first, is deliberate. It forces the reader
over and over again to distinguish between the symbol ‘1’ and the number 1, which
may be represented by ‘1’ or may just as well be represented by any other arbit-
rary symbol we may care to choose, such as ‘11’ or ‘!’ or whatever else you fancy
in the way of a symbol.

The symbols are simply a means of distinguishing between different messages,
just as we use numbers on jerseys to distinguish between different players on an
athletic team. The messages are what the symbols refer to. For many purposes, we
need not consider what those messages are, because they have no effect on how a
Turing machine operates. The machine does not know what messages the symbols
it is reading and writing designate (refer to). This does not mean, however, that
there is no relation between how the machine operates and what the symbols it
operates on refer to. On the contrary, we structure the operation of different Turing
machines with the reference of the symbols very much in mind, because we want
what the machine does to make functional sense.

The read/write head. The Turing machine has a head that at any given time is
placed in one of the cells of the tape. The head of the machine can both read the
symbol written in a cell and write a symbol to it. Turing did not say the head “read”
the cell, he said it “scanned” it, which is in a way a more modern and machine-
like term in this age in which digital scanners are used at every check-out counter
to read the bar codes that are the symbols of modern commerce. The head can also
be moved either to the left or the right on the tape. This allows the machine to
potentially read from and write to any cell on the tape. In effect, the read/write
head can be thought of functionally as an all-in-one input transducer, output trans-
ducer, and mechanism to access and alter the symbolic memory.

The processor. What the head writes and in what direction the head moves is
determined by the processor. It has a finite number of discrete processing states. A
state is the operative structure of the machine; it determines the processor’s
response to the symbol the head reads on the tape. As a function of what state the
processor is in, and what symbol is currently being read, the processor directs
the head regarding what symbol to write (possibly none) and what move to make
(possibly no move). The processor then also activates the next state. The finitude
of the number of possible states is critical. If the number of states were infinite, it
would not be a physically realizable machine. In practice, the number of states is
often modest. The states are typically represented (for us!) by what is called a tran-
sition table. This table defines a particular Turing machine.

It is important to realize that allowing the tape (memory – the supply of poten-
tial symbols) to expand indefinitely is not the same as allowing the number of states
of the machine to expand without limit. The tape cells are initially all “empty”
(which we indicate by the ‘•’ symbol), that is, every cell is just like every other.
The tape has no pre-specified structure other than its uniform topology – it carries
no information. It has only the capacity to record information and carry it forward
in time in a computationally accessible manner. It records when it is written to and
it gives back previously recorded information when it is read. As we explained when
discussing compact symbols, a modest stretch of tape has the potential to symbol-
ize any of an infinite set of different entities or states of the world. By contrast,

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 108

Computation 109

each state of the machine is distinct from each other state, and its structure is specific
to a specific state of affairs (pre-specified). This distinction is critical, for otherwise,
as it is often claimed, one couldn’t build an actual Turing machine. Such is the case
only if one must deal with unbounded input, a situation that would never be pre-
sented to an actual machine. Arguments that the brain can’t be a Turing machine
(due to its infinite tape) but instead must be a weaker computational formalism
are spurious – what requires the Turing machine architecture is not an issue of
unbounded memory, it is an issue of being able to create compact procedures with
compact symbols.

Our machine specifications denote one state as the start state, the state that the
machine is in when it begins a new computation. There is also a special state called
the halt state. When the machine enters this state, the computation is considered
to be complete. When the machine begins to compute, it is assumed that the read/write
head is reading the first datum of the first symbol that constitutes the input. Following
tradition, we start our machines on the leftmost symbol. When the machine enters
a halt state, the read/write head should be reading the first (leftmost) datum of
the output.

The response of the machine in a given state to the read symbol has three com-
ponents: what to write to the tape, which way to move (right or left or no move),
and which state to then enter (transition to).

• Writing. The Turing machine can write any of the atomic data to a cell. We
also allow the Turing machine not to write at all, in which case it simply leaves
the tape as is.

• Moving. After it has written (or not written), the machine can move to the left
one cell or it can move to right one cell. It may also choose to stay in its cur-
rent position (not move).

• Transitioning (changing state). After writing and moving, the machine changes
(transitions) from its current state to another (possibly the same) state.

That the machines thus described were constructible was obvious in Turing’s ori-
ginal formulation. Turing also needed to show his machines could compute a wide
variety of functions. Turing’s general strategy was to devise transition tables that
implemented the elementary arithmetic operations of addition, subtraction, multi-
plication, division, and ordering.2 All of mathematics rests ultimately on the foun-
dation provided by arithmetic. Put another way, any computation can be reduced
to the elementary operations of arithmetic, as can text-processing computations,
etc. – computations that do not appear to be arithmetical in nature.

2 Turing’s landmark paper actually achieved four major results in mathematics and theoretical com-
putation. He formalized the notion of a procedure, he demonstrated that the decision problem was unde-
cidable, he demonstrated the existence of universal Turing machines (universal procedures), and he
discovered the class of numbers referred to as computable numbers. Our immediate concern is the for-
malization of the notion of a procedure.

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 109

110 Computation

Turing Machine for the Successor Function

Let us follow along Turing’s path, by considering machines that compute the func-
tions fis_even and f+ from the previous chapter. Before we do this, however, we will
show an even more basic example – a Turing machine that simply computes the
successor function on a unary encoding, that is, it adds one to an integer to gen-
erate the next integer. This machine, starting from zero, can generate each integer,
one after another, by composing its previous result with itself. As usual, before cre-
ating our procedure we must settle on a code that we will use for the integers. In
this case we will use the unary code, which will make for a particularly simple tran-
sition table and a good introduction to the machines. As we already indicated, we
will let ‘1’ be the symbol for the number 0 – perverse as that may seem. We will
use this scheme for each unary example that we give. The symbol for the number
n will be a string of n + 1 ‘1’s. so ‘11’ is the symbol for 1; ‘111’, the symbol for
2; ‘1111’, the symbol for 3, and so on. Each symbol for a number has one more
‘1’ than the number it is a symbol for.

We will start our machine off with an input of zero. From this, we can repeat-
edly run it to generate successive integers. In the beginning, the read/write head of
our Turing machine will be reading the cell containing the symbol ‘1’. All the other
cells contain the blank symbol (‘•’). Therefore the input is zero. This machine only
demands two states (Sstart, Shalt). Table 7.1 shows the transition table for this mach-
ine. The first column contains the state the machine may be in (in this case only
Sstart – the halt state need not be included as it reads no input and does nothing).
The other columns contain the data that may be read by the head (in this case only
‘1’ and ‘•’). Each entry signifies, given this combination of state and symbol read,
what symbol to write (‘1’ or ‘•’), what move to make (L, R, none), and what state
to transition to next.

Typically, such tables are shown pictorially in the form of a state diagram, which
tends to be easier to follow. Table 7.1 would be transcribed into this format as
shown in Figure 7.1. Here, the states are shown as circles. The transitions that oc-
cur from state to state are shown by arrows going from state to state. Each arrow
coming out of a state is annotated first by the symbol that when read causes that
transition, second by the symbol that is written, and third by the move of the
read/write head.

When the procedure starts, the tape will look like ‘. . . • • • • . . .’. The box
surrounding a symbol indicates the position of the read/write head. When the com-
putation is finished, the tape looks like ‘. . . • • 1 • • . . .’. The machine starts in1

1

Table 7.1 State transition table for the successor machine

State Read Write Move Next state

Sstart ‘1’ none L Sstart

Sstart ‘•’ ‘1’ none Shalt

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 110

Computation 111

state Sstart. In this state, reading a ‘1’ causes it to move the head to the left one cell,
without writing anything, and remain in the Sstart state. Now, having moved one
cell to the left, it reads a ‘•’ (a blank). Reading a blank when in the Sstart state causes
it to write a ‘1’, and enter Shalt, ending the computation. The procedure implements
what we might describe in English as “Put a ‘1’ before the first symbol” – how-
ever, nothing has been left to interpretation. We don’t need to invoke a homuncu-
lus that understands “put”, ”before,” or “first symbol.” One cannot help but be
astonished by the simplicity of this formulation.

If we run the machine again, it will end up with ‘111’ written on the tape, which
is our symbol for 2. If we run it again, we get ‘1111’, our symbol for 3, and so
on. We have created a machine that carries out (computes) the successor function;
each time it is run it gives our symbol for the number that is the successor (next
number) of the number whose symbol is on the tape when we start the machine.

Turing Machines for fis_even

Next we consider Turing machine formulations of the parity function (predicate)
fis_even: D⊗ → {0, 1}, that maps a string of bits to ‘1’ if the input bits encode for an
even number and ‘0’ otherwise. A compact approach would use a compact proced-
ure with compact symbols, however, the Turing machine is certainly capable of
implementing a compact procedure for fis_even on a non-compact representation (unary),
and a non-compact procedure (look-up table) on compact nominal symbols (binary
strings).

We first implement fis_even using the unary encoding scheme from above (in which
a single ‘1’ encodes for 0). Figure 7.2 gives the state diagram for our procedure.
Table 7.2 shows the transition table for this same procedure.

This machine steps through each ‘1’, erasing them as it goes. It shifts back and
forth between states Sstart and S1. The state it is in contains implicit (non-symbolic)
knowledge of whether it has read an odd or even number of ‘1’s; if it has read an
odd number of ‘1’s, it is in S1. Given our unary encoding of the integers in which
‘1’ refers to 0, ‘11’ to 1, ‘111’ to 2, and so on, this implies even parity. This is an
example of an appropriate use of state memory. As it moves along the data string,

Sstart

‘•’–>‘1’,_

‘1’–>_,L

Shalt

Figure 7.1 State diagram for the successor machine. The states are represented by circles,
with the transitions shown by arrows. The arrows are annotated. The annotation shows
what the machine read, followed by an arrow, followed by what it wrote, and, following
a comma, how it moved the head (L = left one cell, R = right one cell). If it wrote
nothing or did not move, there is a _.

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 111

112 Computation

the information regarding the parity of the string – which is the only information
that must be carried forward in time – only has two possibilities. This amount of
information, one bit, does not grow at all as a function of the input size. The fact
the machine is “reborn” each time it enters Sstart or S1 does not hinder its opera-
tion – the machine is compact even though the symbolic encoding is not. Once it
finds the ‘•’ (signifying that it has run out of ‘1’s), the machine transitions to the
halt state – using its implicit knowledge (the state it is in) to dictate whether it
should leave a ‘1’ or a ‘0’. This “knowledge” is non-symbolic. While states of the
machine carry information forward in time, they do not do so in a form that is
accessible to computation outside of this procedure. However, the procedure leaves
behind on the tape a symbol for the parity of the number, and this is accessible to
computation, because it is in memory (on the tape), where other procedures can
read it.

This procedure, although implemented by a Turing machine, can be implemented
on a weaker computational mechanism called a finite state automaton, which is a
Turing machine with a multi-state processor but no read/write symbolic memory.
It reads each datum in order and then produces an output. This machine for fis_even

never backtracks on the tape, and it never writes to it. That the problem can be
solved without writing to symbolic memory means that it is solvable by such weaker

Table 7.2 State transition table for the parity machine on unary integers

State Read Write Move Next state

Sstart ‘1’ ‘•’ R S1

Sstart ‘•’ ‘0’ none Shalt

S1 ‘1’ ‘•’ R Sstart

S1 ‘•’ ‘1’ none Shalt

Sstart S1

‘1’–>‘•’,R

‘1’–>‘•’,R
‘•’–>‘0’,_ ‘•’–>‘1’,_

Shalt

Figure 7.2 State diagram for the machine that computes the parity of integers
represented by unary symbols. The machine is in Sstart when it has read a sequence of
‘1’s that encodes an odd integer; it is in S1 when it has read a sequence encoding an
even integer. If it reads a blank while in Sstart (indicating that it has come to the end
of the symbol string), it writes a ‘0’ (the symbol for odd parity) and enters Shalt; if
it reads a blank while in S1, it writes a ‘1’ (the symbol for even parity) and enters Shalt.

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 112

Computation 113

machines. Problems that may be solved without writing to symbolic memory are
called regular problems. There are many such problems; however, there are many
others that are routinely solved by animals and that do demand all the components
of the Turing machine. They cannot be solved by a physically realizable finite-state
machine, which cannot write to symbolic memory.

Next we will consider fis_even as implemented on the nominal encoding from Chap-
ter 6. Figure 7.3 shows the state diagram. It implements a look-up table, a non-
compact procedure operating on a compact but nominal encoding. The procedure
shown can handle an input of three bits; however, the number of states needed grows
exponentially in the number of input bits supported. This Turing machine is once
again emulating a weaker finite-state machine. Stepping through each datum, it uses
its states to “remember” what it has seen. The structure of the Turing machine
(as laid out by the transition table or by the state diagram) directly reflects the bin-
ary tree that it is implementing. Notationally, the transition arrows that go to the
halt state have two labels each, indicating that these two inputs produce the same
state change – but not necessarily the same actions. If comparing this tree to that in
Figure 6.1, take note that here we are reading the bits from left to right.

Finally, we implement the compact procedure for fis_even that operates on the com-
pact binary encoding of the integers (‘0’ for 0, ‘1’ for 1, ‘10’ for 2, and so on). It
maps them to ‘0’ or ‘1’ according to whether the final bit is ‘1’ (hence, the integer
is odd) or ‘0’ (hence, the integer is even). The state diagram is shown in Figure 7.4.
The procedure is easy to state in English: “Output the opposite (not or inverse) of
the final bit.” The Turing machine that implements this function reflects this sim-
plicity. Its structure is similar to the procedure above that operates on the unary

‘1’–>‘•’,R ‘0’–>‘•’,R ‘1’–>‘•’,R

‘0’–>‘•’,R ‘1’–>‘•’,R

‘0’–>‘•’,R

‘0’–>_,_
‘1’–>_,_

‘0’–>_,_
‘1’–>‘0’,_

‘0’–>‘1’,_
‘1’–>‘0’,_

‘0’–>‘1’,_
‘1’–>_,_

Shalt

S4

S1

Sstart

S2

S5 S6S3

Figure 7.3 State diagram for parity-determining machine operating on nominally
encoded integers. When the same state transition is caused by the reading of either bit,
it is doubly annotated.

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 113

114 Computation

encoding. This machine also uses two states as memory. In this case, however, each
state “knows” the bit it has last seen, not the parity of the bit string that it has seen
so far. Because each bit is erased as the machine moves along, when it falls off the
end of the string, it has lost its symbolic knowledge of what the last bit was. It
must remember this information in non-symbolic (state memory) form.

Different procedures may be used to determine the same function, operating on
the same encoding. Figure 7.5 shows the state diagram of a procedure that again
uses the compact binary encoding of the integers. This machine leaves its tape (sym-
bolic) memory intact. In Sstart, it moves to the right along the sequence of ‘1’s and
‘0’s until it reads a blank (‘•’), indicating that it has reached the end of the sym-
bol string. Reading a ‘•’ while in Sstart causes it to move backward one step on the
tape and enter S1. In S1 then, the read/write head is reading the last datum. It has
gained access to this information in a state-independent manner. Both states Sstart

and S1 read this last bit. The knowledge of this bit, therefore, is not tied to the
state of the machine. Having carried the information forward in time in a computa-
tionally accessible form in symbolic memory, the machine (that is, the processor)
is not dependent upon its own state to carry the information. Information from
the past is informing the behavior of the present. By contrast, the knowledge that
the machine is now reading the last bit is embodied in the processor’s state; if it is
in S1, it’s reading the last bit. In this state, it inverts the bit, and enters S2. S2 clears
the tape, stepping backward when it reads a bit, through the input, erasing as it
goes. Note that here we have enhanced our notation to allow for multiple symbols
on the left side of the arrow. This is simply a shorthand for multiple read symbols
that lead to the same actions (write, move, and state change). When it finally reads
a ‘•’, it enters S3. In this state, it steps back to the right through the blanks left by
the erasing done by the previous state, until it reads a bit. This bit is the answer
to the parity question – which, again, it has remembered in symbolic form. Seeing
the answer, it enters Shalt.

Sstart

‘•’–>‘1’,_ ‘•’–>‘0’,_

‘1’–>‘•’,R

‘0’–>‘•’,R

‘0’–>‘•’,R ‘1’–>‘•’,R

S1

Shalt

Figure 7.4 State diagram for a machine operating on binary encodings of the integers,
erasing the data string as it goes. If it is in Sstart, the last bit read was ‘0’; if in S1, the last
bit read was ‘1’. If it reads a ‘•’ when in S1, it writes a ‘0’ (the symbol for odd parity)
and enters Shalt. If it reads a ‘•’ when in Sstart, it writes a ‘1’ (the symbol for even parity)
and enters Shalt.

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 114

Computation 115

Turing Machines for f++

We now turn our attention to creating two procedures implemented on Turing
machines for f+. First, we solve the problem for a unary encoding of the integers.
We again use the encoding in which the integer n is encoded by n + 1 ‘1’s.

We stipulate that the symbols for the two numbers to be added will be separated
by a single ‘•’, the blank symbol. Thus, if we want to add 2 and 3, the initial state
of the tape will be: . . . • • 1 1 • 1 1 1 1 • • . . . The first string of three ‘1’s
encodes for 2, then comes the ‘•’ that serves to separate the two symbols, and then
comes the second string of (four) ‘1’s, which encodes for 3. As usual, the reading
head is at the start of the first symbol when the computation begins. Our adding
machine has five states (Figure 7.6). At the end of the computation, the tape should
be: . . . • • 1 1 1 1 1 • • . . .

This machine starts by skipping over all of the ‘1’s in the first addend while remain-
ing in Sstart, until it finds the ‘•’. It then converts this punctuation mark into ‘1’,
thereby forming one continuous data string, and then it transitions from Sstart to S1.
At this point, we almost have the result we want. There are just two extra ‘1’s.
The first extra ‘1’ came when we filled in the gap. The second came because of our
encoding system. Each number n is encoded with n + 1 ‘1’s and therefore the
numbers x and y will have a total of x + 1 + y + 1 = (x + y) + 2 total ‘1’s – the

1

1

Sstart S1 S2

S3

‘1’–>‘_’,R
‘0’–>‘_’,R

‘1’–>‘•’,L
‘0’–>‘•’,L‘1’–>‘0’,L

‘0’–>‘1’,L

‘1’–>_,_
‘0’–>_,_

‘•’–>‘_’,L

‘•’–>_,R

‘•’–>_,R

Shalt

Figure 7.5 State diagram for parity-determining machine operating on binary encodings
of the integers without erasing the data string.

Sstart

‘•’–>‘1’,L ‘•’–>_,R ‘1’–>‘•’,R ‘1’–>‘•’,R

‘1’–>_,R ‘1’–>_,L

S1 S2 S3 Shalt

Figure 7.6 State diagram for an adding machine operating on a unary encoding of the
integers (‘1’ for 0, ‘11’ for 1, and so on).

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 115

116 Computation

other extra ‘1’. The task remaining is to remove the two ‘1’s. S1 steps back through
the ‘1’s until it reads a ‘•’, which causes it to step back once to the right and tran-
sition to S2. S2 reads and deletes the first ‘1’ and transitions to S3, which reads and
deletes the second ‘1’ and transitions to Shalt.

Changing the punctuation mark to a ‘1’ may seem like a trick. The procedure
takes advantage of the way the numbers are placed on the tape – the way they
happened to be symbolized. This highlights the difference between reality and rep-
resentation, and the importance of the encoding scheme that is chosen in rep-
resentational systems. In a sense, all computation is a “trick.” After all, we are
representing (typically) real entities using sequences of symbols. Then, by performing
manipulations on the symbols themselves, we end up with more symbols that them-
selves map back to entities in the real world. For these symbolic processes to yield
results that reflect actual relationships in the real world may seem too much to hope
for. Yet, such tricks have transformed the world. The tricks that allow the algebra
to yield results that reflect accurately on geometry have been put to productive use
for centuries. Such tricks allow us to determine how far away stars are. Such tricks
have created the Internet. Perhaps what is most astonishing is that such tricks work
for complex and indirect encoding schemes such as the binary encoding of inte-
gers. That integers can be encoded into unary (analog) form, manipulated by essen-
tially “adding” them together, and then converted back to the integer may seem
ho-hum. This coding is direct, and the procedure itself is direct. Yet, as we have
stressed, this approach rapidly becomes untenable as the integers that one wants
to deal with grow large. There isn’t enough paper in the universe to determine the
sum of 1056 + 1092. Yet using a compact-encoding (the decimal exponential system,
or any other base for that matter) and then a compact procedure (addition as we
learned as children) makes this (almost) child’s play. It is no overstatement to say
that the modern world would not be possible if this were not the case. Perhaps the
success of such “tricks” is due to the likelihood that they are not tricks at all. Perhaps
the symbolic representation of a messy reality reflects deep and simple truths about
the reality that is encoded.

We come finally to consider the most complex procedure whose implementation
on a Turing machine we detail – a compact procedure for f+ operating on the binary
encoding for integers. In Chapter 6 we described this procedure in what is often
called pseudo-code – descriptions that are informal and intended for easy human
consumption, but give one enough detail to go off and implement the procedure
in actual computer code. Now, we use this procedure in its broadest strokes; how-
ever, we make some changes that aid us in implementing the procedure on a Turing
machine.

The biggest change we make is that we augment our stock of three symbol ele-
ments (‘•’, ‘0’, and ‘1’) with two new elements, ‘X’ and ‘Y’. We do this to minim-
ize the number of different states in the machine. A necessary part of the addition
procedure is keeping track of how far it has progressed. As always, this informa-
tion can be carried forward in time in two different ways, either in symbolic mem-
ory (on the tape), or by means of state memory. If we were to do it by state memory,
we would need to replicate a group of the states over and over again. Each replica-
tion would do the same thing, but to the next bits in the two strings of bits being

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 116

Computation 117

processed. The purpose served by the replications would be keeping track of the
position in the bit string to which the procedure has progressed. If we used state
memory to do this, then the number of states would be proportional to the length
of the strings that could be processed. By adding to our symbolic resources the two
additional symbols that enable us to carry this information forward on the tape,
we create a machine in which the number of states required is independent of the
length of the strings to be processed.

There are other ways of achieving a procedure whose states do not scale with
the length of the strings to be processed. For example, instead of enriching our set
of symbol elements first with ‘•’, and then with ‘X’ and ‘Y’, we could use only the
minimal set (‘0’ and ‘1’) and create a sub-procedure that functions to divide the
tape into 3-cell words. The remainder of the procedure would then treat each word
as an 8-symbol element (‘000’, ‘001’, 010’, etc.). Except for the multi-state sub-
procedures that read and wrote those words, that procedure would look much like
the one we here describe, because it would then be operating on 8 virtual symbol
elements. Our approach serves to remind the reader that a Turing machine can have
as many symbol elements as one likes (two is simply the absolute minimum), and,
it keeps the state diagram (relatively) simple.

Unlike the other procedures described in Chapter 6, the procedure there
described for f+ may seem to be of a different kind. The symbols were placed in a
two-dimensional arrangement and the pseudo-code procedure used phrases such as
“add the two top numbers,” and “at the top of the column to the left of the cur-
rent column.” Can we recode the symbols to be amendable to the one-dimensional
world of a Turing machine? The Church-Turing hypothesis says that we can. And,
indeed, it is not difficult: We put the four rows (Carry, Addend1, Addend2, and
Sum) end to end, using the blank symbol as a punctuation mark to separate them.
We handle the carries as they occur, essentially rippling them through the sum. That
is to say, each power of two is added in its entirety as it is encountered. Rather
than create the symbol string for the sum in a separate location on the tape, we
transform the first addend into the sum and erase the second as we go.3 The state
diagram is in Figure 7.7.

In our example, we add the integer 6 to the integer 7 to compute the resulting
integer, 13. The tape initially contains . . . • • 1 0 • 1 1 1 • • . . . , and it ends
up containing . . . • • 1 0 1 • • . . .

Walking through the procedure at the conceptual level, we see the following:

. . . • • 1 1 0 • Start with 6, the first addend (which will become the sum):

. . . • • 1 1 1 • Add the 1 in the ones place to get 7.

. . . • 1 0 0 1 • Add the 1 in the twos place to get 9 (the carry ripples through).

. . . • 1 1 0 1 • Add the 1 in the fours place to get 13.

Conceptually, the machine keeps track of its progress by “marking” the bits of
the first addend to keep track of which columns (powers of two) have been processed.

1
1

3 Thanks to David Eck for these modifications and the associated Turing code.

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 117

118 Computation

The marking is accomplished by temporarily replacing processed ‘0’s with ‘X’s and
processed ‘1’s with a ‘Y’s. When the machine has finished computing the sum, it
goes back and restores the ‘X’s to ‘0’s and the ‘Y’s to ‘1’s.

Table 7.3 shows a trace of the tape as the Turing machine computes . . . • •
1 0 • 1 1 1 • • (6 + 7). S3 and S4 operate when the bit in the first addend is ‘0’,

1

Sstart S1

S2

S3

S4

S8

S7

S9

S5

S6

‘•’–>_’,R

‘•’–>_,L ‘•’–>_,L

‘•’–>_,L‘•’–>_,L

‘•’–>_,R

‘•’–>_,L

‘•’–>‘Y’,R
‘0’–>‘Y’,R

‘•’–>‘X’,R
‘0’–>‘X’,R
‘1’–>‘Y’,R

‘•’–>‘1’,R
‘0’–>‘1’,R

‘1’–>_,R
‘0’–>_,R

‘1’–>‘X’,L

‘1’–>‘0’,L

‘X’–>_,L
‘Y’–>_,L

‘1’–>_,L
‘0’–>_,L

‘•’–>_,R

‘1’–>‘•’,L
‘1’–>_,L
‘0’–>_,L

‘1’–>_,R
‘0’–>_,R
‘X’–>_,R
‘Y’–>_,R

‘X’–>_,L
‘Y’–>_,L

‘0’–>‘•’,L

‘1’–>_,R
‘0’–>_,R

‘1’–>_,R
‘0’–>_,R

‘0’–>_,R
‘1’–>_,R
‘X’–>‘0’,L
‘Y’–>‘1’,L

ShaltS10

Figure 7.7 State diagram for the machine that does addition on binary encoded integers,
using an augmented set of symbol elements to keep symbolic track of the progress of the
procedure. Sstart and S1 move the head to the last bit of Addend2. The circle composed
of S2, S3, S4, S5, S6, and S8 forms the look-up table for the sum of two binary digits
(0 + 0, 0 + 1, 1 + 0, and 1 + 1). S7 ripples the carry through, however successive
‘1’s lie immediately to the left in the first addend until it gets to the first ‘0’,
where it deposits the carry bit. S10 converts the ‘X’s and ‘Y’s back to ‘0’s and ‘1’s.

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 118

Table 7.3 Trace of the procedure when adding 6 (binary 110) and 7 (binary 111) to get
13 (binary 1001)

Tape State Comment

· · 1 0 · 1 1 1 · · Start Move to the end of first Addend2
· · 1 0 · 1 1 1 · · Start
· · 1 1 · 1 1 1 · · Start
· · 1 1 0 1 1 1 · · Start
· · 1 1 0 · 1 1 · · 1
· · 1 1 0 · 1 1 · · 1
· · 1 1 0 · 1 1 · · 1
· · 1 1 0 · 1 1 1 · 1
· · 1 1 0 · 1 1 · · 2 Working on next bit of Addend2 (ones place)
· · 1 1 0 · 1 · · · 5 Found a 1, so of to state 5 for Addend1
· · 1 1 0 · 1 · · · 5
· · 1 1 0 1 1 · · · 5
· · 1 1 · 1 1 · · · 6 Addend1 has a ‘0’, sum = 1 + 0 = 1 = (y), no carry
· · 1 1 y 1 1 · · · 8 Back to find next bit of Addend2
· · 1 1 y · 1 · · · 9
· · 1 1 y · 1 · · · 9
· · 1 1 y · 1 1 · · 9 Found the end, step left for next bit
· · 1 1 y · 1 · · · 2 Working on next bit of Addend2 (twos place)
· · 1 1 y · · · · · 2 Found a ‘1’, so off to state 5 for Addend1
· · 1 1 y 1 · · · · 5
· · 1 1 · 1 · · · · 6 Skip over y, already handled
· · 1 y · 1 · · · · 6 Addend1 has a ‘1’, sum = 1 + 1 = 0 = (x), with carry
· · x y · 1 · · · · 7 Rippling carry, carry = 1 + 1 = 0 (x), with carry
· 0 x y · 1 · · · · 7 No more bits, placing the carry at end
· 1 x y · 1 · · · · 8 Back to find next bit of Addend2
· 1 0 y · 1 · · · · 8 Skip over x
· 1 0 x · 1 · · · · 8 Skip over y
· 1 0 x y 1 · · · · 8
· 1 0 x y · · · · · 9
· 1 0 x y · 1 · · · 9 Found end, left for next bit (fours place)
· 1 0 x y · · · · · 2 Found a ‘1’, so off to state 5 for Addend1
· 1 0 x y · · · · · 5
· 1 0 x · · · · · · 6 Skip over y
· 1 0 y · · · · · · 6 Skip over x
· 1 x y · · · · · · 6 Found a 0, sum = 1 + 0 = 1 (y), no carry
· 1 y y · · · · · · 8 Back to find next bit of Addend2
· 1 y x · · · · · · 8 Skip over y
· 1 y x y · · · · · 8
· 1 y x y · · · · · 9 Found end, left for next bit (eights place)
· 1 y x y · · · · · 2 There is no eights place, time to clean up
· 1 y x · · · · · · 10 Change y back to 1
· 1 y 1 · · · · · · 10 Change x back to 0
· 1 0 1 · · · · · · 10 Change y back to 1
· 1 0 1 · · · · · · 10 Found first digit, all done1

y
x

y
·

·
·

y
x

0
x

y
·

1
·

1
·

y
x

0
·

1
1

y
·

1
1

·
1

1
·

0
·

1
1

1
·

1
1

1
·

0
1

1

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 119

120 Computation

while S5 and S6 operate when it is ‘1’. They discern the corresponding bit in Addend2
and write the appropriate bit over the bit that is currently in that position in Addend1.
This is written either as an ‘X’, for ‘0’, or a ‘Y’ for ‘1’, marking the current row
(corresponding to the power of two being added) as done.

One may see the near duplication of S3, S4 and S5, S6 as wasteful. Can one do
better? In this case, one cannot. The look-up table approach here is necessary as
the two arguments are each just one bit. Therefore, there is no useful analytic decom-
position of the arguments that would allow us to form a compact procedure. This
imbedded look-up table, however, does not do our procedure any harm. Regardless
of how big our addends grow, the look-up table still only needs to handle two bits.

Once this bit has been handled, the procedure moves back to the right to find
the next bit to be added (S8 and S9). The machine then returns to S2, being reborn
with respect to its state memory. After all bits are processed, the machine transi-
tions to S10 where it cleans up the tape (changes all of the ‘X’s back to ‘0’s and
‘Y’s back to ‘1’s) and halts.

It is hard to ignore the relative complexity of the Turing machine for f+ that uses
encoded compact symbols as compared to the one that uses the unary symbols.
Both procedures are compact, and yet the procedure that operates on the compact
symbols requires more states. We have traded some algorithmic simplicity for a
procedure that can work on an arbitrarily large number of realistically symboliz-
able numbers – a trade that is mandatory for any machine that needs to work with
many symbols.

The reader can verify that this machine will work for any initial pair of num-
bers. That is, if one puts in the binary numeral for the first number, a ‘•’, and then
the binary numeral for the second number, sets the machine to the initial state, and
runs it – the machine will stop when it has converted what is written on the tape
to the binary numeral for the sum of the two input numbers. Thus, this machine
can add any two numbers we care to give it. It is not a look-up table; it is gener-
ative. It can give us the sums for pairs of numbers whose sums we do not know
(have never computed).

Turing went on to show how to create more complicated machines that gener-
ated all computable numbers (real numbers for which there is a procedure by which
one can determine any digit in its decimal expansion). He also showed how to imple-
ment all five of the elementary operations of arithmetic, from which all the other
operations of arithmetic may be constructed. Also, how to implement basic text
processing operations such as copying and concatenating. (These can all be shown
to be equivalent to arithmetic operations.) His machines were never intended to be
constructed. They were preposterously inefficient. They served a purely conceptual
purpose; they rendered precise the notion of an effective procedure and linked it
to the notion of what could be accomplished through the operation of a deterministic
machine, a machine whose next action was determined by its current state and the
symbol it was currently reading.

As one might imagine, there are variants on the Turing machine, but all the ones
that have been suggested have been proved to be equivalent to the machine we have
described, even stochastic (non-deterministic) variants. There are other approaches
to specifying what is and is not computable, notably, the theory of recursive functions,

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 120

Computation 121

but it has been proved that the Turing-computable functions are exactly the recurs-
ive functions.

Minimal Memory Structure

In a Turing machine, the head moves step by step along the tape to bring the sym-
bol to be read to the head, which feeds the processor, the part of the machine whose
state varies from step to step within a computational procedure. If a symbol is writ-
ten to memory, it is always written to the cell that is currently under the head. A
critical part of each processor state is the specification of how it moves the head.
Only the symbol currently being read can contribute to this determination. Moving
the head brings a different symbol into play. Thus, how the head moves determines
which symbol in memory (on the tape) gains causal efficacy in the next step. The
movements of the head are maximally simple: either one cell to the left or one cell
to the right. One might suppose that a more complexly structured memory would
be needed to achieve full computational power. It turns out, that it isn’t. The sequen-
tial structure imposed by placing the data on a tape is all the structure that is needed.

This amount of structure is, however, critical. Memory in a Turing machine is
not a disorderly basket into which symbols are tossed and which must then some-
how be rummaged through whenever a particular symbol must again enter into
some computational process. Memory is sequentially structured and that structure
is a critical aspect of the procedures that Turing specified. As the example of the
addition procedure illustrates, the arrangement of the symbols on the tape and the
sequence in which the procedure brings them into the process by moving the read-
ing head to them are the keys to the success or failure of the procedure.

Also critical is the question of how the symbols in memory and the machinery
that operates on those symbols are brought together in space and time. In Turing’s
conceptual machine, the processor accessed the symbols by moving the head
through memory. In modern, general-purpose computers, the symbols are brought
to the processing machinery by a fetch or read operation and then exported back
to memory by a put or write operation. It is widely assumed in the neural network
literature that it is precisely in this particular that computation in nervous tissue
departs most fundamentally from computation in modern computing machines. It
is thought that in neural computation the data (whether they should be thought of
as symbols or not is in dispute) and the machines that operate on the data are phys-
ically intertwined in such a way that there is no need to bring the data to the machin-
ery that operates on it. However, the developments of this conception that we are
familiar with generally avoid the question of how the combinatorial operations are
to be realized – operations such as the arithmetic operations in which two differ-
ent symbols must be brought together in space and time with machinery capable
of generating from them a third symbol. The challenge posed by the necessity of
implementing combinatorial operations is that of arranging for whichever two sym-
bols need combining to come together in space and time with the machinery cap-
able of combining them. It would seem that the only way of arranging this – other
than bringing them both from memory to the combinatorial machinery – is to make

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 121

122 Computation

a great many copies of the symbols that may have to enter into a combinatorial
function and distribute these copies in pairs along with replications of the mach-
inery capable of combining each such pair. This leads to a truly profligate use of
physical resources. We will see in Chapter 14 that this is what at least some neural
network models in fact suppose.

General Purpose Computer

Perhaps Turing’s most important result was to prove the existence of (i.e., math-
ematical possibility of) universal Turing machines. A universal Turing machine is
a machine that, when given on its tape an encoding for the transition table for any
other Turing machine, followed by the state of that machine’s tape at the start of
its computations (the input), leaves the output segment of its own tape in the same
state as the state in which the other machine would leave its tape. In other words,
the universal Turing machine can simulate or emulate any other Turing machine
operating on any input appropriate to that other machine. (Remember that other
Turing machines are computation-specific.) Thus, a universal Turing machine can
do any Turing-computable computation, which is to say, given the current state of
our understanding, any computation that can in principle be done. This is, in essence,
an existence proof for a general purpose computer. The computers that most of us
have on our desks are, for most practical purposes, realizations of such a machine.
But their architecture is somewhat different, because these machines, unlike
Turing’s machines, have been designed with practical considerations very much in
mind. They have been designed to make efficient use of time and memory.

The functional architecture of practical universal Turing machines reflects, how-
ever, the essentials in the functional architecture of Turing’s computation-specific
machines. First and foremost, they all have a read/write memory, which, like Turing’s
tape, carries symbolized information forward in time, making it accessible to com-
putational operations. Turing’s formalization has allowed others to investigate the
consequences of removing this essential component (Hopcroft, 2000; Lewis, 1981).
As we have already noted, a machine that cannot write to the tape – that cannot
store the results of its computations in memory for use in subsequent computations
– is called a finite state machine. It is provably less powerful than a Turing mach-
ine. There are things that a Turing machine can compute that a finite state machine
cannot because it has no memory in which to store intermediate results. We con-
sider the limitations this imposes in Chapter 8.

Putting the transition table in memory

The modern computer differs from the Turing machines we have so far described
in a way that Turing himself foresaw. In the architecture we have so far consid-
ered, the processor with its different states are one functional component, and the
tape is another. The states of the processor carry information about how to do
the computation. They are a collection of suitably interconnected mini-machines.
The symbols on the tape carry forward in time the information extracted by earlier

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 122

Computation 123

stages of the computation. Turing realized that it was possible to put both kinds
of information on the tape: the how-to information in the transition table could
be symbolized in the same way, and by the same physical mechanisms, as the data
on which the procedure operated. This is what allowed him to construct his uni-
versal Turing machine. This insight was a key step on the road to constructing the
modern general purpose computer. A machine with a stored-program architecture
is often called a von Neumann machine, but the basic ideas were already in Turing’s
seminal paper, which von Neumann knew well.

In the stored-program architecture, the processor is given some basic number of
distinct states. When it is in one of those states, it performs a basic computational
operation. It has proved efficient to make machines with many more elementary
hard-wired actions than the three that Turing allowed – on the order of 100. Each
of these actions could in principle be implemented by a sequence of his three basic
actions, but it is more efficient to build them into the different states of the pro-
cessing machinery.

The possible actions are themselves represented by nominal binary symbols (bit
patterns, strings of ‘1’s and ‘0’s), which are in essence names for the various states
of the machine (the equivalent of S1, S2, etc. in our diagrams). This allows us
to store the transition table – the sequence of instructions, that is, states – in
memory (on the tape). In this architecture, computations proceed as follows: the
processing machinery calls an instruction from the sequence in memory. This
instruction configures the processor to carry out one of its elementary hard-wired
operations, that is, it puts the processor in the specified state. After placing itself
in one of its possible states by calling in an instruction name from memory, the
processor then loads one or two data symbols from memory. These correspond to
the symbol being read or scanned by the head in Turing’s bare-bones architecture.
The operations particular to that state are then performed. The processor may for
example add the two symbols to make a symbol for the sum of the numbers that
they represent, or compare them and decide on the basis of the comparison what
the next instruction to be called in must be. Finally, the resulting symbol is writ-
ten to memory and/or the machine branches to a different location in the sequence
of instructions. The processor then calls in from the new location in program mem-
ory the name of the next instruction in the list of instructions or the instruction
decided on when it compared two values. And so on.

Storing the program in the memory to which the machine can write makes it
possible for the machine to modify its own program. This gives the machine two
distinct ways in which it can learn from experience. In the first way, experience
supplies the data required by pre-specified programs. This is the only form of learn-
ing open to a machine whose program is not stored in memory but rather hard-
wired into the machine. Machines with this structure have a read-only program
memory. In the second way, experience modifies the program itself. A point that
is sometimes overlooked is that this second form of learning requires that one part
of the program – or, if one likes, a distinct program – treat another part of
the program as data. This second, higher-level program establishes the procedure
by which (and conditions under which) experience modifies the other program. An
instance of this kind of learning is the back-propagation algorithm widely used in

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 123

124 Computation

neural network simulations. It is not always made clear in such simulations that
the back-propagation algorithm does not run “on” the net; it is the hand of an
omniscient god that reaches into the net to make it a better net.

Using the same memory mechanism to store both the data that must be processed
and the transition table for processing them has an analog in the mechanism for
the transmission and utilization of genetically coded information. In most presenta-
tions of the genetic code, what is stressed is that the sequence of triplets of base
pairs (codons) in a gene specifies the sequence of amino acids in the protein whose
structure is coded for by that gene. Less often emphasized is that there is another
part of every gene, the promoter part, which is just as critical, but which does not
code for the amino acid sequence of a protein. Promoters are sequences of base-
pairs to which transcription factors bind. The transcription of a gene – whether its
code is being read and used to make its protein or not – is governed by the bind-
ing of transcription factors to the promoters for that gene. Just as in a computer,
the result of expressing many different genes depends on the sequence and condi-
tions in which they are expressed, in other words, on the transition table or pro-
gram. The sequence and conditions in which genes are expressed is determined by
the system of promoters and transcription factors. The genetic program informa-
tion (the transition table) is encoded by the same mechanism that encodes protein
structure, namely base-pair sequences. So the genetic memory mechanism, like the
memory mechanism in a modern computer, stores both the data and the program.
DNA is the inherited-memory molecule in the molecular machinery of life. Its func-
tion is to carry heritable information forward in time. Unlike computer memory,
however, this memory is read-only. There is, so far as we now know, no mechan-
ism for writing to it the lessons of experience. We know from behavior, however,
that the nervous system does have a memory to which it can write. The challenge
for neurobiologists is to identify that mechanism.

Summary

We have reviewed and explicated key concepts underlying our current understanding
of machines that compute – in the belief that the brain is one such machine. The
Church-Turing thesis, which has withstood 70 years of empirical testing, is that a
Turing machine can compute anything that can be computed by any physically real-
izable device. The essential functional components of a Turing machine are a
read/write, sequentially structured symbolic memory and a symbol processor with
several states. The processor’s actions are determined by its current state and the
symbol it is currently reading. Its actions have two components, one with respect
to the symbolic memory (metaphorically, the tape) and one with respect to its own
state. The memory-focused components are writing a symbol to the location cur-
rently being read and moving the head to one of the two memory locations that
adjoin the currently read location. Moving the head brings new symbols stored in
memory into the process. The other component is the change in the state of the
processor. The machinery that determines the sequence of states (contingent on which

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 124

Computation 125

symbols are encountered) is the program. The program may itself be stored in mem-
ory – as a sequence of symbols representing the possible states.

The Turing machine is a mathematical abstraction rooted in a physical concep-
tion. Its importance is twofold. First, it bridges the conceptual gulf between our
intuitive conceptions of the physical world and our conception of computation.
Intuitively, computation is a quintessentially mental operation, in the Cartesian dual-
ist sense of something that is intrinsically not physical. Our ability to compute is
the sort of thing that led to Descartes’ famous assertion, “I think therefore I am.”
The “I” referred to here is the (supposed) non-physical soul, the seat of thought.
In the modern materialist (non-dualist) metaphysics, which is taken more or less
for granted by most cognitive scientists and neuroscientists, the material brain is
the seat of thought, and its operations are computational in nature. Thus, it is essen-
tial to develop a firm physical understanding of computation, how it works phys-
ically speaking, how one builds machines that compute. (In the next chapter, we
get more physical.)

Second, we believe that the concepts underlying the design of computing
machines arise out of a kind of conceptual necessity. We believe that if one ana-
lyzes any computing machine that is powerful, fast, and efficient, one will find these
concepts realized in its functional structure. That has been our motivation for call-
ing attention to the way in which these concepts are implemented, not only in mod-
ern computers, but also in the best understood biological machinery that clearly
involves a symbolic memory, namely, the genetic machinery. This well-understood
molecular machinery carries heritable information from generation to generation
and directs the construction of the living things that make up each successive gen-
eration of a species. In the years immediately following the discovery of the struc-
ture of the DNA molecule, biologists discovered that the genetic code was truly
symbolic: there was no chemical necessity connecting the structure of a gene to the
structure of the protein that it coded for. The divorcing of the code from what it
codes for is the product of a complex multi-stage molecular mechanism for read-
ing the code (transcribing it) and translating it into a protein structure. These dis-
coveries made a conceptual revolution at the foundations of biochemistry, giving
rise to a new discipline, molecular biology (Jacob, 1993; Judson, 1980). The new
discipline had coding and information processing as its conceptual foundations. It
studied their chemical implementation. The biochemistry of the previous era had
no notion of coding, let alone reading a code, copying it, translating it, correcting
errors, and so on – notions that are among the core concepts in molecular biology.

Thus, if one believes that the brain is an organ of computation – and we take
that to be the core belief of cognitive scientists – then to understand the brain one
must understand computation and how it may be physically implemented. To under-
stand computation is to understand the codes by which information is represented
in physical symbols and the operations performed on those symbols, the operations
that give those symbols causal efficacy.

9781405122870_4_007.qxd 23/1/09 11:15 AM Page 125

8

Architectures

Two questions seldom considered even by cognitive neuroscientists, let alone by
neuroscientists in general, are: What are the functional building blocks of complex
computational systems? And how must they be configured? If the brain is a com-
putational system, then the answers to these questions will suggest what to look
for in brains when we seek to understand them as computing machines. We want
to understand what kinds of building blocks are required in a computing machine
and why. We also want to look at some physical realizations of these building blocks
in order to more clearly distinguish between the functions themselves and the phys-
ical realizations of them. Looking at physical realizations also helps to bridge the
conceptual gap between our various representations of the machines and actual
machines. We will begin with the bare minimum of what might qualify as a com-
putational machine and add functionality as needed.

We make the following initial simplifications and assumptions:

1 Our machines will take input as a sequence of primitive signals from two trans-
ducers sensitive to two different “states of the world.” (Neurobiologically, these
would be two different sensory transducers, e.g., two different omatidia in the
eye of an insect.) We specify sequential input, because the focus of our interest
is the role of memory in computation. The role of memory comes into sharp
focus when inputs that arrive sequentially must together determine the out-
come of a computation. In that case, the information about previous inputs must
be remembered; it must be preserved by some physical alteration within the
machine. Thus, we always have a sequence of signals. There will be no harm
in thinking of these signals as the ‘1’ signal and the ‘0’ signal, although we will
refer to them as the a and b signals and we will indicate them by the use of
bold lettering. Neurobiologically, these two different inputs would plausibly be
spikes in two different sensory channels, for example, two different axons com-
ing from two different omatidia in an insect eye. In that case, we would call
one axon the a axon, the other the b axon. We display the input sequence as
a string of signals with the leftmost signal being the first received, and so on.
Therefore, abbab would indicate a sequence that started with an a signal that
was followed in time by two b signals, then an a signal, and finally a b signal.

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 126

Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience C. R. Gallistel
and Adam Philip King © 2010 C. R. Gallistel and Adam Philip King ISBN: 978-1-405-12287-0

Architectures 127

2 Although our machines only take two input signals (generating signals in the
two channels, a and b), they can create more signals as they make computa-
tions. These further signals will code for properties of the input sequence, such
as, for example, whether the sequence contained the sub-sequence aba, or whether
it contained as many a’s as b’s or an even number of a’s, and so on. Thus, a
signal in one output channel indicates the presence of one particular property
in the input string, while a signal in a different output channel indicates the
presence of a different property.

3 One can always imagine that the signals in different channels are fed to different
output transducers that convert them into distinct actions. Neurobiologically,
these output signals would be spikes in motor neurons leading to muscles or
secretory glands. These “effector” signals convert the computations into actions.
The actions produced depend on the properties of the input, which have been
recognized by the computations that our machines have performed. One can
think of our machines as categorizing possible input sequences and taking actions
based on which category a sequence belongs to.

4 The machines will be built out of functional components, that is, components defined
by their input-output characteristics (which will be simple) and by their interaction
with other components. Although the components are defined functionally, we
will remain mindful that they must ultimately be physically realized. To this end,
we give mechanical examples of each of the key functional components and of
key patterns of interconnection. Electronic examples come most readily to
mind, but they lack physical transparency: why they do what they do is a mys-
tery, except to those with training in solid state electronics. We give mechan-
ical examples, in the hope that they will be physically transparent. In Chapter
10, we suggest neurobiological realizations for some of these components. We
do that, however, only to help the student make the transition from mechan-
ical thinking to neurobiological thinking, not because we think the possibilities
we suggest are particularly likely to be the mechanisms by which nervous systems
in fact implement these functions. Those mechanisms are generally unknown.
We stress the importance to neuroscience of discovering what they actually are.

5 Because they are to be embodied, our machines must obey the basic law of
classical physics – no action at a distance or across time. If any signal/symbol
is to have an impact on a component, the symbol/signal must be locatable at
the physical location of the component at the time the component needs it. A
critical point is this simple physical constraint on the realization of composi-
tionality, that is, on the combining of symbols. Physical realizations of the sym-
bols to be combined and of the mechanism that effects their combination must
be brought to the same physical location within the machine at the same time.
This is an elementary point, but its importance cannot be overstated.

To the extent that we have oversimplified things, our argument is only made stronger.
Our purpose is also to make familiar different ways or levels of describing com-
ponents: physical description, state diagrams, program instructions. An understanding
of physically realized computation requires moving back and forth readily between
these different representations of the embodied computational process.

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 127

128 Architectures

To summarize, we seek to show that to get machines that can do computations
of reasonable complexity, a specific, minimal functional architecture is demanded,
an architecture that includes a read/write memory. In later chapters we explore how
the behavioral evidence supports the need for such capabilities. Additionally, we
will see in this chapter that the functional architecture of a Turing machine is sur-
prisingly simple and easily embodied.

One-Dimensional Look-Up Tables (If-Then Implementation)

The great neurobiologist, Sherrington, spelled out the bare minimum of functional
components needed to make a machine that can react in different ways to differ-
ent states of the world (Sherrington, 1947 [1906]): receptors, effectors, and con-
ductors. The receptors are the input transducers; they convert states of the world
(e.g., the arrival of a photon from a certain direction relative to the eye) into
signals. The effectors are the output transducers; they convert signals into actions.
The conductors carry the signals from the receptors to the effectors. Sherrington
thought that “From the point of view of its office as the integrator of the animal
mechanism, the whole function of the nervous system can be summed up in one
word, conduction” (Sherrington, 1947 [1906], p. 9). Contemporary connectionist
thinking is predicated on this same assumption: it’s all axonal and synaptic con-
duction. In computational terminology: it’s all look-up tables. While we do not think
that it really is all look-up tables, we do think that look-up tables are an essential
part of any computing machine.

As Sherrington wrote, the first functional components that we need in constructing
a look-up table responsive to the world are receptors or transducers with differ-
ential sensitivities to states of the world. In our marble machines, we realize this
with the marble-releasing mechanism shown in Figure 8.1. There are two states of
the world. One pushes the lever of the transducer counterclockwise (CCW); the
other pushes it clockwise (CW). A counterclockwise push releases a marble into
Channel a; a clockwise push releases a marble into Channel b. Our transducer mech-
anism enforces sequentiality in the resulting signals, because the lever can only be
pushed in one direction at any one time. Thus, the transducer generates a signal in
one channel or the other, but never in both simultaneously.

The mechanism shown in Figure 8.1 also shows the conduction mechanism. It is
the channels that carry the falling marbles. These channels are analogous to axons in
neurobiology. The marbles in them are analogous to the spikes carried by those axons.

For effectors, we use different bells, which are struck by the marbles as they fall
out of the final channel in the machine. The bells, being of different sizes, ring at
different frequencies when struck by a falling marble. The ringing of a bell at a
particular frequency is an output.

In addition to the channels that carry the signals between the input transducers
and the output effectors, we need a mechanism to mediate the convergence of sig-
nals, a mechanism analogous to synapses on a common postsynaptic neuron. In
our marble machines, this mechanism is a funnel. The funnel channels marbles falling
in two different channels into a common third channel (see Figure 8.2).

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 128

Architectures 129

There is only one class of machine that we can construct from only these com-
ponents: a one-bit look-up table. It is easy to make an exhaustive list of the pos-
sible machines: For a fixed labeling of the two possible inputs (a and b) and the
two possible outputs (c and d), there are only the four look-up tables shown in
Table 8.1. The machines that implement these different look-up tables are shown
in Figure 8.2. It is apparent in Figure 8.2 that there really are only two machines.
One (top row) maps the two different inputs to the two different outputs; the other
(bottom row), maps the two different inputs to one of the outputs. There would
appear to be two different versions of these two machines, but the different ver-
sions arise only from the labels that we apply to the inputs and outputs, not from
the structure of the machines themselves. The labels are arbitrarily pasted on, so to
speak, and can be interchanged without tampering with the structure of the machine.
Interchanging labels creates the two different versions of the two basic machines.

These most primitive of computational machines have only a single state. Their
state diagrams are shown in Figure 8.3.

The capabilities of these machines correspond to the if-then programming con-
struct, which allows the identification of a symbol (the function performed by the
transducer in our machine) and then, based on this identification, performs a specified
action. The ‘=’ symbol checks to see if two things are equal. If they are, then the
following code is executed. The ‘:=’ symbol assigns the value on the right to the
variable on the left. Each line of code here is a program corresponding to the machines
above:

CCW
= I1

a b

CW
= I2

Figure 8.1 The marble machine transducer converts lever displacements in different
directions into marbles released into different channels (a and b). A marble falling in a
channel is a signal in a marble machine, just as an action potential (spike) propagating in
an axon is a signal in a nervous system.

Table 8.1 The input–output relations for the four possible one-bit look-up tables

Inputs Outputs

I1 O1 O2 O1 O2

I2 O2 O1 O1 O2

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 129

130 Architectures

A. IF (I=I1) O:=O1; IF (I=I2) O:=O2

B. IF (I=I1) O:=O2; IF (I=I2) O:=O1

C. IF (I=I1) O:=O1; IF (I=I2) O:=O1

D. IF (I=I1) O:=O2; IF (I=I2) O:=O2

a

I1 I2

O1 O2

b a

I1 I2

O2

O1 O2

O1

b

a b a b

dc

Figure 8.2 The four one-bit table-look-up machines with fixed labeling of inputs and
outputs. There are really only two unique machines. Interchanging labels on either inputs
or outputs converts the machines on the left to the machines on the right.

S

I2–>O2

I1–>O1

S

I2–>O1

I1–>O2

S

I2–>O1

I1–>O1

S

I2–>O2

I1–>O2

Figure 8.3 State diagrams for the 1-bit look-up tables. These machines only have one
state, so all state transitions are self-transitions (the arrows loop back to the circle from
which they originate). As previously explained, the input is to the left of the arrow in the
text that annotates a state-transition arrow. The action taken (the output) is denoted by
the symbol on the right of the arrow.

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 130

Architectures 131

So the simplest computational machine of any interest is the one-dimensional look-
up table. Its strength is it versatility: any input can be wired to any output. This
machine corresponds in crude first approximation to what psychologists and beha-
vioral neuroscientists would call an unconditioned-reflex machine.

Adding State Memory: Finite-State Machines

Let us consider now problems in which what the machine does depends not only
on the present input, but also on preceding inputs. This will require memory. Suppose,
for example, that we want a machine that will only do a particular action if the
present input is the same as the immediately preceding input. A one-dimensional
look-up table cannot solve this problem because it has no memory. It is in the same
state after every input. All state-transition arrows loop back to the one state. It
doesn’t know what the previous input was. To respond differently to different
sequences, the machine must change states and react differently in different states.

To give a machine the ability to change states, we must put in an element that
can exist enduringly in two different states. The teeter-totter or rocker recommends
itself (see element in center of Figure 8.4 labeled “flip-flop”). If you push one side
of a teeter-totter down, it stays tilted that way. If you push the other side down,
it stays tilted the other way. A machine with the functional structure of a teeter-
totter, regardless of how it is physically constituted, is called a set-reset flip-flop.
One state is called the Set state, the other, the Reset state. An input on the Set side
puts it in the Set state if it is not already in it. If it is already in the Set state, it
stays there. (Pushing down on the down side of the teeter-totter does not change
its state.) Likewise on the Reset side.

The element that undergoes enduring changes of state must be able to alter the
input-output characteristics of the machine. In the machine shown in Figure 8.4
we achieve this by connecting the rocker to a valve. The setting of the valve is deter-
mined by which way the rocker is tilted. For each input channel, there are two
possible output channels. A marble falling in an input channel is directed into one
or the other output channel, depending on the setting of the valve. Note that if the
rocker is already tilted left, then a marble falling on the left does not change the
rocker’s state, while a marble falling on the right does. Similarly, when it is tilted
right, a marble falling on that side does not change its state, while a marble falling
on the other side does. Figure 8.5 shows the state diagram.

The machine in Figure 8.4, when followed by funneling that converges different
combinations of output channels, implements all 16 of the functions defined on
two sequential binary inputs, all possible mappings from 0 followed by 0, or 0 fol-
lowed by 1, and so on, to a binary output (0 or 1). Two of these, the AND and
the OR, together with a basic unary function, the NOT, constitute what computer
scientists call the basic logic gates. Figure 8.6 shows the implementation of these
basic gates. All of the other functions may be derived from these by composition.
Moreover, any function that maps from binary vectors of arbitrary length to a binary
output – any function that classifies binary vectors – can be implemented by
the composition of these functions. Thus, this machinery is all that one needs

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 131

132 Architectures

– provided one can do unrestricted composition of functions (!!) The machinery
that implements the processor can be simple.

We have seen how to build some memory into our machine by having it change
its state when it gets one signal or another. The change in state carries implicit
information about what the previous input was, and it determines how the
machine will react to each of the two possible input signals that follow. However,
a memory only for the most recent input is not going to get us far. Can this approach
be extended to make a machine with a memory for the last two inputs? It can,
indeed. Figure 8.7 shows how this works in the case of the marble machine.

Our flip-flop led each of two inputs into two different channels depending on
the state of the flip-flop. Thus, there are 4 channels in which an input marble may

a

c

Path of marble
in Channel a
when machine
is in State 1

Path of marble
in Channel a
when machine
is in State 2

Path of marble
in Channel b
when machine
is in State 1

Path of marble
in Channel b
when machine
is in State 2

d
Flip-flop

e f

State 1 State 2

b

Figure 8.4 Marble flip-flop with valve. This machine has two different states depending
on which way the rocker (teeter-totter) at the center of the diagram has been tipped by
previous input. The rocker is the mechanical implementation of the generic flip-flop.
The T-shaped “gate” projecting up from the center of the rocker is a valve. It directs
each of the two possible inputs into two possible outputs, depending on which state
the rocker is in. Notice that a marble falling on the side to which the rocker is already
tilted does not reverse its tilt, whereas a marble falling on the opposite side does.

S1 S2

a–>c
b–>e

a–>d
b–>f

Figure 8.5 State diagram for the machine in Figure 8.4.

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 132

State 1 State 2

0 0

0

State 1

0 1 1

Flip-flop

1

State 2

1

0

Flip-flop

1

NOT
0 1

0

Sequential AND gate

Sequential OR gate

1

0 1

Figure 8.6 Implementation of the basic sequential logic gates. In the bottom two gates,
the outputs with a common label are funneled together into a single common channel
(not shown).

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 133

Sequence: aab bab

a b

a
a
a

a
a
b

abb

a

a
a
a

a a

a
a
a

a
b
a

b

a
a
b

b b

a
a
b

cd e f gh i j

b
a
b

b

a
b
b

Figure 8.7 A two-back finite-state memory machine. Each vertical column gives the
sequence of paths and the sequence of resulting machine states for the sequence of inputs
given at the top of the column. At bottom left is the labeling of the eight output channels.
In each case the machine is assumed to have had all three flip-flops tipped left at the start
of the sequence. (This is the state of the machine when the last two inputs have been a.)
The first row in a column shows the path of the first ball in the sequence and the state
of the machine after that ball has passed through. The vertical sequence of letters at the
end (bottom) of the path is the sequence that was completed by the passage of that ball.
The channel in which that ball emerges is unique to that sequence. There are 8 possible
sequences and 8 possible channels (c, d, e, f, g, h, i, and j – see bottom left) in which
a ball may emerge, one channel for each sequence – see code table. The second row
in a column shows that path of the second marble in the sequence and the state of the
machine after it has passed, and likewise for the third row. The letter immediately
to the left of any one diagram is the ball whose passage is indicated by the dashed line.
Although this machine has 8 possible states (8 different configurations of the three flip-
flops), we make use of only 4 of them, because there are only 4 possible histories when
we look back only 2 steps: aa, ab, ba, and bb. Notice that sequences that have the same
last two inputs leave the machine in the same state. See, for example, the state of the
machine at the bottom of the first two columns. These are two different sequences,
but the terminal (most recent) elements are ab in both cases, so they leave the
machine in the same state.

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 134

Architectures 135

emerge. The trick in looking two back is to cross over one member of each pair
of output channels and combine it with the uncrossed member of the other pair to
make two pairs of input channels to two further flip-flops (see Figure 8.7). The
two further flip-flops will each have 4 output channels, so we will have 8 output
channels from this second stage. That is the number we need, because there are
two possible input signals (a & b) and, when we look two back, there are four
possible signal histories: aa, ab, ba, and bb. Considering the two possible current
inputs and the four possible histories, there are eight possibilities. We need a dif-
ferent output channel for each different possibility, and that is what we have – see
Table 8.2. Figure 8.8 is the state diagram for this machine.

Table 8.2 Code table

Input signal sequence Output signal

aaa c
baa d
aab e
bab f
aba g
abb h
bba i
bbb j

b–>i
a–>h

b–>j

b–>f
a–>g

a–>d

b–>e
a–>c b–>f

S4

S2

S1

S1 S2 S3 S4

S3

Figure 8.8 State diagram for a finite-state machine that can look 2 back. The four
states of the machine are determined by the four configurations of the flip-flops that
this particular 3-flip-flop machine can have. (Three-flip-flop machines with a different
architecture may have as many as eight different states, because there are 23 = 8
different configurations that 3 flip-flops can assume – see counter in figure below.) The
configurations that define the states of the machine are shown below the state diagram.

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 135

136 Architectures

It is obvious that we can repeat this trick if we want to look three back. We
need only add a third stage, composed of 4 flip-flops (with a total of 16 output
channels), and suitably cross-connect the outputs from the second stage to this third
stage. This machine will have 7 flip flops, 16 + 8 + 4 + 2 = 30 signal channels and
28 AND gates. Moreover, it is clear that there is no reason – in principle, at least
– why we cannot go on in this way indefinitely, making a machine capable of look-
ing arbitrarily far back in determining what to do with the current input.

In practice, however, this approach should by now be setting off alarm bells in
the alert reader’s mind. We have been here before. We are face-to-face with an expon-
entially growing demand on physical resources. A look-64-back machine will need
264 + 263 + 262 . . . 22 total signal channels, the same number of AND gates, and
263 + 262 . . . 22 flip-flops. These are stupefying numbers. So, this approach to
looking back won’t work. Yet, contemporary desktop computers can look back
essentially indefinitely; looking back 64 bits is child’s play. Clearly, there exist
better architectures than the one we are considering, which is the architecture of
a finite-state machine.

The essential failing of a finite state machine, as we have repeatedly stressed, is
that it allocates hardware in advance to every possibility: there must be an output
channel for every possible sequence – not for every sequence actually encountered,
but for every sequence that might ever be encountered. In consequence, finite-state
machines are rapidly blown away by the combinatorial explosions (the exponen-
tial increases in possible cases) that lurk behind every tree in the computing forest.
They cannot cope with the infinitude of the possible. What is needed is an archi-
tecture that combats combinatoric explosions with combinatorics. The key to that
architecture is a read/write memory. It must be possible to store sequences that actu-
ally occur in a memory capable of storing a great many extremely lengthy (but emphat-
ically finite) sequences, drawn from the essentially infinite number of possible such
sequences, and to compare those stored sequences to whatever sequences may prove
to be relevant. This architecture uses memory and combinatorics to cope with the
finitude of the actual.

At one time, neo-behaviorist psychologists thought that all of behavior could be
explained by finite-state machines, provided we arranged it so that two marbles
falling together could open or close gates and thereby change the path that subse-
quent marbles follow through the machine. The opening or closing of gates is a
state memory. The idea was that the nervous system is basically an elaborate machine
of the finite-state class. It comes endowed with a wide range of different sensory
receptors, each sensitive to a different state of the world. There are, for example,
millions of photoreceptors in the vertebrate retina. Each is sensitive to light com-
ing from a slightly different direction, because the lens and cornea of the eye focus
light arriving from different points in the world onto different parts of the retina.
Similarly, sensory receptors along the basilar membrane of the ear are sensitive
to different sound frequencies because different portions of the membrane have
different resonant frequencies. Signals that start at different locations (in different
sensory neurons) follow different paths through the nervous system. It was thought
that certain combinations of events changed the state of the nervous system by
changing its wiring diagram. This change in the wiring diagram explained why the

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 136

Architectures 137

system responded differently to inputs depending on the past history of its inputs.
In other words, the idea was that the nervous system had the architecture of a
finite-state machine. This is still the idea that dominates neurobiological thought.
The idea is sometimes summarized by the pithy expression: Those that fire together,
wire together.

Adding Register Memory

To combat combinatorics with combinatorics we need a better approach to mem-
ory. We need an approach in which combinations of state changes in memory ele-
ments (like flip-flops) can efficiently encode only what has actually happened. And,
this encoding must be readable by some mechanism within the machine itself. We
stress this because some of the codings that have been suggested in the neural net-
work literature are only readable by a god outside the machine, a god who can
observe the state of all the machine’s components. A readable encoding is one that
can be causally effective within the machine. The simplest device with a readable
memory is a binary counter. It encodes and remembers in a readable form the num-
ber of inputs that have occurred. Counters are of interest because they also imple-
ment the addition operation, which is one of the key operations in the system of
arithmetic on which quantitative computations of all kinds are based.

The readable binary counter and adder

A counter uses the toggle form of the flip-flop, in which there is only one input
and the flip-flop changes state after each input, flipping in response to the first input,
flopping back in response to the second, flipping again in response to the third (Figure
8.9), and so on. The power button on electronic devices such as computers and
the remote controller for a TV are toggles: pushing the button once turns the device
on; pushing it again turns it back off.

Figure 8.10 shows how to configure toggle flip-flops to make a binary counter.
This configuration is also called a frequency divider, because the frequency with
which each toggle in the sequence flips and flops as marble after marble is fed into
the machine is one half the frequency with which the toggle preceding it in the

Flip Flop

Figure 8.9 Mechanical toggle flip-flop.

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 137

1

2

2
4

1

4
8

4
8

16

16
8

16

1

2

exit

exit
exit

Figure 8.10 State of the binary counter array of toggle flip-flops as the first, second and
third marbles enter it. For the first marble, all the toggles are in the flopped (0) position.
The first marble flips the “1” toggle and then exits the array. The second marble flops
the “1” toggle back to its 0 position, rolls off it onto the “2” toggle, which it flips, and
then it exits. Thus, as the third marble enters, it finds the “1” in the flopped position and
the “2” in the flipped position. It flips “1” and exits, leaving both “2” and “1” in the
flipped position. The number of marbles that have passed through the array is given by
the sum of the “number names” of the toggles that are in the flipped position. After three
marbles, the “2” and the “1” are the only toggles in the flipped position, and 2 + 1 = 3.
The fourth marble in will flop the “1” back to the 0 position, roll off it and onto the
“2” toggle, which it will also flop back to the 0, rolling off it to flip the “4” toggle
before finally exiting the array.

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 138

Architectures 139

sequence flips and flops. The first toggle (toggle “1” in Figure 8.10) changes state
with every input. However, it passes on the marble to the input to the next toggle
only when it returns from the flipped state to the flopped state. Thus, it passes on
only every second marble that it sees. The same is true for each successive toggle:
The “2” toggle passes on to the “4” toggle only every second marble that it sees,
so the “4” toggle changes state only every fourth marble. The “4” toggle passes
on to the “8” toggle only every second marble it sees, so the “8” toggle changes
state only every eighth marble. And so on.

Although, the array of toggle flip-flops in Figure 8.10 encodes the number of
marbles that have passed through the array, as well as implementing both addition
and division by successive powers of two, there is no provision for reading the facts
about previous input that it encodes. We, who stand outside the machine, can see
how many have passed through by noting the positions of the toggles. But how
can other machinery within this machine gain access to this information?1 We must
add machinery that transcribes the configuration of the toggles into a pattern of
falling marbles (a signal vector) specifying the number of marbles that have been
through the array. Matthias Wandel has devised an ingeniously simple solution to
this problem and built the corresponding marble machine. Figure 8.11 is a sketch
of his machine.

Figure 8.11 and its caption explain how the machine functions as a readable counter.
This is our first example of a machine with a read/write memory. It fights combin-
atorics with combinatorics. A machine built to this design can remember in read-
able form (that is, in a form accessible to computation) any number between 0 and
264 − 1, with only 64 toggles. Moreover, it remembers any number within that incom-
prehensibly vast range of numbers using at most 64 marbles, and usually (on aver-
age) many fewer.

Wandel’s machine also implements some of the functionality of the processing
unit in a digital computer. It demonstrates the physical realization of a compact
procedure, the procedure for adding binary encoded numbers: With the release slide
in the hold position, one can place marbles corresponding to the binary code for
a number into the input register at the top of the machine. When the release slide
is then pushed forward, these marbles all drop down the respective input channels,
flip the corresponding toggle, and lodge in its input buffer. For example, if one
places marbles in the “16,” “4,” and “1” holes, and pushes the release slide, they
will flip the “16,” “4,” and “1” toggles and lodge in the corresponding memory
buffers, storing the number 16 + 4 + 1 = 21. Now, one can place marbles in, say,
the “32,” “4,” and “2” holes of the input register, entering the number 32 + 4 +
2 = 38. When the release slide is pushed, the marble in the “2” hole falls on the
“2” toggle, flipping it and lodging in the “2” memory buffer; the marble in the
“4” hole falls on the “4” toggle, which is already in the flipped position, holding
a marble in the “4” memory buffer. The marble falling on it flops it back to the
0 position, releasing the marble in its buffer, which falls out of the machine. The
marble that fell on the “4” toggle rolls off it to its left onto the “8” toggle, which

1 It is surprising how often in the neural net literature this critical point is ignored.

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 139

Release

Read

Exit

32 16 8 4 2 1

1

2

4

8

16

32

32 16 8 4 2 1

Figure 8.11 Sketch of Matthias Wandel’s binary counting and adding marble machine.
Input marbles are placed in the holes at the top. They are held there until the release slide
is pushed forward, aligning its holes with the holes holding the marbles and with the
input holes to the toggle flip-flops. If the release slide is left in the release position, then
the machine simply counts the number of marbles dropped into the “1” hole. When a
marble falls down the “1” input, it flips the “1” toggle and then rolls into a memory
buffer (the notch to the right of the toggle), where it is retained by the flipped toggle.
When a second marble is dropped through the “1” input, it flops the “1” toggle back
to its 0 position, releasing the marble in the memory buffer, which then falls out of the
machine by way of the exit channel at the bottom. The new marble rolls off the “1”
toggle onto the “2” toggle, which it flips. This new marble lodges in the memory buffer
for the “2” toggle. When a third marble comes, it flips the “1” toggle and lodges in its
memory buffer. At this point there are two marbles in memory buffers, one in the “2”
buffer and one in the “1” buffer. The fourth marble flops the “1” toggle back to 0,
emptying its buffer, rolls off it to flop the “2” toggle back to 0, emptying its buffer, and
rolls off it to flip the “4” toggle, in whose memory buffer it then lodges. The next two
marbles will flip and flop the “1” toggle. The second of them will flip the “2” toggle and
lodge in its buffer. Yet another marble (the seventh) will flip the “1” again and lodge in
its buffer. At this point, there will be marbles lodged in the “4,” “2,” and “1” buffers,
reflecting the fact that there have been 4 + 2 + 1 = 7 marbles. The beauty of the Wandel
machine is that when the “read” slide is pushed forward, it pushes up a set of vertical
rods (not shown), which tip all of the toggles into the 0 position, emptying the buffers
simultaneously and creating in so doing a pattern of three falling marbles that encodes
in binary the number of marbles (seven) that has passed through the array. Watch
Wandel demonstrate this machine at http://woodgears.ca/marbleadd. (Reproduced
by permission of the author.)

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 140

Architectures 141

it flips. The release of the marble in the “4” buffer together with the flipping of
the “8” toggle and the lodging in its memory buffer implements the “carry” opera-
tion in binary addition. Finally, the marble in the “32” hole falls on the “32” toggle,
flipping it and lodging in its memory buffer. There are now marbles in the “32,”
“16,” “8,” “2,” and “1” buffers. Thus, the memory buffer of this CPU now contains
the number 32 + 16 + 8 + 2 + 1 = 59, the sum of 21 and 38, the two numbers that
were to be added. When the read slide is pushed, these marbles all fall out of the
memory buffers together, giving the binary signal that represents the sum.

A Wandel machine with 64 toggles can add any number less than or equal to
263 to any other number less than or equal to 263. Thus, it can compute 2126 dif-
ferent sums (ignoring commutativity). If we tried to do this with a look-up table,
which is how neural network models commonly implement the arithmetic addition
of two numerical inputs (Dehaene, 2001, see also Chapter 14), the table would
have 2126 cells, which is to say, 2126 output neurons, and 264 input neurons, (one
for each of the 263 rows and one for each of the 263 columns). There are not that
many atoms in the human brain, let alone neurons. It is physically impossible to
implement the computation with a look-up table over a truly large range; whereas
when it is implemented as a compact procedure, the demands on physical resources
are trivial. However, the need for a read/write memory in the latter implementa-
tion appears to be inescapable. And, because the mechanism operates on a com-
pact encoding of the integers, a modest degree of structural complexity in the
processing machinery also appears inescapable.

The shift register

Now, we return to the problem of remembering the sequence of binary inputs going
back a non-trivial number of inputs. Figure 8.12 shows how to configure flip-flops
to make what is called a shift register.

As in the counter and adder, the ‘0’ position of each flip-flop is tilted left, while
the ‘1’ position is tilted right. If a marble enters the ‘0’ (left) side with the flip-flop
in the ‘0’ position and a marble in its ‘0’ register memory (as in Figure 8.12), the
entering marble rolls over the marble in the memory register and down to the next
flip-flop, which it also enters from the ‘0’ side. This continues until it finds a flip-
flop that is either in the ‘1’ position (flipped, in which case it will always have a
marble in its ‘1’ register) or in the ‘0’ position (flopped) without a marble in its ‘0’
register. In the first case, the falling marble flops the rocker back into the ‘0’ posi-
tion, releasing the marble that was in its ‘1’ register. The released marble falls until
it encounters a rocker in its ‘0’ (flopped position). It flips that rocker into the ‘1’
position and lodges in its ‘1’ register. In the second case (rocker in ‘0’ position with
no marble in the register), the incoming marble lodges in the ‘0’ register. Thus,
with marbles in the ‘0’ register of the top rocker and the ‘1’ register of the second
rocker, as shown in Figure 8.12, the occupied registers after a third marble has
entered on the ‘0’ side, will end up being <001>. The previous pattern <01> has
been shifted down one rocker and the latest entry has in effect (though not in actu-
ality) been placed at the top. (In assessing the final patterns, ignore where the incom-
ing marble actually lodged and focus only on the resulting pattern.)

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 141

142 Architectures

Figure 8.12 Marble shift register. The memory register on the left side of each rocker is
the ‘0’ register; the one on the right, the ‘1’ register. In the configuration shown, there is
a marble in the ‘0’ register of the top rocker and one in the ‘1’ register of the second
rocker. There is no marble in the memory registers of the third rocker down, because
there have been only two inputs. The farther back in the sequence a marble came in, the
lower down in the array of rockers it lodges. Thus, the marble in the ‘1’ register of the
second rocker came first, followed by the marble in the ‘0’ register of the top rocker. The
values of previous inputs are read by a mechanism that opens panels behind the memory
buffers, dropping whatever marbles are there into the channels indicated by the dashed
lines, which are behind the machinery through which incoming marbles drop.

If the third marble enters instead on the ‘1’ side, it flips the top rocker, releasing
the marble from its ‘0’ register and lodging in its ‘1’ register. The released marble
flops the second register into its ‘0’ position, lodging in the corresponding memory
register, and releasing the marble from the ‘1’ register. The marble released from
the ‘1’ register of the second rocker flops the third rocker into its ‘1’ position and
lodges in the corresponding memory register. Thus, the final pattern is <101>. Again,
this is the previous pattern shifted down one level, with the latest entry at the top.

In summary, in a shift register, the pattern in memory after each new input is
the pattern before that input shifted down one level, with the new input at the top.

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 142

Architectures 143

The memory location (‘0’ or ‘1’) of the marble lodged in the topmost register indic-
ates the side from which the most recent marble entered the machine. The occu-
pied memory location in the next flip-flop down indicates the side from which the
previous marble entered, and so on down. Thus, the sequence is preserved (remem-
bered) by the memory locations in which marbles are lodged. Actuating a release
mechanism opens doors behind the memory locations, releasing the marbles into
the dashed channels. This is the read operation. It transcribes the symbol (the pat-
tern of lodged marbles) into a signal.

We can arrange the read mechanism in three different ways. We can arrange it
so that it slides in from the right, only as far as it has to in order to release the
first marble. If we arrange the read operation this way, we have a last-in-first-out
push down stack memory, which is the most common kind. Reading and remov-
ing the last input is called popping the stack. Alternatively, we can arrange it so
that the release mechanism slides in from the left only as far as is necessary to release
the lowest marble in the stack. This is a first-in-first-out memory. Finally, we can
arrange it so that all the marbles are released at once, in which case what was an
input sequence is converted to the same pattern but in parallel, because all the mar-
bles fall more or less at once.

A shift register that enables the computer to look back 64 inputs requires only
64 flip-flops and 2 × 64 = 128 output channels and 2 × 64 = 128 OR gates. The
material resources required grow only in proportion to the distance to be looked
back, not exponentially. The contrast between an exponentially growing demand
on material resources and a linearly (or, in the case of the counter, a logarith-
mically) growing demand is profoundly important. With exponentially growing
demand, it rapidly becomes impossible to use state memory to look back through
the input, whereas with linearly (or better yet, logarithmically) growing demand,
we can record the input exactly going back a very long way indeed before putting
any serious strain on material resources. A computer with a gigabyte of free RAM
can look back 8,000,000,000 steps.

The essential point is that when the demand on physical resources increases expon-
entially, it rapidly outstrips any conceivable supply. We stress this because neuro-
biologists and neural network modelers are sometimes overawed by the large number
of neurons in the mammalian brain and the even larger number of synaptic con-
nections between them. They think that those impressive numbers make the brain
a match for any problem. In fact, however, they do not – if the brain has the wrong
architecture. If it uses a finite-state architecture to record input sequences, then it
will not be able to record sequences of any appreciable length.

A shift register read/write memory architecture enables us to look after the fact
for an arbitrary input sequence over very long stretches of input, without having
to pre-specify a distinct chunk of hardware uniquely dedicated to each possible
sequence. Our stack memory uses combinatorics to deal with the combinatorial explo-
sion. A single stack n levels deep can record 2n different sequences. Thus, we use
exponential combinatorics in our memory mechanism to deal with the combinat-
orial explosion that threatens as soon as we contemplate looking back through the
input sequence. We create a memory that has only a modest number of components,

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 143

144 Architectures

but can nonetheless correctly record any one from among a set of possible sequ-
ences more numerous than the set of all the elementary particles in the universe.
We defeat the infinitude of the possible sequences by creating a memory that records
only the actual sequence experienced.

Summary

Any computing machine (indeed, any machine), whatever its physical composition,
has a functional architecture. It is put together out of components that implement
distinct and simple functions. These functional building blocks are interconnected
in some systematic way. To specify the functional building blocks of the machine
and the arrangement of the interconnections between them is to specify the func-
tional architecture of the system. Computer science has always been an important
part of cognitive science, but, in our opinion, some basic insights from computer
science about the nature of computation and its physical implementation have been
largely ignored in contemporary efforts to imagine how the brain might carry out
the computations that the behavioral data imply it does carry out. Computer sci-
entists understand that there is a logic to the physical realization of computation.
This logic powerfully constrains the functional architecture of successful comput-
ing machines, just as the laws of optics powerfully constrain the design of successful
imaging devices. It is, thus, no accident that the functional architecture of com-
puting machines has – in its broad outlines – changed hardly at all during the 60
years over which this development has been a central feature of modern techno-
logical progress. It would be difficult to exaggerate the importance of the role that
the development of computing technology has played in the overall development
of technology since World War II. At that time, almost none of the machines in
routine domestic or military use depended on computing devices, whereas now it
would be difficult to find a machine of any complexity that did not rely heavily on
computing technology. At that time, communications technology did not depend
on computing technology, whereas now computing is at the heart of it. Staggering
sums of money and untold amounts of human ingenuity have gone into the devel-
opment of this technology. It has been the source of vast personal and corporate
fortunes. We stress these truisms to emphasize the sustained intensity of human
thought and experimentation that has been focused on the question of how to make
effective computing machines. The fact that their basic functional architecture has
not changed suggests that this architecture is strongly constrained by the nature of
computation itself.

In this and the preceding chapter we have attempted to elucidate that constraint
in order to explain why computing machines have the functional architecture that
they have. In the preceding chapter, we recounted Turing’s insight into the basic
simplicity of what was required in a machine that was in principle capable of com-
puting anything that could be computed. Turing’s analysis of the components
that were necessary to implement any doable computation introduced the distinc-
tion between the two most basic functional components of a computing machine:
the processor and the memory. The processor is the finite-state machine that reads

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 144

Architectures 145

symbols and creates new symbols and symbol strings. The read/write memory
device carries the symbols forward in time. It makes possible the almost unlimited
composition of functions. In this chapter, we spelled out some key functional
elements out of which both the finite-state machine and the memory may be
constructed.

Because we are concerned with the architecture of autonomous process-control
computing machines, our finite machine has some functional components that did
not enter into Turing’s analysis. Autonomous process-control computing machines
have transducers, which convert external events into internal machine signals. The
signals carry symbolic information from place to place within the machine. In our
marble machines, the transducer is the device that releases a marble when pushed
on. The marble falling in a channel is the internal machine signal. The marbles are
all the same; one signal is distinguished from another by the channel in which the
marble falls. And process-control computers have effectors, which convert internal
machine signals into external events within the system on which the process-con-
trol machine operates (that is, within the process that it controls). In our marble
machine, placing a bell at the bottom of a channel converts the falling of the mar-
ble into the ding of the bell.

The simplest functional architecture of these three components – transducers, sig-
nal carriers, and effectors – is the look-up table. If we restrict our functional build-
ing blocks only to those three, then we can only build one-dimensional look-up
tables. These are machines of such limited capabilities that one may question whether
they should be considered computing machines. They have the functional structure
of a typewriter that lacks a shift key. That is, they map distinct inputs (key presses)
to distinct outputs (letters typed). Thus, one would consider these to be comput-
ing machines only if one considered a typewriter to be a computing machine. We
are not inclined to do this ourselves, but it is of no great consequence where we
draw the line between machines that have some of the functional capabilities of a
computing machine and machines that are Turing machines. It is only important
to be clear about the limits of lesser machines and what those limits arise from,
what is missing in their functional architecture.

To make a more powerful machine, we need to add elements that perform the
same function in the machine that the logical operators perform in logical proposi-
tions. The three such functions most commonly considered are the AND func-
tion, the OR function and the NOT function. We know from symbolic logic that
there are other possibilities. For example, it can be shown that the three functions
just mentioned can all be realized from (or analytically reduced to) the NAND (not
AND) function. Thus, if one has an element that performs the NAND function,
then one can construct out of it components that perform the other functions. The
essential point is that a very small number of signal combining and inverting func-
tions are essential. The AND element transmits a signal if and only if two other
signals are both received. The OR element transmits a signal if and only if either
one or the other of two input signals is received. The NOT element blocks or inverts
the signal it receives. It transmits a ‘1’ when it gets a ‘0’ and a ‘0’ when it gets a
1. (For the curious reader: the NAND element transmits a signal if and only if it
does not get signals on both its inputs.)

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 145

146 Architectures

The implementation of these functions in our marble machine was somewhat com-
plicated by our stipulating that input signals had to occur sequentially. (We insisted
on this constraint in order to put ourselves in a position to highlight the funda-
mental role that a read/write memory plays in computation.) Thus, our implementation
of the AND and OR functions required an element that remembered what the imme-
diately preceding signal was. Both implementations required a funnel or point of
convergence, where two distinct signals (marbles falling in different channels) came
together to make a single signal (a marble falling in the output channel from the
gate).

The addition of these simple logical functions greatly enhances the computational
capacity of our machine. Now, for example, we can construct two-dimensional and,
indeed, n-dimensional look-up tables. To return for a moment to the typewriter
analogy, we now have a typewriter in which the letter that gets typed may be made
to depend on which combination of keys is pressed (as is the case for combina-
tions of the Command, Control, Option, and Shift keys on a computer). Thus, we
can implement many–one functions. These include the elementary operations of arith-
metic: addition, subtraction, multiplication, division, and ordination, all of which
map two inputs to one output. Thus, in principle at least, we now have a func-
tional architecture that can compute in something like the ordinary sense of the
term. It is not, however, a practical device for implementing even simple arithmetic
because it does not implement compact procedures. While in principle we can imple-
ment the arithmetic operations in such a machine, in practice we will run afoul of
the problem of pre-specification and the infinitude of the possible. If we try to use
look-up tables, we will have to put into our machine distinct physical elements for
each distinct combination of inputs that might ever have to be added (or subtracted,
or multiplied, etc.). This will rapidly exhaust any conceivable supply of physically
realized machine elements. Thus, this architecture is of limited practical use.

We take another step toward realizing full-blown computational capability by
adding elements that change the state of the machine. The state of the machine
determines how it will process the next input. When we depress the shift key on a
typewriter, we change the state of the array of strikers so that the lower half of
each striker now strikes the paper, rather than the upper half. This changes the
input-output characteristics of the machine; the letter produced by pressing any given
key. This was the essence of Turing’s conception of the state of the “processor,”
the finite-state machine that is one of the two most basic components of a Turing
machine. In Turing’s machine, the state of the machine determines how it reacts
to the symbol currently under the reading head. How it reacts is completely spe-
cified by the answers to two simple questions: (1) Will it convert the symbol (chang-
ing a ‘1’ to a ‘0’ or a ‘0’ to a ‘1’) or leave it as it is? (2) Which of its possible states
will it transition to? At this stage of our elaboration of our marble machines, we had
not yet introduced a memory (that is, a device for arresting the fall of a marble
and retaining it in the machine for later use). However, because our machines
are autonomous process-control machines, they also have an input signal. Thus,
we introduced an element – the rocker or teeter-totter element – that changes the
way the machine processes a marble falling in a given channel. An element capable
of changing its state must have more than one state. Our rockers have two stable

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 146

Architectures 147

states, the indispensable minimum. The generic name for such a functional element
is “switch” or “flip-flop.”

Introducing an element with more than one stable state brings memory into the
machine, because now we can set up the machine so that past inputs determine the
current state of the processor. We consider how this new capability enables us to
respond to different sequences of inputs in different ways. The problem we con-
sider is how to make the channel in which a marble falls – that is, the output from
our machine – depend on the sequence of past inputs. At first, the solution to this
looks straightforward. We arrange the flip-flops in a cascade, such that different
sequences of marbles falling through the machine leave the flip-flops in different
configurations, a different configuration for each sequence. Each different configura-
tion channels the next input marble into a different output channel. In principle,
this allows us to look as far back in the sequence as we like. In practice, however,
it has the same fatal flaw as the look-up table approach to the implementation of
arithmetic: it leads rapidly to the exhaustion of any conceivable store of physically
realized computational elements. The proof that this is so is part of the standard
computer science course in finite-state automata. Thus, an architecture in which
the only way that the past can affect the present process is by leaving the proces-
sor in a state unique to that past is not a viable architecture for a great many com-
putational purposes. It succumbs to the infinitude of the possible: you do not have
to look back very far before the exponentially growing number of possible sequences
becomes too large to cope with.

Finally, we introduce a read/write memory element, an element that can arrest
the fall of a marble and retain it for later release. The arresting and retention of a
falling marble is the write operation; its subsequent release is the read operation.
Now, we can fight the combinatoric explosions that bring down on us the infinitude
of the possible with combinatoric codings that enable us to work only with the
finite actual. When we tried to create sequence-dependent outputs that looked back
as little as 64 inputs, we were already overwhelmed by the exponential increase in
the possibilities, hence in the required number of rockers and output channels. Now,
when the number of physical elements we need in order to remember any particular
past sequence increases only in proportion to the length of that sequence, we can
look back millions of steps in the input sequence. Because we can arrest a marble
in its fall and release it later, together with other similarly arrested marbles, we no
longer need a different output channel for every possible sequence. We can use a
combinatoric code in which the number of sequences it can code grows exponen-
tially with the number of coding elements (output channels).

Now we can also implement compact procedures, as demonstrated by the mar-
ble machine that adds binary numbers. A machine with only 64 rockers, each with
a single (one-bit) memory register, can add any two binary numbers in the range
from 0 to 263.

The point we wish to stress is that this logic is inescapable – the logic that makes
a machine with read/write memory elements vastly more capable than a machine
that can remember the past only by changing the state of the processor. This fact
is a ground truth that must be faced by anyone considering how computation might
be effected in any physically realized device, no matter what materials it is made

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 147

148 Architectures

of, no matter how many elements it has, and no matter how richly interconnected
those elements are. In considering viable functional architectures for computing
machines this ground truth is as important as are the laws of optics for anyone
considering viable functional architectures for imaging devices like cameras and eyes.

9781405122870_4_008.qxd 23/1/09 11:15 AM Page 148

9

Data Structures

We come now to consider the architectural aspect of a full-powered (Turing com-
plete) computing device that gives the symbol processing-machinery unrestricted access
to the information-carrying symbols in its memory. The key to such unrestricted
access is an addressable read/write memory – memory that can be located, read
from, and written to. The architecture must be capable of symbolizing its own mem-
ory locations (addresses) using encoding symbols. That is, the machine must have
a representation of its memory locations, making it possible to encode the relations
between symbols (forming more complex symbols) by virtue of the symbols’ rela-
tion to one another within the memory. This same aspect of the architecture allows
for the creation of new symbols – symbols that aren’t present in the system at its
inception.

Memory structures in which the relations between symbols are encoded via their
topological relationships within memory are what computer scientists call data struc-
tures. As we discussed in Chapter 5, a data structure is a complex symbol. Its con-
stituents are themselves symbols. The referent of the data structure is determined
by the referents of its constituents and the syntactic (physical) relation between them.

A minimal example of a data structure is an integer encoded in binary. Each bit
serves to indicate a power of two, and which power of two is indicated by the rel-
ative position of the bits. What makes this a data structure, as opposed to being
simply an encoding symbol, is that it is composed of symbols (the bits) that are
placed in topological relation to each other (a linear order). Which bits are where
within the string determines the referent. Contrast this to an encoding where an
integer is encoded using an analog property such as the number of molecules in a
“bag.” Here, the symbol is still an encoding symbol as the referent can be deter-
mined by a compact procedure (simply “weigh” the bag). However, as the symbol
has no constituent structure, combinatorial syntax becomes impossible. Trying to
form more complex symbols using this technique becomes problematic (Fodor &
Pylyshyn, 1988).

Data structures composed of linearly ordered bits are so common that in mod-
ern computers, they are typically handled within the architecture of the machine
as minimal packets (units) of memory. Currently, the packet size (often called the

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 149

Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience C. R. Gallistel
and Adam Philip King © 2010 C. R. Gallistel and Adam Philip King ISBN: 978-1-405-12287-0

150 Data Structures

“word” size) is typically 32 or 64 bits. When these multi-bit symbols are transcribed
into signals to be transported to computational machinery, they travel together on
what is called a bus. The bus capacity is also measured in bits and indicates how
many bits are transported in parallel. Even when the computational machinery that
accesses a word only needs the information carried by a single bit in this sequence,
the whole word is transported. Although this system is potentially wasteful with
respect to memory use, it pays for itself in temporal efficiency. With a single read
operation, the system gains access to one of 264 possible messages. When the infor-
mation carried by this signal is brought to the computational machinery, its sub-
structure (the bits that comprise it) can be individually manipulated, allowing for
operations such as addition, parity check, etc., on appropriately encoded numbers.

In a typical symbol for the binary encoding of an integer, the constituent sym-
bols are atomic data (bits) that are physically adjacent in a strict ordering. This
physical adjacency must be supported by the architecture of the machine that pro-
cesses the symbols. It must be sensitive to what data is adjacent to what other data,
and capable of functioning differently based on that. If there is to be any topology
of the memory at all (providing for combinatorial syntax), then there is no substi-
tute for having such a physical system for stringing together the data.1 This places
strong constraints on the architecture of memory in the brain. Neural network
models of brain architecture do not provide such a topologically sensitive archi-
tecture; therefore, they do not provide a means of forming data structures.

As mentioned, the binary encoding of an integer by bits is a minimal data struc-
ture, typically not even referred to as such, as these structures are often grouped
together as single units by the machine’s architecture. This approach – making com-
plex symbols simply by lengthening the string of bits – has its limits, namely the
size in bits of this unit. If the word size is 64 bits, then the number of messages
that can be encoded is limited to 264 – probably sufficient to store integers of interest,
but certainly not enough to form more complex symbols, such as location vectors.
The encoding of a point on the plane into the symbol <4.7, 6.3> is such a data
structure. The referents of the constituent symbols (‘4.7’ and ‘6.3’) and their rela-
tive positions come into play in decoding this symbol.

Complex data structures encode the sorts of things that are asserted in what philo-
sophers and logicians call propositions. Examples include: “All men are mortal,”
and “Socrates is a man,” from which it famously follows that “Socrates is mor-
tal.” The derivation of new propositions from old ones is, roughly speaking at least,
what we understand by thought. A device capable of this activity must be able to
represent, access, decode, and manipulate data structures in memory.

1 Technically, the data need not be physically adjacent. The architecture of the machine could realize
such a next to operation using some arbitrary (but fixed in the architecture) topological relationship.
No computer architecture uses such a technique and there is no reason to think that the brain would
employ such a method. Separating the data would make the machine unnecessarily complex and would
also be less efficient, as the data constituting a symbol would have to be brought together in space any-
way to decode the symbol.

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 150

Data Structures 151

Finding Information in Memory

If symbols (and data structures) in memory are to be used productively, the com-
puting machine must be able to locate them. Computer scientists refer to this pro-
cess as addressing. An address specifies the location of the symbol in memory. In
considering how the information in memory can be addressed, we need to consider
the degree to which the information carried by a symbol is or is not contingent,
that is, the degree to which it may change with time and circumstance.

Immediate addressing (literals)

Not all values that enter into some computations are contingent. The ratio between
the circumference of a circle and its diameter does not change with time and cir-
cumstance.2 Therefore, there is no reason to look up the current value of this ratio
when using it in a computation. In a computation into which this value enters, the
value can be built directly into the computational procedure (the mechanism). In
that case, the value is not accessible outside of the procedure. Computer program-
mers call a built-in value a literal and the addressing “mode” is called immediate
addressing, because the value is embedded into the program/procedure itself. In the
Turing machine that we devised to compute the successor function, an encoding
of the number that was added (1) was not on the tape (not in data memory). The use
of the number 1 in this procedure was only discernible through the functioning of
the machine. It was handled procedurally by the state memory. The machine’s “know-
ledge” of this number is of the opaque implicit kind; the machine cannot gain com-
putational access to this information outside of the state into which it is built.
Immediate addressing therefore is really a degenerate case of addressing, as the value
involved appears in situ. The machinery doesn’t have to find the value. It is built
into the structure that realizes the process. One could have designed the Turing
machine such that the amount to be added each time was found on the tape. In
this case, the number to be added could be changed by any module in the system
that could gain access to this symbol. As implemented, for the machine to add a
different number, say 2 instead of 1, one would have to change the states of this
system – that is, rewire it.

In psychological terms, a value such as π is a plausible candidate for an innately
known value. In biological terms, we might find that this ratio was implicit in the
structure of genetically specified computational machinery. Whether there is any
instance in which π is in fact an innately known value is not at issue here. It clearly
could be. There is good evidence, for example, that the period of the earth’s rota-
tion is built into the machinery of the circadian clock; it is hard wired in the brain’s
biochemistry. The period of a planet’s rotation is a more contingent value than is
the ratio of the circumference of a circle to its diameter. The period of rotation
(the duration of a day-night cycle) would be different if we lived on a different
planet, whereas the value of π would be the same on any planet on which sentient

2 In the locally Euclidean space of everyday experience.

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 151

152 Data Structures

life happened to evolve. From the perspective of our parochial evolutionary his-
tory, however, the period of the earth’s rotation is as immutable as the value of π.
You wouldn’t want to wait (or prepare) for either value to change. Thus, π and
the period of the earth’s rotation are both plausible literals, constants whose values
might be implicit in the structure of a computational device designed to represent
the world in which the animals we know have evolved.

In a computer program3 a line of code that uses a literal might look something
like: ‘X =: Y + 12’; indicating that the value of the variable ‘X’ (see below regard-
ing variables) should be updated such that it is the sum of the value of the vari-
able ‘Y’ and 12. Literals are rarely used by computer programmers, as few values
can be fixed at the time the program is written. In fact, the use of literals is dis-
couraged; they are disparagingly referred to as “magic numbers” – numbers that
appear out of nowhere and without clear referents. In the example above, it may
have been the case that ‘12’ was indicating the number of months in a year; how-
ever this information is hidden from view. If it turns out that such numbers are
contingent, then the program itself (the computing machinery) has to be changed
– possibly in many of its parts.

Direct (absolute) addressing: Variables and their values

Most computationally important values are contingent: they vary with time and
circumstance. The compass direction of the sun is an example; it changes as the
day goes on. We know that this value often enters into the computations that medi-
ate animal navigation (see Chapter 13). Even insects routinely compute the angle
that they should fly with respect to the sun in order to reach a feeding site at a
previously learned compass direction from the hive or nest. In doing so, the mach-
inery of their brains takes advantage of the fact that the solar bearing of the goal
(the sought-for angle) is its compass bearing (its direction relative to the north–
south axis) minus the current compass direction of the sun (the sun’s direction
relative to that same axis – see Chapter 13). Because the sun’s current compass
direction varies – its value depends on the local phase of the day–night cycle (the
time of day), the season, and the observer’s latitude – its current value cannot be
embedded in the mechanism of computation; it cannot be a literal.

Values like the sun’s compass direction arise whenever experience is informative,
in Shannon’s sense. The possible values for the compass direction of the sun are
an example of what Shannon called a set of possible messages. Sets of possible mes-
sages that may be communicated to us through our experience of the world are

3 There may be some confusion regarding programs as “computational machinery.” We note that a
computer qua Turing machine has computational machinery (hardware) that implements the state changes,
and then an independent memory system for holding symbols. Therefore, the “program” of a Turing
machine is considered part of its fixed architecture. When we use the term “program” and show an
example code fragment, we are using it to symbolize this fixed architecture. However, modern com-
puters are examples of universal machines, machines that can read from their memory “programs” (soft-
ware) that themselves symbolize procedures that are executed. The issue of whether or not the
computational machinery found in animals and humans is universal is an open one. For our purposes,
one can think of a computer program as the fixed architecture of the computing machine.

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 152

Data Structures 153

ubiquitous. Computer scientists use the term variable to refer to such sets of pos-
sible messages. A variable gives the location of a value within the representing sys-
tem, its address. The symbol found at the address encodes the value of the variable.
The address itself, which is, of course, distinct from what is found at that address,
is the variable.

How then can we structure a computational device so that a symbol specifying
the current value of a variable can be located and brought to the symbol-processing
machinery? This is the problem of variable binding. Given a variable, how is its
associated value located, so that it may be transported to the computational machin-
ery that makes productive use of it? Additionally, how does one write a new (updated)
value for this variable? The solution to both problems – an addressable read/write
memory – is a fundamental part of the architecture of a conventional computing
machine (see Figure 9.1).

The neural network architecture lacks this functional component because neu-
roscientists have yet to discover a plausible basis for such a mechanism. That lack
makes the problem of variable binding an unsolved problem in neural network
computation (Browne & Pilkington, 1994; Browne & Sun, 2001; Frasconia, Gori,
Kurfessc, & Sperdutid, 2002; Gualtiero, 2007 (online); Lòpez-Moliner & Ma
Sopena, 1993; Smolensky, 1990; Sougné, 1998; Sun, 1992). We believe that the
only satisfactory solution to the problem is an addressable read/write memory.
Therefore, we believe that there must be such a mechanism in the functional struc-
ture of neural computation. A major motivation for our book is the hope of per-
suading the neuroscience community to make the search for this mechanism an
important part of the neuroscience agenda.

Figure 9.1 shows the structure of a memory that allows computational mech-
anisms to access the values of variables. The bit patterns on the left are the
addresses. They are not themselves accessible to computation; they cannot be writ-
ten to or read from. An address code (signal), when placed onto the address bus,
selects the row with the matching bit pattern in its address field. The signal on the
address bus is a probe. The memory location whose address matches the probe is
activated. The bits encoding the information stored at a given address are found
at the intersections of the horizontal and vertical lines to the right of the address.
The vertical lines are the data lines leading to and from the data bus, the multi-
lane highway that conveys retrieved symbols (bit patterns) to the symbol-processing
machinery and from the symbol-processing machinery back to memory.

In a read operation, the computational machinery places the appropriate address
signal onto the address bus, and then pulses the read/write line (which can itself
be thought of as part of the address bus) in the read mode (it sends the read bit).
This causes the bit pattern in the selected row to be transcribed onto the data bus.
The data bus carries it back into the computation where the value was requested.
In a write operation, the computational machinery puts the appropriate address
signal onto the address bus, places the value to be written onto the data bus, and
then pulses the read/write line in the write mode. This causes the value on the data
bus to be transcribed at the intersections of the data bus and the row selected by
the address bus, thereby storing the information contained in that signal into a sym-
bol – to be carried forward in time until it is requested via another read operation.

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 153

154 Data Structures

A variable, then, is, physically speaking, an address; the symbol for the current
value of that variable is the contents of memory at that address. The distinction
between a variable (an address) and the value of that variable (the information to
be found at that address) mediates the intercourse between past and present,
between then and now. It is what makes it possible to bring the information gained
then to bear on the problem one is solving now. It also mediates the interaction
between the computational processes that extract information from experience and
the computational processes that may later use that information to inform cur-
rent behavior. The address of the information is the point of contact between the
two processes. The information-extraction process writes the information to the
address, that is, it binds the value to the variable. The utilization process reads
the variable to obtain the behaviorally relevant information (the value). By using
a variable to indicate the value that is needed, we need only change the value once
at the appropriate location. That one change makes the value accessible anywhere
that it is used.

Variables make it possible for different computational modules to share infor-
mation – for one module to read what another has written. They make it possible

Data bus inAddress
bus

read
write

Data bus out

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Figure 9.1 Structure of a random-access read/write memory.

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 154

Data Structures 155

to change the value that enters into a computation without changing the structure
of the mechanism that performs the computation. In typical artificial neural net-
work architectures, the system learns by rewiring the computational machinery so
as to make the system behave more effectively. By contrast, in a conventional com-
puting architecture, the system learns by changing the values of variables – and, as
we will see in a moment, by creating new variables, as experience requires them.
There is no rewiring in this architecture, but there is learning.

The random-access architecture allows any module to retrieve the value of any
variable in constant time. Contrast this to the Turing machine architecture in which
memory must be addressed sequentially. The Turing machine architecture is not
a plausible model for an efficient memory, as this sequential access (searching
through all of memory to find what is needed) would simply be too slow. All mod-
ern computers use the random-access model of memory.

The architecture of the random-access read/write memory is identical to the archi-
tecture of the content addressable memory that we dismissed as untenable in Chapter
6. In that case, the parallel architecture is used to implement a look-up table for a
specific function. Thus, a random-access memory can function as a content-
addressable memory. It could, for example, be used to determine the addition func-
tion f+ : N × N → N, for 32-bit numbers. In this use, the address bus would be
partitioned into two 32-bit halves, one half for each addend. Any pair of addends
would then activate a unique row (location). At that location would be stored the
sum of those two addends. Activating the row would put their sum on the data
bus. We would need as many addresses as we have potential inputs, so the scheme
requires (264)(64) = 270 bits. This is a phenomenally wasteful use of physical
resources, given that it only accounts for the symbols for integers and only for the
operation f+ – and well over 99.9999% of these symbols would never be accessed,
because only a small fraction of the possible sums would ever be computed by any
one machine.

The same architecture used as an addressable read/write memory can be used to
store 264 realized symbols, which can be used by any function that needs them. By
adding a single bus line, we gain write capabilities. This is equivalent to a com-
puter with a trillion gigabytes of memory, the equivalent of well over 100 billion
DVDs. With this (plausible) amount of storage, the brain could record over four
DVDs’ worth of information every millisecond over a typical lifespan (80 years).
It cannot escape one’s attention that the brain could potentially record everything
we have ever experienced during our lifetime, without writing over or in any way
reusing memory locations. The need for the brain ever to “forget,” in the symbolic
sense,4 need not be an issue of physical resources. This fact itself could simplify the
architecture of the brain: Its read/write memory could be write once. As of this
writing, DVDs that use write-once-read-many (WORM) technology cost about one
fourth as much, and maintain recorded symbols over 30 times longer than the equi-
valent unrestricted read/write technology. In the not-distant future, it may prove

4 We are not making a claim here that in fact brains never forget information – that would be entirely
speculative. Additionally, the use here of “forgetting” is not meant to imply that one wouldn’t “forget”
in the sense of losing symbol access. That this form of forgetting occurs is obvious to all of us.

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 155

156 Data Structures

to be the case that memory is so cheap and abundant that computers will never
need to erase anything that has ever been stored – for better or for worse.

In computer programming, accessing values by means of addresses stored in the
program (in the computational machinery) is called direct addressing. Directly
addressed variables correspond psychologically and neurobiologically to innate vari-
ables. Note the distinction between an innate value and an innate variable. An innate
value specifies a non-contingent quantity in the represented system (like the period
of the earth’s rotation), which is implicit in the structure of the representing sys-
tem. (For example, the earth’s period of rotation is built into the biochemistry of
the circadian clock.) An innate variable specifies a set of possible messages whose
existence is implicit in the genetically specified structure of the representing system.
It specifies that set by giving the internal location of the symbol that represents the
current value (not by giving the value itself). The value of the variable is contin-
gent; the variable itself is not.

For example, the (presumably) innate structure of the sun–compass mechanism,
which makes it possible for the nervous systems of many animals to learn the solar
ephemeris function (the compass direction of the sun as a function of the time of
day – see Chapter 13), has as an essential part of its structure a component that
represents the sun’s compass direction. What this represents is not the current value
of the sun’s compass direction; rather, it represents the set of possible current val-
ues. It is a variable – one of Shannon’s sets of possible messages – not the current
value of the variable (a member of that set). The distinction here is analogous to
the distinction between a neuron that signals the value of some empirical variable,
and a signal in that neuron (e.g., an interspike interval). The neuron, by virtue of
the structure in which it is embedded, which renders it sensitive only to a limited
set of possible messages, represents that set, the set of states of the world capable
of generating a signal in that neuron. An interspike interval represents a message
drawn from that set.

Indirect addressing and the creation of variables

In computer programs, direct addressing, while much more common than imme-
diate addressing, is itself rare, because most variables are not innate. While the sun’s
compass direction is a candidate for an innate variable, the compass direction of
a nectar source is not, because the existence of that source is itself contingent. The
architecture of a representational system capable of effectively representing the real-
ity with which animals cope must provide for the creation of symbols for the vari-
ables themselves – symbols for new sets of possible messages. The symbols for these
contingent (unforeseeable) sets of possible messages cannot, generally speaking, be
part of the innate structure of the computing machinery. That would require too
much innate structure, most of which would never be utilized, because any given
animal will in fact experience only an infinitesimal portion of the potentially im-
portant experiential variables.

In Chapter 12, we review experiments on cache retrieval in Western Scrub Jays.
Birds of this species make as many as 30,000 caches (hiding-places for their food)
in a six-week period in the fall. They survive over the next several months by retriev-

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 156

Data Structures 157

ing food from those caches. They remember for each cache its location, its con-
tents, and the date and time at which it was made.5 Consider the variable that repres-
ents the location of the 29,567th cache – not the actual location itself, but instead
the set of possible locations. In a bad autumn, when there is little food to be found,
the unfortunate bird may make only 10,000 caches. Are we to imagine that there
are structures in its nervous system, for example, individual neurons (so-called
“grandmother neurons”) or, worse yet, whole arrays of neurons (neural networks)
destined by virtue of the innate structure of the system to represent the location of
the 29,567th cache? If so, then those structures will not be used in a bad autumn,
which may well be the only autumn the bird ever experiences. Because the bird never
experiences the making of its 29,567th cache, the location of that cache never becomes
a set of possible messages; there never is a value to be bound to that variable.

The need to have a memory structure capable of representing all and only the
variables we actual encounter is strikingly evident in the phenomenon that psy-
chologists call episodic memory, of which the jay’s memory for its food caches is
arguably an instance (see Chapter 12). Humans remember episodes. The episodes
they remember have a rich structure, with many different variables (participants,
locations, times, durations) and many different relations between them (who did
what to whom). We all experience a great many episodes. For some time after expe-
riencing an episode, we can generally retrieve considerable detail about it. While
the episodes we experience are numerous, they are an infinitesimal portion of the
episodes we might experience. All the episodes actually experienced by any human
anywhere at any time are an infinitesimal subset of the set of all episodes that some
human might have experienced somewhere some time. Thus, it is physically impos-
sible that our brains have innate elements of their structure specific to every
episode we might experience or specific to the variables of which the memory of
an episode would be constituted. However, neural network models often end up
assuming just that.

Contingent variables come in categories, like Nectar Sources, Caches, Episodes,
Locations, Views, etc. To capture this level of representational structure, computer
programmers use arrays and indirect addressing. Arrays are category-variables. Indirect
addressing uses the location of an array variable to hold a symbol that gives access
to other variables, that is, other addresses. In doing so it makes those variables
themselves accessible to computation. Recall that only the data side of a row (a
memory location) in Figure 9.1 can be transcribed onto the data bus. The only way
to make the address of that row accessible to computation is to put it on the data
side of another location. By placing it on the data side of another memory loca-
tion, we make it a symbol. Like all symbols, it carries information forward in time
in a computationally accessible form. The information that it carries specifies
where the value for a variable is to be found. When placed on the data side of
another location, an address becomes the symbol for the variable.

5 Again, this is not to assert that they never forget one or more pieces of information about any given
cache; they very likely do. The point is that the architecture of their memory must make it in principle
possible for them to remember this information about an arbitrarily designated cache.

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 157

158 Data Structures

To illustrate, suppose that the value of the variable is symbolized by ‘10010010’,
and that this symbol is stored at address 00001011. Suppose that this address is
itself stored at address 00010001. The computational machinery accesses the sym-
bol for the variable (‘00001011’) at the latter address (00010001). It accesses the
symbol for the value of the variable at the former address (00001011). The two
symbols are not the same: one is ‘00001011’, while the other is ‘10010010’. They
are not the same because they are symbols for different things. The first is the sym-
bol for the variable; the second is the symbol for its value. We belabor this, because
we know from our pedagogical experience that it is confusing. We suspect that part
of the motivation for the reiterated claim that the brain is not a computer or that
it does not “really” compute is that it allows behavioral and cognitive neuroscient-
ists to stay in their comfort zone; it allows them to avoid mastering this confu-
sion, to avoid coming to terms with what we believe to be the ineluctable logic of
physically realized computation.

An array variable specifies the first address in a sequence of addresses. Indirect
addressing accesses those addresses by way of a computation performed on the
symbol for that address. The computation makes use of the fact that the other
addresses in the array are specified by where they are in relation to the first. Take,
for example, the Source-Sweetness category, which is a record of the sweetness of the
nectar at the different sources a bee has visited. Assume that the address for this
category is 00000010. Stored at this address is the symbol ‘01000000’, which encodes
the address of the sweetness for the first source. This symbol encodes the fact that
the sweetness for the first source may be accessed at 01000000. The sweetness of all
later sources may be found at successive addresses following this address. The sweet-
ness of the second source is at 01000001, of the third at 01000010, of the fourth
at 01000011, and so on. These sweetness values may be indirectly addressed by a
command that specifies the category variable, that is, the address of the category,
which is 00000010, and a number, let us say, the binary number 10 (= digital 2).
The indirect addressing command retrieves the symbol string (‘01000000’) stored
at the specified address, adds to it the number (10), thereby generating a different
symbol string (‘01000010’), which is the symbol for the address of the sweetness
at the third source. Using that symbol as an address probe, it retrieves the value
at that address, which is the symbol that actually specifies the sweetness itself.

The address stored at the category address is called a pointer. Entering it into
simple computations in order to obtain other addresses is called pointer arithmetic.
Again, we see the power of encodings that provide for compact procedures. If the
variable (address) for each of the sources whose sweetness a bee might sooner or
later encode were to be embedded in the computational machinery itself, we would
need to tie up a lot of physical resources implicitly representing the addresses where
that information might (or might not) someday be found. If, however, the machin-
ery uses memory arrays and indirect addressing, then it need only implicitly rep-
resent a single address, the address where the pointer to the array is to be found.
This implicit representation constitutes an innate category (in our example, the Source-
Sweetness category).

If the computational machinery does not use category-variables, it again confronts
the problem of pre-specification. It must preallocate physical resources to implicitly

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 158

Data Structures 159

represent variables it may never encounter (for example, the sweetness of the 59th
source in a bee that is eaten by a bird after visiting only 11 sources). This will not
do. The brain cannot predict ahead of time how many (or even which) variables
will be involved in its computations.

The architectural ramifications are clear. We must have a mechanism by which
a set of values (possible messages) can be accessed by referring to a variable that
itself is contingent (contingent on which variable is required at a given moment in
time). The value of this variable (an address) can then be made available to com-
putation to produce an effective address (the address where the actual value is to
be found). Note that once we have this indirection, we are unlimited in terms of
being able to form hierarchies of variables. If the architecture allows for indirec-
tion (allows for encoding symbols that have internal addresses as their referent),
then it need not be altered (rewired) to produce any level of indirection desired.
Technically speaking, the arrays in memory may have any dimensionality, even though
the structure of memory itself is linear (one-dimensional).

Addresses therefore need not just be the conduit by which computational pro-
cesses gain access to the symbols on which they operate; they can themselves be
symbolized. They refer to a class or category of values, the class that may legitim-
ately reside at that address. The class is defined by the role that the values stored at
that address play in one or more computational procedures.

By and large, relations are defined over variables, not over the individual values
of those variables. Take for example correlation: It does not make sense to say that
1.83 meters (a value of a variable for height) is correlated with 88.45 kilograms (a
value of a variable for weight), but it does make sense to say that height is corre-
lated with weight. This correlation and many others like it inform our everyday
behavior and judgments. A second example is the relation of being “the view to
the north.” This a class of variables (“snapshots”) that play the same role in finding
different locations, but, of course, each different location has associated with it a
different view to the north. Any computational process that relies on remembered
compass-oriented views to home on remembered locations – as we know the brains
of insects do – calls up a different snapshot for each different location, but it uses
them all in the same way in computing proximity to the target location. Thus, it
needs to access them on the basis of what it is a class of variables has in common
(e.g., the property of recording the view to the north from some location) together
with what singles out one member of that class (the view to the north from a par-
ticular location). It is variables (addresses) that when symbolized may be treated
as the objects of computational operations that make this possible.

The relation between the “Location” variable, whose values are vectors giving
the coordinates of a location in some frame of reference, and the “View to the North”
variable, whose values are snapshots, is an example of a data structure. The data
structure encodes which snapshots go with which locations. A data structure is implicit
in any correlation, such as the correlation between human height and human weight,
because it is only through the mediation of a data structure that weight–height value
pairs are created. In this case, the head variable in the structure would be the variable
“Person,” subordinate to which would be variables that are features of a person,
variables like “Height,” “Weight,” “Eye Color,” “Hair Color,” and so on, the

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 159

160 Data Structures

variables routinely recorded on identification documents, which are examples of
simple data structures. Each “Person” variable has associated with it a “Weight” and
“Height” variable. The values of those two variables for each person constitute the
value-pairs from which the correlation is computed. The correlation is not a property
of the “Person” variable, it is a property of a “Population” variable, which has
subordinate to it multiple instances of the “Person” variable. Thus, there is a hier-
archy of relations between variables: “Persons” are constituents of “Populations,”
and “Height”, “Weight”, etc. are subordinate to “Persons.”

Data structures encode the relations (hierarchical and otherwise) between variables.
The architecture of a computationally useful memory must make it possible to
not only encode and recover the values of variables, it must also make it possible
to encode and recover relations between them. What makes this critical operation
possible is the ordering of memory locations by their (symbolizable) addresses.
The elementary fact that addresses form a strictly ordered set makes it possible
to specify the next address and the next after that, and so on. It is easy to miss the
critical role of the strict ordering of addresses in the functioning of computing
machines, because it comes for free in a random-access memory. The addresses are
binary patterns, which are naturally ordered by the binary encoding of the nat-
ural numbers (the integers). In a random-access memory, locations (words) that are
next to each other in the address sequence may or may not be physically adjacent.
They will be if they happen to be on the same chip, but not if one location is the
“last” on one chip and the other is the “first” on the next. What matters is that,
whether or not memory locations are physically adjacent, they are strictly ordered
by the abstract numerical properties of the bit patterns that physically implement
the addressing of memory locations. The numerical ordering of the addresses makes
pointers and pointer-arithmetic possible. It is by means of pointers and pointer arith-
metic that data structures are physically realized.

An Illustrative Example

Let us consider how these data-addressing principles could be used to organize in
computationally accessible form the hierarchical information about food caches that
we know jays record (from the experiments by Clayton and her collaborators reviewed
in Chapter 12). We know that they remember where they cached a morsel, what
kind of morsel it was (peanut, meal worm, cricket), date and time they cached it,
whether they were watched by another jay when caching it, and whether they have
harvested it. We can infer from extensive experiments on animal navigation that
the specification of location involves both map coordinates (the formal equivalents
of latitude and longitude) and compass-oriented views of the surroundings (See
Chapter 12; for a more extensive review, see Gallistel, 1990).

Table 9.1 shows how this information might be structured in the memory of a
computer. Each line represents a variable and its value, a physical address and the
symbol stored at that address, with a colon separating the two. If a value is under-
lined, it encodes for an address, that is, it represents a variable. Symbols for non-
address values with external referents are indicated by ‘???’, because they would

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 160

Table 9.1 Illustrative data structure for encoding what jays remember about the caches
they have made

Address : Content Access Content description

100,000 : 8 Caches[0] Cache variables
100,001 : n Caches[1] Total caches
100,002 : 100,100 Caches[2] → Locations
100,003 : 100,200 Caches[3] → Bearings
100,004 : 150,000 Cashes[4] → Morsels
100,005 : 200,000 Caches[5] → Dates
100,006 : 250,000 Caches[6] → Times
100,007 : 300,000 Caches[7] → Watched
100,008 : 350,000 Cashes[8] → Harvested
. . .
100,100 : 2 Caches[2][0] Location variables
100,101 : 400,000 Caches[2][1] → Latitudes
100,102 : 450,000 Caches[2][2] → Longitudes
. . .
100,200 : 2 Caches[3][0] Bearings variables
100,201 : 500,000 Caches[3][1] → Directions
100,202 : 600,000 Caches[3][2] → Views
. . .
150,000 : 100,001 Caches[4][0] Morsels (→ Total caches)
150,001 : ??? Caches[4][1] Morsels 1
150,002 : ??? Caches[4][2] Morsels 2
150,000+n : ??? etc. to Caches[4][n] Morsel[n]
. . .
200,000 : 100,001 Caches[5][0] Dates (→ Total caches)
. . .
250,000 : 100,001 Caches[6][0] Times (→ Total caches)
. . .
300,000 : 100,001 Caches[7][0] Watched? (→ Total caches)
. . .
350,000 : 100,001 Caches[8][0] Harvested? (→ Total caches)
. . .
400,000 : 100,001 Caches[2][1][0] Latitudes (→ Total caches)
400,001 : ??? Caches[2][1][1] Latitude 1
400,002 : ??? Caches[2][1][2] Latitude 2
400,000+n : ??? etc. to Caches[2][1][n] Latitude n
. . .
450,000 : 100,001 Caches[2][2][0] Longitudes (→ Total caches)
. . .
500,000 : 100,001 Caches[3][1][0] Directions (→ Total caches)
500,001 : ??? Caches[3][1][1] Direction 1,1
500,002 : ??? Caches[3][1][2] Direction 1,2
500,003 : ??? Caches[3][1][3] Direction 2,1
500,004 : ??? Caches[3][1][4] Direction 2,2
500,000+2n : ??? etc. to Caches[3][1][2n] Direction n,2
. . .
600,000 : 100,100 Caches[3][2][0] Views (→ Total caches)

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 161

162 Data Structures

be filled in from experience. n is the current number of caches stored in the data
structure. To the right of each address–content pair is text that describes the nature
of the information stored there. This text is, of course, for the reader’s benefit only;
it would not be part of the data structure. The first entry (Access) shows how the
contents might be addressed in a program that used array notation. The second
entry (Content description) describes the contents at that location. Arrows (→) indic-
ate the category variable (array) that begins at that address.

The first entry is (arbitrarily) at address 100,000. This address itself represents
the category or concept of a cache. Its content (8) is the number of variables that
are associated with (that is, subordinate to) this concept.

The next address (100,001) is the first such variable. It has a purely internal ref-
erent; it stores the current total number of caches in the data structure. This value
determines the length of many of the other arrays, because those other arrays have
one record for each cache. This value (the number of caches in memory), when
added to the address of the first value in a subordinate array, specifies the address
of the last value in that subordinate array. Making this number a variable in the
data structure, that is, giving it an address, allows this value to be easily accessed
as needed without having to worry about updating the value everywhere that it
appears whenever another cache is added to the structure.

Addresses 100,002 through 100,008 contain the symbols for the addresses of the
category variables that enter into the specification of a cache. The first of these sym-
bols (100,100) is where the information for the Location category begins. Location
on a plane is defined by two sub-categories, the names for which depend on the
frame of reference. The most common frame is the geocentric frame polarized by
the earth’s axis of rotation. This polarization arises naturally from the universal
experience of the solar and stellar ephemeredes. The solar or stellar ephemeris is
the point on the horizon above which the sun or a star is seen, as a function of
the time of day/night. The cyclical nature of these ephemeredes defines the time of
day and entrains the circadian clock (see Chapter 12). The north–south axis is the
point on the horizon half way between where the sun rises and where it sets. (It is
also half way between where any star rises and sets.) It is also the point at which
the sun attains its zenith (its maximum angular distance from the horizon). Thus,
it is experientially salient, or at least readily obtainable from simple experience of
the sun’s position at salient times of day (its rising, setting, and zenith).

We know that animals, including insects, routinely use the sun for directional
reference when navigating. Doing so requires knowledge of the solar ephemeris.
Research has revealed a learning module dedicated to learning the solar ephemeris
(see Chapter 13). The north–south axis is the direction that defines latitude, and
longitude is the direction orthogonal to this. That is, the line between the point
where the sun rises and the point where it sets is perpendicular to the north–south
axis. Thus, it is not unreasonable to suppose that locations in the brains of ter-
restrial animals are specified by the values for their latitude and longitude, just as
they are on most human maps.

There are, of course, other possible systems of coordinates (e.g., polar coordin-
ates) within a geocentric frame of reference; but any such system will require (at
least) two coordinates, because the surface of the earth has two dimensions. Thus,

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 162

Data Structures 163

6 It may seem odd to refer to a snapshot as a value, but the binary representation of an image cap-
tured on a digital camera is simply a (very large) binary number. Thus, it is every bit as much a value
as any other (pun intended).

the latitude and longitude sub-categories may be taken as stand-ins for those two
coordinates, whatever they may be.

The location (location of cache) variables are represented by the address
100,100. The content of the Location address (2) specifies the number of (sub-
category) variables that define a Location. When this value is added to the address
itself (100,100 + 2), the machine gets by pointer arithmetic the location of the last
of those sub-categories. The latitude sub-category (first sub-category under Loca-
tion) is represented by the address 100,101. The content of that address (400,000)
is the already discussed address at which the actual number, n, of latitude vari-
ables is stored. As explained above, we have made n a variable, because we will
need to access it repeatedly. The symbol for this variable is its address (100,001),
the address at which the actual number itself may be found. The value of this vari-
able, together with the address of the first latitude value, specifies the stretch of mem-
ory that is occupied by the listing of the latitudes. That listing begins at the address
(400,001) immediately after the the head address + i (in this example, 400,000 + i).
Similarly, the longitude of the ith location is the head address for longitude (that
is, the symbol for the longitude category) + i (in this example, 450,000 + i). Again, the
utility of pointer arithmetic is evident. So, also, is the utility of creating the variable
n (symbolized by 100,001), by reference to which the system specifies at the head of
each list of actual values where in memory that list ends.

Locations in animal navigation, as in human navigation, are defined both by geo-
centric coordinates (latitude and longitude) and by local bearings. Local bearings
are compass-oriented views (Chapter 12 and Gallistel, 1990). They have two com-
ponents. One component is a view, which is an encoding of the terrain or a ter-
rain feature visible from a given location when looking in a given direction. These
encodings are called snapshots in the animal-navigation literature, because they are
analogous to the encoding of a view that is effected by a digital camera. In human
navigation, views are encoded by sketches or photographs in a pilot book. The other
component is the compass direction in which one must look in order to see that
view (when one is at the given location).

It takes a pair of local views (called a pair of cross bearings) to uniquely spe-
cify a location by reference to local bearings, with each pair consisting of a direc-
tion and a view. Thus, the pair of local cross bearings that will enable a bird to
precisely locate a cache is comprised of four values – two directional values and
two snapshot values.6 There is no computational motivation for forming categories
(or concepts) out of the first and second pairs, because the designations of “first”
and “second” are arbitrary. The set of all first directions have nothing in common
that distinguishes them from the set of all second directions, and likewise for the
set of all first views and the set of all second views. Thus, there is no motivation
for arranging the “first” directions in one sequence of memory locations and the
“second” directions in a different sequence, nor for arranging the “first” views in

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 163

164 Data Structures

one sequence of memory locations and the “second” views in a different sequence.
Thus, in our data structure, the two directions for the local cross bearings at a cache
location are found one after the other in memory, and likewise for the corresponding
snapshots. By contrast, the directions (of the views) and the snapshots (the encod-
ings of the views themselves) are very different kinds of values, subject to different
kinds of computations, so the directions form one sequence in memory while the
views associated with those directions form a different sequence. Notice how the
organization of variables into arrays leads naturally to the formation of functional
categories.

Another component of the memory for a cache is the date at which it was made.
We know this is part of the record because of the experiments reviewed in Chapter
12 showing that the birds know how many days have passed since they made a
given cache. The Date variable is symbolized by the address (100,005) whose con-
tent (200,000) is the address immediately after which the sequence of actual dates
begins.

There is also reason to believe that the birds know how many hours have elapsed
since a cache was made. To be able to compute that, they must record the time
(of day) at which it was made. The Time variable is symbolized by the address
(100,006) whose content (250,000) is the address immediately after which the
sequence of actual times begins.

We also know that the birds note whether their caching was observed or not,
because they often return selectively to the caches they were observed making, remove
the contents, and cache them elsewhere (see Chapter 12). The binary variable or
“flag” that records whether a cache was observed or not is represented by the address
(100,007), whose content (300,000) is the address immediately after which the
sequence of flags begins.

Finally, we know that the birds keep track of which caches they have harvested.
The flag denoting whether a cache has been harvested or not is represented by the
address (100,008) whose content (350,000) is the address immediately after which
the harvest flags begin.

The structure portrayed in this example is by no means the only structure – the
only arrangement of the information in memory – that could encode the relations
between these variables. We have made it up without a clear specification of the
computational uses to which those relations are to be put. Absent such a specifica-
tion, there is no way to determine what a computationally optimal arrangement
would be. There is an intimate and unbreakable relation between how information
is arranged in memory and the computational routines that operate on that infor-
mation, because the computational routines decode the relations that are encoded
by means of the arrangement of the information in memory. As with all true codes,
the encoding of the relations between variables by means of the arrangement of
their locations in memory is meaningless in the absence of a structure that can cor-
rectly derive the relations from that arrangement, just as the encoding of numbers
in bit patterns is meaningless in the absence of computational machinery that oper-
ates appropriately on those patterns, and the encoding of relations in a proposi-
tion is meaningless in the absence of a parser that correctly decodes the relations
encoded by the arrangement of the symbols in the proposition.

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 164

Data Structures 165

Procedures and the Coding of Data Structures

We have repeatedly stressed the interdependence of procedures and the symbols
that they both operate on and produce. Compact, encoding symbols for integers
(along with addressable read/write memory) make possible the realized symboliza-
tion of the finite instances of integers that one might experience in a lifetime. To
operate on such symbols, it is necessary to employ sophisticated procedures, even
for operations as basic as addition. As complex symbols (data structures) become
progressively more complex, the potential encoding systems themselves become pro-
gressively more complex. The specific encoding used will determine the efficiency
and efficacy of the various operations that one intends to perform on the data struc-
tures. Often, the choice of data structure and procedure will together determine if
the operations are feasible. Choice of the appropriate data structure is so important
that undergraduate computer science students typically spend one semester learning
how to design data structures and another learning how to analyze the performance
of various algorithms and their associated data structures.

Such increased complexities start as soon as one considers the most basic of data
structures, an ordered list. An ordered list is exactly that, a list of symbols that are
ordered by some property. To pursue this example, let’s take another hypothetical
data structure. There is evidence that bees record the location of different food patches
they visit and can associate with each patch its sweetness (sucrose concentration –
see Gallistel, 1990, for review). Following our scrub jay example, a simplified data
structure for this could be as shown in Table 9.2.

Table 9.2 Illustrative data structure that orders records by sweetness

Address : Content Access Content description

100,000 : 4 Patches[0] Patch variables
100,001 : n Patches[1] Total patches
100,002 : 200,000 Patches[2] → Latitudes
100,003 : 300,000 Patches[3] → Longitudes
100,004 : 400,000 Patches[4] → Densities
. . .
200,000 : 100,001 Patches[2][0] Latitudes (→ Total patches)
200,001 : ??? Patches[2] [1] Latitude 1
200,000+n : ??? Patches[2] [n] Latitude n
. . .
300,000 : 100,001 Patches[3][0] Longitudes (→ Total patches)
300,001 : ??? Patches[3][1] Longitude 1
300,000+n : ??? Patches[3][n] Longitude n
. . .
400,000 : 100,001 Patches[4][0] Sweetness (→ Total patches)
400,001 : ??? Patches[4][1] Sweetness 1
400,000+n : ??? Patches[4][n] Sweetness n

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 165

166 Data Structures

In the jay example, the ordering of the caches was arbitrary – we may assume
that they are stored in the order that they were experienced. It would be efficacious
for the bee to maintain its list of patches such that they were ordered by the sweet-
ness of the patch (updating as needed). This would allow the bee to quickly dis-
cern which patches were the best prospects for the day. Our present data structure
certainly could be maintained this way; however, if the bee experiences a new flower
patch, it will need to insert the information for the patch into its appropriate loca-
tion within the list. Each successive variable in the structure, be it Longitude, Latitude,
or Sweetness, is ordered by the inherent ordering of the physical memory addresses.
To insert a new patch into this structure, one has to shift all of the variables over
one position in memory to create this space. A computer scientist would say that
the insert operation is not well supported by this data structure.

A common solution to this problem is to use what are called linked lists. In a
linked list, each element of the list contains two values – the symbol for the value,
and then a symbol for the address of the next element. The linked list creates a
virtual ordering from the fixed physical ordering of the memory. To demonstrate
this scheme, we will assume that the sweetness values are represented as integers
between 1 and 100 (100 being the best). Table 9.3 shows a possible linked list
implementation for the densities, with made-up sweetness values entered. Now, if
we had to insert a patch with Sweetness 17, we could simply insert it at the end
and update our structure as in Table 9.4.

Updating the list clearly has a few issues, however nothing as demanding as shift-
ing all of memory. Insertion of a new patch (and deletion of a patch) has been

Table 9.3 Illustrative linked-list data structure for ready access to sweetness

400,000 : 100,001 Sweetness (→ Total patches)
400,001 : 76 Sweetness 1
400,002 : 400,003 → Sweetness 2
400,003 : 34 Sweetness 2
400,004 : 400,005 → Sweetness 3
400,005 : 12 Sweetness 3
400,006 : 400,007 → Sweetness 4, etc.

Table 9.4 Data structure in Table 9.3 after insertion of a new patch

400,000 : 100,001 Densities (→ Total patches)
400,001 : 76 Sweetness 1
400,002 : 400,003 → Sweetness 2
400,003 : 34 Sweetness 2
400,004 : 400,007 → Sweetness 3
400,005 : 12 Sweetness 3
400,006 : 400,009 → Sweetness 4
400,007 : 17 Sweetness 4
400,008 : 400,005 → Sweetness 5

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 166

Data Structures 167

made efficient by changing our data structure.7 While we have gained efficiency for
insertion and deletion operations, we have lost efficiency if we want to be able to
randomly access the ith patch. In our previous data structure, the ith patch could
be easily located with simple pointer arithmetic. With the linked list structure, how-
ever, one would have to traverse through the links, keeping track of how many
links have been followed. It is often possible to make hybrid data structures that
solve both constraints efficiently, and such data structures can quickly become quite
sophisticated.

When data structures are complex, decisions on how to encode the structure can
make or break the viability of procedures that one might bring to bear on the data
structure. If the structure needs to serve numerous procedures, efficient data struc-
tures again become quite complex. As we saw in Chapter 1, a similar phenomenon
occurs if one employs compression and error correction codes. If sophisticated data
structures are being employed by the nervous system, then it places another hur-
dle in the way of neuroscientists who are listening in to the signals that the brain
transmits and trying to decode what they are talking about. It seems that there is
no free lunch – complex problems require complex solutions. This is a point that
can be easily missed, and indeed many neural network models of memory and com-
putation do miss it.

The Structure of the Read-Only Biological Memory

The functional structure of modern computers is sometimes discussed by neuro-
scientists as if it were an accidental consequence of the fact that computing circuits
are constructed on a silicon substrate and communicate by means of pulses of elec-
trical current sent over wires. Brains are not computers, it is argued, because com-
puters are made of silicon and wire, while brains are made of neurons. We argue
that, on the contrary, several of the most fundamental aspects of the functional
structure of a computer are dictated by the logic of computation itself and that,
therefore, they will be observed in any powerful computational device, no matter what
stuff it is made of. In common with most contemporary neuroscientists, we believe
that brains are powerful computational devices. We argue, therefore, that those aspects
of the functional structure of a modern computer that are dictated by the logic of
computation must be critical parts of the functional structure of brains. One such
aspect is the addressable memory architecture we have just described, which makes

7 We have overly simplified the data structure here for expository purposes. To make the insertions
and deletions truly efficient, we would most likely need to use a doubly linked list, one in which the
links not only looked forward to the next address, but also looked back. Note, additionally, that dele-
tions will add another issue as space will be cleared in memory that won’t necessarily be reclaimed.
Over time, this means that the memory will fill up with “wasted” space. When this happens in a com-
puter program, it is called a “memory leak,” and special tools are employed to find the “bugs” in the
program. This leads to a whole new concern that modern computer systems typically deal with under
the banner of “memory management” – a topic that we do not pursue here. In summary, making com-
plex and efficient data structures is not for the faint of heart.

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 167

168 Data Structures

extensive use of indirect addressing to organize and make retrievable the informa-
tion stored in it. Our conviction that this is part of the inescapable logic of com-
putationally useful information storage and retrieval is strengthened by the fact that
the molecular mechanism for the intergenerational transmission and retrieval of inher-
ited information has this same functional structure.

Computers work with bit patterns, while the molecular machinery for the trans-
mission and utilization of inherited information works with base-pair sequences.
Both systems are digital. Like all workable systems we know of, they both have
a very small number of primitive symbol elements. In computers, these elements
number only two, the ‘0’ state (voltage level) and the ‘1’ state (voltage level). In
the DNA of cells, there are four elements out of which information-conveying sym-
bols are constructed, the bases adenine (A), cytosine (C), guanine (G), and thymine
(T). One of these four bases is the encoding datum of a nucleotide. Nucleotides
are the basic subunits in the structure of the double-helical DNA molecular. In com-
puter memory, the encoding elements (the bits) are serially ordered in space to form
a minimal combination of the elements. In the genetic mechanism, there is likewise
a minimum combination, the codon, which is a linear sequence of three of the bases
(e.g., AAG, TTT, CAG, etc.). Codons code for amino acids, which are the basic
building blocks of proteins. They also encode punctuation symbols that tell the decod-
ing machinery where to start and stop reading the code for a given protein (start
codons and stop codons).

A word in a computer has two functionally distinct components (fields), the mem-
ory field, which contains the word itself, and the address for that memory. The
word in a memory field is an information-carrying symbol; if it is transcribed to
the data bus, it may enter into a computation. The address field is not a symbol; it
has no access to the data bus. Insofar as it can be said to have content, that content
cannot be accessed by the rest of the system (except through the device of sym-
bolizing that content in the memory field of another address). The role of the address
field is to recognize the probe on the address bus, by which the word in the asso-
ciated memory field is transcribed onto the data bus for use in a computation.

A gene also has two components that are functionally distinct in the same way.
There is the coding component, with the codon sequence bracketed by a start codon
and a stop codon. It specifies the structure of a protein. Proteins are the principal
molecular actors in the construction of a biological mechanism. They are the pieces
from which the mechanism is largely constructed. They are also the principal sig-
nals that control the construction process. The second component of a gene, which
may be less familiar to many readers, is the promoter. The promoter (and its neg-
ative, the repressor) are sometimes called the operon, because this component con-
trols whether or not the other component operates, that is, whether or not it is
transcribed into messenger RNA, that will carry the information to the ribosomes
where it is used to direct the synthesis of the protein whose amino acid sequence
it encodes. The elements of the promoter for a gene are the same elements as the
elements of the coding field, the same four bases, just as the elements of an address
field are the same ‘0’s and ‘1’s that are the elements of a word’s memory field. But,
like the elements in the address field of a word, they function differently. They are
not transcribed. The rest of the system has no access to the information encoded

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 168

Data Structures 169

by the sequence of elements in a promoter, just as the rest of a computer has no
access to the information encoded in the sequence of elements in an address field.

Rather, they control the access of the rest of the system to the contents of the
coding field (the analog of the memory field of a word). The role of the promoter,
like the role of the address, is to respond to (recognize) a probe signal, called a
transcription factor. The function of a transcription factor is to select for transcription
the coding sequence associated with that promoter, just as the function of a probe
signal on the address bus is to select for transcription onto the data bus the mem-
ory field associated with a given address.

The proteins synthesized when a promoter activates the transcription of a gene
are often themselves transcription factors, just as the words transcribed to the bus
are often address probes. Addressing the promoter of a transcription factor (syn-
thesizing a protein that binds to its address) gives access to the addresses (promoters)
of the genes to which that transcription factor binds. As that transcription factor
is synthesized, it binds to those promoters, leading to the synthesis of the proteins
coded by their genes, many of which may themselves be yet further transcription
factors. This indirect addressing makes possible the hierarchical structure of the
genome. It makes it possible to have an “eye” gene that, when activated (addressed
by the transcription factor for its promoter), leads to the development of an entire eye
(Halder, Callaerts, & Gehring, 1995). The eye gene codes only for one protein.
That protein does not itself appear anywhere in the structure of the eye. It is a
transcription factor. It gives access to the addresses (promoters) of other transcription
factors and, eventually, through them, to the addresses of the proteins from which
the special tissues of the eye are built and to the transcription factors whose con-
centration gradients govern how those tissues are arranged to make an organ.

Finally, transcription factors, like pointer variables, their computer analogs,
enter into computational operations. Transcription factors combine (dimerize) to
activate promoters that neither alone can activate. This is the molecular realization
of the AND operation. There are also transcription factors that negate (inhibit) the
activating effect of another transcription factor. This is the molecular realization
of the NOT operation. All other logical operations can be realized by functional
composition of these two procedures.

In short, the genome contains complex data structures, just as does the memory
of a computer, and they are encoded in both cases through the use of the same
architecture employed in the same way: an addressable memory in which many of
the memories addressed themselves generate probes for addresses. The close par-
allel between the functional structure of computer memory and the functional struc-
ture of the molecular machinery that carries inherited information forward in time
for use in the construction and maintenance of organic structure is, in our view,
no surprise. It is indicative of the extent to which the logic of computation dictates
the functional structure of the memory mechanism on which it depends.

9781405122870_4_009.qxd 23/1/09 11:14 AM Page 169

References

Adams, D. B. (2006). Brain mechanisms of aggressive behavior: An updated review.
Neuroscience and Biobehavioral Reviews, 30, 304–18.

Aksay, E., Baker, R., Seung, H. S., & Tank, D. W. (2000). Anatomy and discharge prop-
erties of pre-motor neurons in the goldfish medulla that have eye-position signals dur-
ing fixations. Journal of Neurophysiology, 84, 1035–49.

Amit, D. J. (1989). Modeling brain function: The world of attractor neural networks. New
York: Cambridge University Press.

Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population cod-
ing and computation. Nature Reviews Neuroscience, 7(5), 358–66.

Baker, M. C. (2001). The atoms of language. New York: Basic Books.
Balsam, P. (1985). The functions of context in learning and performance. In P. Balsam &

A. Tomie (eds.), Context and learning (pp. 1–21). Hillsdale, NJ: Lawrence Erlbaum.
Barnden, J. A. (1992). On using analogy to reconcile connections and symbols. In D. S. L.

M. Aparicio (ed.), Neural networks for knowledge representation and inference,
(pp. 27–64). Hillsdale, NJ: Lawrence Erlbaum.

Barnet, R. C., Arnold, H. M., & Miller, R. R. (1991). Simultaneous conditioning demon-
strated in second-order conditioning: Evidence for similar associative structure in for-
ward and simultaneous conditioning. Learning and Motivation, 22, 253–68.

Barnet, R. C., Cole, R. P., & Miller, R. R. (1997). Temporal integration in second-order
conditioning and sensory preconditioning. Animal Learning and Behavior, 25(2), 221–
33.

Barnet, R. C. & Miller, R. R. (1996). Second order excitation mediated by a backward con-
ditioned inhibitor. Journal of Experimental Psychology: Animal Behavior Processes, 22(3),
279–96.

Becker, S. & Hinton, G. E. (1992). Self-organizing neural network that discovers surfaces
in random-dot stereograms. Nature, 355(9 January), 161–3.

Beling, I. (1929). Über das Zeitgedächtnis der Bienen. Zeitschrift für vergleichende Physio-
logie, 9, 259–338.

Bialek, W. & Setayeshagar, S. (2005). Physical limits to biochemical signaling. Proceedings
of the National Academy of Sciences, 102(29), 140–6.

Biro, D. & Matsuzawa, T. (1999). Numerical ordering in a chimpanzee (Pan troglodytes):
Planning, executing, and monitoring. Journal of Comparative Psychology, 113(2), 178–
85.

Blair, H. T. & Sharp, P. E. (1996). Visual and vestibular influences on head-direction cells
in the anterior thalamus of the rat. Behavioral Neuroscience, 110, 643–60.

9781405122870_5_end01.qxd 23/1/09 11:19 AM Page 288

Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience C. R. Gallistel
and Adam Philip King © 2010 C. R. Gallistel and Adam Philip King ISBN: 978-1-405-12287-0

References 289

Bloomfield, T. M. (1972). Reinforcement schedules: Contingency or contiguity? In R. M.
Gilbert & J. R. Milleinson (eds.), Reinforcement: Behavioral analysis (pp. 165–208).
New York: Academic Press.

Bolles, R. C. & de Lorge, J. (1962). The rat’s adjustment to a-diurnal feeding cycles. Journal
of Comparative Physiology and Psychology, 55, 760–2.

Bolles, R. C. & Moot, S. A. (1973). The rat’s anticipation of two meals a day. Journal of
Comparative Physiology and Psychology, 83, 510–14.

Bolles, R. C. & Stokes, L. W. (1965). Rat’s anticipation of diurnal and a-diurnal feeding.
Journal of Comparative Physiology and Psychology, 60(2), 290–4.

Boysen, S. T. & Berntson, G. G. (1989). Numerical competence in a chimpanzee (Pan
troglodytes). Journal of Comparative Psychology, 103, 23–31.

Brannon, E. M. & Terrace, H. S. (2002). The evolution and ontogeny of ordinal numerical
ability. In Marc Bekoff, Colin Allen, & Gordon Burkhardt (eds.), The cognitive animal:
Empirical and theoretical perspectives on animal cognition (pp. 197–204). Cambridge,
MA: MIT Press.

Brenner, N., Agam, O., Bialek, W., & de Ruyter van Steveninck, R. (2002). Statistical pro-
perties of spike trains: Universal and stimulus-dependent aspects. Physical review. E,
Statistical, nonlinear, and soft matter physics, 66(3, pt 1), 031907.

Brenner, N., Bialek, W., & de Ruyter van Steveninck, R. (2000). Adaptive rescaling maxim-
izes information transmission. Neuron, 26(3), 695–702.

Brenner, N., Strong, S. P., Koberle, R., Bialek, W., & de Ruyter van Steveninck, R. (2000).
Synergy in a neural code. Neural Computation, 12(7), 1531–52.

Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47, 139–59.
Browne, A. & Pilkington, J. (1994). Variable binding in a neural network using a distributed

representation. Paper presented at the IEE Colloquium on Symbolic and Neural Cog-
nitive Engineering, February 14.

Browne, A. & Sun, R. (2001). Connectionist inference models. Neural Networks, 14(10),
1331–55.

Buttel-Reepen, H. B. v. (1915). Leben und Wesen der Bienen. Braunschweig: Vieweg.
Cantlon, J. F. & Brannon, E. M. (2005). Semantic congruity affects numerical judgments

similarly in monkeys and humans. Proceedings of the National Academy of Sciences,
102(45), 16507–12.

Cantlon, J. F. & Brannon, E. M. (2006). Shared system for ordering small and large num-
bers in monkeys and humans. Psychological Science, 17(5), 401–6.

Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Probabilistic models of cognition: Conceptual
foundations. Trends in Cognitive Sciences, 10(7), 287–91.

Chomsky, N. (1975). Reflections on language. New York: Pantheon.
Chomsky, N. (1988). Language and problems of knowledge. Cambridge, MA: MIT Press.
Chomsky, N. & Lasnik, H. (eds.). (1993). Principles and parameters theory, in syntax: An

international handbook of contemporary research. Berlin: de Gruyter.
Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the

structure of science. Cambridge, MA: MIT Press.
Churchland, P. S. & Sejnowski, T. J. (1990). Neural representation and neural computa-

tion. In W. Lycan (ed.), Mind and cognition: A reader (pp. 224–51). Oxford: Blackwell.
Clayton, N., Emery, N., & Dickinson, A. (2006). The rationality of animal memory:

Complex caching strategies of western scrub jays. In M. Nuuds & S. Hurley (eds.), Rational
Animals? (pp. 197–216). Oxford: Oxford University Press.

Clayton, N., Yu, K., & Dickinson, A. (2001). Scrub jays (Aphelocoma coerulescens) can
form integrated memory for multiple features of caching episodes. Journal of Experi-
mental Psychology: Animal Behavior Processes, 27, 17–29.

9781405122870_5_end01.qxd 23/1/09 11:19 AM Page 289

290 References

Clayton, N. S., Bussey, T. J., & Dickinson, A. (2003). Can animals recall the past and plan
for the future? Nature Reviews Neurosciences, 4, 685–91.

Clayton, N. S. & Dickinson, A. (1999). Memory for the content of caches by scrub jays
(Aphelocoma coerulescens). Journal of Experimental Psychology: Animal Behavior Pro-
cesses, 25(1), 82–91.

Clayton, N. S., Yu, K. S., & Dickinson, A. (2003). Interacting cache memories: Evidence
for flexible memory use by Western Scrub-Jays (Aphelocoma californica). Journal of
Experimental Psychology: Animal Behavior Processes, 29, 14–22.

Cole, R. P., Barnet, R. C., & Miller, R. R. (1995). Temporal encoding in trace condition-
ing. Animal Learning and Behavior, 23(2), 144–53.

Collett, M., Harland, D., & Collett, T. S. (2002). The use of landmarks and panoramic con-
text in the performance of local vectors by navigating bees. Journal of Experimental
Biology, 205, 807–14.

Collett, T. S., Collett, M., & Wehner, R. (2001). The guidance of desert ants by extended
landmarks. Journal of Experimental Biology, 204(9), 1635–9.

Collett, T. S., Dillmann, E., Giger, A., & Wehner, R. (1992). Visual landmarks and route
following in desert ants. Journal of Comparative Physiology. Series A 170, 435–42.

Colwill, R. M. (1991). Negative discriminative stimuli provide information about the iden-
tity of omitted response-contingent outcomes. Animal Learning and Behavior, 19, 326–36.

Colwill, R. M., Absher, R. A., & Roberts, M. L. (1988). Context-US learning in Aplysia
californica. Journal of Neuroscience, 8(12), 4434–9.

Cox, R. T. (1961). The algebra of probable inference. Baltimore, MD: Johns Hopkins University
Press.

Crystal, J. D. (2001). Nonlinear time perception. Behavioral Processes, 55, 35–49.
Dehaene, S. (2001). Subtracting pigeons: Logarithmic or linear? Psychological Science,

12(3), 244–6.
Dehaene, S. & Changeux, J. P. (1993). Development of elementary numerical abilities:

A neuronal model. Journal of Cognitive Neuroscience, 5, 390–407.
Deneve, S., Latham, P. E., & Pouget, A. (2001). Efficient computation and cue integration

with noisy population codes. Nature Neuroscience, 4(8), 826–31.
Dews, P. B. (1970). The theory of fixed-interval responding. In W. N. Schoenfeld (ed.), The

theory of reinforcement schedules (pp. 43–61). New York: Appleton-Century-Crofts.
Dickinson, J. & Dyer, F. (1996). How insects learn about the sun’s course: Alternative mod-

eling approaches. In P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, & S. Wilson (eds.),
From animals to animats (vol. 4, pp. 193–203). Cambridge, MA: MIT Press.

Domjan, M. (1998). The principles of learning and behavior. Pacific Grove, CA: Brooks/
Cole.

Droulez, J. & Berthoz, A. (1991). A neural network model of sensoritopic maps with pre-
dictive short-term memory properties. Proceedings of the National Academy of Sciences,
USA, 88, 9653–7.

Dworkin, B. R. (1993). Learning and physiological regulation. Chicago: University of Chicago
Press.

Dworkin, B. R. (2007). Interoception. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson
(eds.), The handbook of psychophysiology (pp. 482–506). New York: Cambridge
University Press.

Dyer, F. C. & Dickinson, J. A. (1994). Development of sun compensation by honeybees:
How partially experienced bees estimate the sun’s course. Proceedings of the National
Academy of Sciences, USA, 91, 4471–4.

Earnest, D. J., Liang, F. Q., Ratcliff, M., & Cassone, V. M. (1999). Immortal time: Circadian
clock properties of rat suprachiasmatic cell lines. Science, 283(5402), 693–5.

9781405122870_5_end01.qxd 23/1/09 11:19 AM Page 290

References 291

Edelman, G. M. & Gally, J. A. (2001). Degeneracy and complexity in biological systems.
Proceedings of the National Academy of Sciences (USA), 98, 13763–8.

Edelman, G. M. & Tononi, G. (2000). A universe of consciousness: How matter becomes
imagination. New York: Basic Books/Allan Lane.

Edmonds, S. C. & Adler, N. T. (1977a). Food and light as entrainers of circadian running
activity in the rat. Physiology and Behavior, 18, 915–19.

Edmonds, S. C., & Adler, N. T. (1977b). The multiplicity of biological oscillators in the
control of circadian running activity in the rat. Physiology and Behavior, 18, 921–30.

Egger, M. D. & Miller, N. E. (1963). When is a reward reinforcing? An experimental study
of the information hypothesis. Journal of Comparative and Physiological Psychology,
56, 122–37.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179–211.
Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammat-

ical structure. Machine Learning, 7, 195–224.
Fairhall, A. L., Lewen, G. D., Bialek, W., & de Ruyter Van Steveninck, R. R. (2001). Efficiency

and ambiguity in an adaptive neural code. Nature, 412(6849), 787–92.
Fanselow, M. S. (1993). Associations and memories: The role of NMDA receptors and long-

term potentiation. Current Directions in Psychological Science, 2(5), 152–6.
Ferster, C. B. & Skinner, B. F. (1957). Schedules of reinforcement. New York: Appleton-

Century-Crofts.
Feynman, R. (1959). There is plenty of room at the bottom. Speech to the American Physical

Society Meeting at Caltech, December 29; published in February 1960 in Caltech’s
Engineering and Science magazine.

Fodor, J. A. (1975). The language of thought: New York: T. Y. Crowell.
Fodor, J. A. & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical

analysis. Cognition, 28, 3–71.
Forel, A. (1910). Das Sinnesleben der Insekten. Munich: E. Reinhardt.
Frasconia, P., Gori, M., Kurfessc, F., & Sperdutid, A. (2002). Special issue on integration

of symbolic and connectionist systems. Cognitive Systems Research, 3(2), 121–3.
Fukushi, T. & Wehner, R. (2004). Navigation in wood ants Formica japonica: Context depend-

ent use of landmarks. Journal of Experimental Biology, 207, 3431–9.
Gallistel, C. R. (1980). The organization of action: A new synthesis. Hillsdale, NJ: Lawrence

Erlbaum.
Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: Bradford Books/MIT

Press.
Gallistel, C. R. (1995). Is LTP a plausible basis for memory? In J. L. McGaugh, N. M.

Weinberger, & G. Lynch (eds.), Brain and memory: Modulation and mediation of neu-
roplasticity (pp. 328–37). New York: Oxford University Press.

Gallistel, C. R. (1998). Symbolic processes in the brain: The case of insect navigation. In D.
Scarborough & S. Sternberg (eds.), An Invitation to cognitive science, vol. 4: Methods,
models and conceptual issues (2nd edn., pp. 1–51). Cambridge, MA: MIT Press.

Gallistel, C. R. (1999). The replacement of general-purpose learning models with adaptively
specialized learning modules. In M. S. Gazzaniga (ed.), The cognitive neurosciences (2nd
edn., pp. 1179–91). Cambridge, MA: MIT Press.

Gallistel, C. R. (2003). Conditioning from an information processing perspective. Beha-
vioural Processes, 62, 89–101.

Gallistel, C. R. (2008). Learning and representation. In R. Menzel (ed.), Learning and memory.
Vol. 1 of Learning and memory: A comprehensive reference (ed. J. Byrne). Oxford: Elsevier.

Gallistel, C. R. & Gibbon, J. (2000). Time, rate, and conditioning. Psychological Review,
107, 289–344.

9781405122870_5_end01.qxd 23/1/09 11:19 AM Page 291

292 References

Gallistel, C. R. & Gibbon, J. (2002). The symbolic foundations of conditioned behavior.
Mahwah, NJ: Lawrence Erlbaum.

Gallistel, C. R., King, A., & McDonald, R. (2004). Sources of variability and systematic
error in mouse timing behavior. Journal of Experimental Psychology: Animal Behavior
Processes, 30(1), 3–16.

Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psycho-
logical Review, 84, 279–335.

Gibbon, J. & Balsam, P. (1981). Spreading associations in time. In C. M. Locurto, H. S. Terrace,
& J. Gibbon (eds.), Autoshaping and conditioning theory (pp. 219–53). New York:
Academic Press.

Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. In J. Gibbon
& L. Allan (eds.), Timing and time perception (vol. 423, pp. 52–77). New York: New
York Academy of Sciences.

Gluck, M. A. & Thompson, R. F. (1987). Modeling the neural substrates of associative learn-
ing and memory: a computational approach. Psychological Review, 94, 176–91.

Gottlieb, D. A. (2008). Is the number of trials a primary determinant of conditioned respond-
ing? Journal of Experimental Psychology: Animal Behavior Processes, 34, 185–201.

Gould, J. L. (1986). The locale map of honey bees: Do insects have cognitive maps? Science,
232, 861–3.

Grossberg, S. & Schmajuk, N. A. (1989). Neural dynamics of adaptive timing and tem-
poral discrimination during associative learning. Neural Networks, 2, 79–102.

Gualtiero, P. (2008). Some neural networks compute, others don’t. Neural Networks. doi:
10.1016/j.neunet.2007.12.010.

Halder, G., Callaerts, P., & Gehring, W. J. (1995). Induction of ectopic eyes by target expres-
sion of the eyeless gene in Drosophila. Science, 267, 1788–92.

Hanson, S. J. & Burr, D. J. (1990). What connectionist models learn: Learning and repres-
entation in connectionist networks. 13, 471–89.

Harkness, R. D. & Maroudas, N. G. (1985). Central place foraging by an ant (Cataglyphis
bicolor Fab.): A model of searching. Animal Behaviour, 33, 916–28.

Hasher, L. & Zacks, R. T. (1984). Automatic processing of fundamental information: The
case of frequency of occurrence. American Psychologist, 39, 1372–88.

Hastings, M. H. (2002). A gut feeling for time. Nature, 417, 391–2.
Hauser, M., Carey, S., & Hauser, L. (2000). Spontaneous number representation in semi-

free-ranging rhesus monkeys. Proceedings: Biological Sciences, 267, 829–33.
Hawkins, R. D. & Kandel, E. R. (1984). Is there a cell-biological alphabet for simple forms

of learning? Psychological Review, 91, 375–91.
Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed representations.

In D. E. Rumelhart & J. L. McClelland (eds.), Parallel distributed processing (vol. 1,
pp. 77–109). Cambridge, MA: MIT Press.

Hodges, A. (1983). Alan Turing. New York: Simon & Schuster.
Hoeffner, J. H., McClelland, J. L., & Seidenberg, M. S. (1996). Discovering inflectional

morphology: A connectionist account. Paper presented at the 1996 Meeting of the
Psychonomics Society, Chicago, IL.

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2000). Introduction to automata theory,
languages and computability (2nd edn.). Boston: Addison-Wesley Longman.

Hopson, J. W. (2003). General learning models: Timing without a clock. In W. H. Meck (ed.),
Functional and neural mechanisms of interval timing (pp. 23–60). New York: CRC.

Hudson, T. E., Maloney, L. T., & Landy, M. S. (2008). Optimal compensation for tem-
poral uncertainty in movement planning. PLoS Computational Biology, 4(7), e100130,
100131–9.

9781405122870_5_end01.qxd 23/1/09 11:19 AM Page 292

References 293

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes,
Proceedings of the Institute of Radio Engineers, 4, 1098–101.

Hull, C. L. (1929). A functional interpretation of the conditioned reflex. Psychological Review,
36, 498–511.

Hull, C. L. (1930). Knowledge and purpose as habit mechanisms. Psychological Review, 37,
511–25.

Hull, C. L. (1952). A behavior system. New Haven, CT: Yale University Press.
Hulme, C., Roodenrys, S., Schweickert, R., Brown, G. D. A., Martin, S., & Stuart, G. (1997).

Word-frequency effects on short-term memory tasks: Evidence for a redintegration pro-
cess in immediate serial recall. Journal of Experimental Psychology: Learning, Memory
and Cognition, 23, 1217–32.

Jacob, F. (1993). The logic of life (trans. B. E. Spillmann). Princeton, NJ: Princeton University
Press.

Jaynes, E. T. (2003). Probability theory: The logic of science. New York: Cambridge University
Press.

Jeffreys, H. (1931). Scientific inference. New York: Cambridge University Press.
Jescheniak, J. D. & Levelt, W. J. M. (1994). Word frequency effects in speech production:

retrieval of synactic information and of phonological form. Journal of Experimental
Psychology: Learning, Memory and Cognition, 20, 824–43.

Judson, H. (1980). The eighth day of creation. New York: Simon & Schuster.
Kahneman, D., Slovic, P., & Tversky, A. (eds.). (1982). Judgment under uncertainty: Heur-

istics and biases. Cambridge: Cambridge University Press.
Kamin, L. J. (1967). “Attention-like” processes in classical conditioning. In M. R. Jones (ed.),

Miami symposium on the prediction of behavior: Aversive stimulation (pp. 9–33). Miami:
University of Miami Press.

Kamin, L. J. (1969). Selective association and conditioning. In N. J. Mackintosh &
W. K. Honig (eds.), Fundamental issues in associative learning (pp. 42–64). Halifax,
Canada: Dalhousie University Press.

Kehoe, E. J., Graham-Clarke, P., & Schreurs, B. G. (1989). Temporal patterns of the rab-
bit’s nictitating membrane response to compound and component stimuli under mixed
CS-US intervals. Behavioral Neuroscience, 103, 283–95.

Kelley, A. E., Baldo, B. A., Pratt, W. E., & Will, M. J. (2005). Corticostriatal-hypothalmic
circuitry and food motivation: Integration of energy, action and reward. Physiology &
Behavior, 86, 773–95.

Killeen, P. R. & Weiss, N. A. (1987). Optimal timing and the Weber function. Psychological
Review, 94, 455–68.

King, A. P. & Gallistel, C. R. (1996). Multiphasic neuronal transfer function for representing
temporal structure. Behavior Research Methods, Instruments and Computers, R28, 217–23.

King, B. M. (2006). The rise, fall, and resurrection of the ventromedial hypothalamus in
the regulation of feeding behavior and body weight. Physiology & Behavior, 87, 221–
44.

Kirkpatrick, K. & Church, R. M. (2000). Independent effects of stimulus and cycle dura-
tion in conditioning: The role of timing processes. Animal Learning & Behavior, 28,
373–88.

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural
coding and computation. Trends in Neuroscience, 27, 712–19.

Koch, C. (1997). Computation and the single neuron. Nature, 385, 207–10.
Koch, C. (1999). Biophysics of computation: Information processing in single neurons. Oxford

University Press, Oxford.
Koch, C. & Hepp, K. (2006). Quantum mechanics in the brain. Nature, 440, 611–12.

9781405122870_5_end01.qxd 23/1/09 11:19 AM Page 293

294 References

Koch, C. & Poggio, T. (1987). Biophysics of computation: Neurons, synapses and membranes.
In G. M. Edelman, W. E. Gall, & W. M. Cowan (eds.), Synaptic function (pp. 637–97).
New York: John Wiley.

Koltermann, R. (1971). 24-Std-Periodik in der Langzeiterrinerung an Duft- und Farbsignale
bei der Honigbiene. Z. Vergl. Physiol., 75, 49–68.

Konorski, J. (1948). Conditioned reflexes and neuron organization. Cambridge: Cambridge
University Press.

Krantz, D., Luce, R. D., Suppes, P., & Tversky, A. (1971). The foundations of measurement.
New York: Academic Press.

Lashley, K. S. (1950). In search of the engram. In Symposium of the society of experimental
biology, no. 4: Psychological mechanisms in animal behavior (pp. 454–82). Cambridge:
Cambridge University Press.

Latham, P. E. & Nirenberg, S. (2005). Synergy, redundancy, and independence in popula-
tion codes, revisited. J Neurosci, 25(21), 5195–206.

Laughlin, S. B. (2004). The implications of metabolic energy requirements for the repres-
entation of information in neurons. In M. S. Gazzaniga (ed.), The cognitive neurosciences
(vol. 3, pp. 187–96). Cambridge, MA: MIT Press.

Leslie, A. M. (in press). Where do integers come from? In P. Bauer & N. Stein (eds.), Festschrift
for Jean Mandler.

Leslie, A. M., Gelman, R., & Gallistel, C. R. (2008). The generative basis of natural number
concepts. Trends in Cognitive Sciences, 12, 213–18.

Lewis, F. D. (1981). Theory of computing systems. New York: Springer.
Lindauer, M. (1957). Sonnenorientierung der Bienen unter der Aequatorsonne und zur

Nachtzeit. Naturwissenschaften, 44, 1–6.
Lindauer, M. (1959). Angeborene und erlente Komponenten in der Sonnesorientierung der

Bienen. Zeitschrift für vergleichende Physiologie, 42, 43–63.
LoLordo, V. M. & Fairless, J. L. (1985). Pavlovian conditioned inhibition: The literature

since 1969. In R. R. Miller & N. E. Spear (eds.), Information processing in animals
(pp. 1–50). Hillsdale, NJ: Lawrence Erlbaum.

Lòpez-Moliner, J. & Ma Sopena, J. (1993). Variable binding using serial order in recurrent
neural networks. In Lecture notes in computer science (vol. 686, pp. 90–5). Berlin: Springer.

Lorente de No, R. (1932). Analysis of the activity of the chains of internuncial neurons.
Journal of Neurophysiology, 1, 207–44.

Maas, W. & Sontag, E. D. (1999). Analog neural nets with gaussian or other common noise
distributions cannot recognize arbitrary regular languages. Neural Computation, 11,
771–82.

Major, G., Baker, R., Aksay, E., Mensh, B., Seung, H. S. & Tank, D. W. (2004). Plasticity
and tuning by visual feedback of the stability of a neural integrator. Proceedings of the
National Academy of Science (USA), 101, 7739–44.

Marcus, G. F. (2001). The algebraic mind: Integrating connectionism and cognitive science.
Cambridge, MA: MIT Press.

Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy
by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–15.

Marr, D. (1982). Vision. San Francisco: W. H. Freeman.
Mather, J. (1991). Navigation by spatial memory and use of visual landmarks in octopuses.

Journal of Comparative Physiology A, 168, 491–7.
Matsuzawa, T. & Biro, D. (2001). Use of numerical symbols by the chimpanzee (Pan troglo-

dytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition, 4, 193–9.
Mattell, M. S. & Meck, W. H. (2000). Neuropsychological mechanisms of interval timing

behavior. Bioessays, 22, 94–103.

9781405122870_5_end01.qxd 23/1/09 11:19 AM Page 294

References 295

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5, 115–33.

Mel, B. W. (1994). Information processing in dendritic trees. Neural Computation, 6, 1031–85.
Menzel, R., Greggers, U., Smith, A., Berger, S., Brandt, R., Brunke, S., et al. (2005). Honey

bees navigate according to a map-like spatial memory. Proceedings of the National
Academy of Sciences (USA), 102, 3040–5.

Miall, R. C. (1989). The storage of time intervals using oscillatory neurons. Neural Com-
putation, 1, 359–71.

Miall, R. C. (1992). Oscillators, predictions and time. In F. Macar, V. Pouthas, & W. J. Friedman
(eds.), Time, action and cognition: Towards bridging the gap (NATO Advances Science
Institutes Series D, no. 66, pp. 215–27). Dordrecht: Kluwer Academic.

Miall, R. C. (1996). Models of neural timing. In M. A. Pastor & J. Artieda (eds.), Time,
internal clocks and movement. Advances in psychology (vol. 115, pp. 69–94).
Amsterdam: North-Holland/Elsevier Science.

Miller, R. R. & Escobar, M. (2002). Laws and models of basic conditioning. In C. R. Gallistel
(ed.), Stevens handbook of experimental psychology, vol. 3: Learning and motivation
(3rd edn., pp. 47–102). New York: John Wiley.

Mistlberger, R. E. (1994). Circadian food-anticipatory activity: Formal models and physio-
logical mechanisms. Neuroscience and Biobehavioral Reviews, 18, 171–95.

Mustaca, A. E., Gabelli, F., Papine, M. R., & Balsam, P. (1991). The effects of varying the
interreinforcement interval on appetitive contextual conditioning. Animal Learning and
Behavior, 19, 125–38.

Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135–83.
Nieder, A., Diester, I., & Tudusciuc, O. (2006). Temporal and spatial enumeration processes

in the primate parietal cortex. Science, 313, 1431–5.
Nirenberg, S. & Latham, P. E. (2003). Decoding neuronal spike trains: How important are

correlations? Proceedings of the National Academy of Sciences, USA, 100(12), 7348–53.
Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge: Cambridge University

Press.
Perlis, A. J. (1982). Epigrams in programming. SIGPLAN Notices, 17(9).
Piattelli-Palmarini, M. (1994). Inevitable illusions: How mistakes of reason rule our minds.

New York: John Wiley.
Port, R. (2002). The dynamical systems hypothesis in cognitive science. In L. Nadel (ed.),

Encyclopedia of cognitive science (vol. 1, pp. 1027–32). London: MacMillan.
Potter, M. C., Staub, A., & O’Connor, D. H. (2004). Pictorial and conceptual representa-

tion of glimpsed pictures. Journal of Experimental Psychology: Human Perception and
Performance, 30, 478–89.

Pylyshyn, Z. W. (1986). Computation and cognition: Towards a foundation for cognitive
science. Cambridge, MA: MIT Press.

Redish, A. D. & Touretzky, D. S. (1997). Cognitive maps beyond the hippocampus.
Hippocampus, 7, 15–35.

Rescorla, R. A. (1968). Probability of shock in the presence and absence of CS in fear con-
ditioning. Journal of Comparative and Physiological Psychology, 66, 1–5.

Rescorla, R. A. (1969). Pavlovian conditioned inhibition. Psychological Bulletin, 72, 77–94.
Rescorla, R. A. (1972). Informational variables in Pavlovian conditioning. In G. H. Bower

(ed.), The psychology of learning and motivation (vol. 6, pp. 1–46). New York: Aca-
demic Press.

Rescorla, R. A. & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in
the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy
(eds.), Classical conditioning (vol. 2, pp. 64–99). New York: Appleton-Century-Crofts.

9781405122870_5_end01.qxd 23/1/09 11:19 AM Page 295

296 References

Richter, C. P. (1922). A behavioristic study of the activity of the rat. Comparative Psycho-
logy Monographs, 1.

Rieke, F., Bodnar, D. A., & Bialek, W. (1995). Naturalistic stimuli increase the rate and
efficiency of information transmission by primary auditory afferents. Proceedings: Bio-
logical Sciences, 262, 259–65.

Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1997). Spikes:
Exploring the neural code. Cambridge, MA: MIT Press.

Roche, J. P. & Timberlake, W. (1998). The influence of artificial paths and landmarks on
the foraging behavior of Norway rats (Rattus norvegicus). Animal Learning and Behavior,
26(1), 76–84.

Rosenwasser, A. M., Pelchat, R. J., & Adler, N. T. (1984). Memory for feeding time: Possible
dependence on coupled circadian oscillators. Physiology and Behavior, 32, 25–30.

Rozin, P. (1976). The evolution of intelligence and access to the cognitive unconscious. In
A. N. Epstein & J. M. Sprague (eds.), Progress in psychobiology and physiological psy-
chology (vol. 6, pp. 245–80). New York: Academic Press.

Rumbaugh, D. M. & Washburn, D. A. (1993). Counting by chimpanzees and ordinality
judgments by macaques in video-formatted tasks. In S. T. Boyese & E. J. Capaldi (eds.),
The development of numerical competence: Animal and human models (pp. 87–106).
Hillsdale, NJ: Lawrence Erlbaum.

Rumelhart, D. E. & McClelland, J. L. (1986). On learning the past tenses of English verbs.
In J. L. McClelland, D. E. Rumelhart, & The PDP Research Group (eds.), Parallel dis-
tributed processing: Explorations in the microstructure of cognition. Vol. 2: Psycho-
logical and biological models (pp. 216–71). Cambridge, MA: MIT Press.

Rumelhart, D. E. & McClelland, J. L. (eds.). (1986). Parallel distributed processing.
Cambridge, MA: MIT Press.

Rumelhart, D. E. & Todd, P. M. (1993). Learning and connectionist representations. In
D. E. Meyer & S. Kornblum (eds.), Attention and performance (vol. 14, pp. 3–30).
Cambridge, MA: MIT Press.

Samsonovich, A. & McNaughton, B. L. (1997). Path integration and cognitive mapping in
a continuous attractor neural network model. Journal of Neuroscience, 17, 5900–20.

Scapini, F., Rossano, C., Marchetti, G. M., & Morgan, E. (2005). The role of the biological
clock in the sun compass orientation of free-running individuals of Talitrus saltator.
Animal Behavior, 69, 835–43.

Schneidman, E., Berry, M. J., Segev, R., & Bialek, W. (2006). Weak pairwise correlations
imply strong correlated network states in a neural population. Nature, 440, 1007–13.

Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems Technical
Journal, 27, 379–423, 623–56.

Sherrington, C. S. (1947 [1906]). The integrative action of the nervous system. New Haven:
Yale University Press.

Siegel, S. (1999). Drug anticipation and drug addiction. Addiction, 94, 1113–24.
Siegel, S. & Allan, L. G. (1998). Learning and homeostasis: Drug addiction and the

McCollough effect. Psychological Bulletin, 124, 230–9.
Simmons, P. J. & de Ruyter van Steveninck, R. (2005). Reliability of signal transfer at a

tonically transmitting, graded potential synapse of the locust ocellar pathway. Journal
of Neuroscience, 25, 7529–37.

Skaggs, W. E., Knierim, J. J., Kudrimoti, H. S., & McNaughton, B. L. (1995). A model of the
neural basis of the rat’s sense of direction. In G. Tesauro, D. S. Touretzky, & T. Leen
(eds.), Advances in neural information processing (vol. 7). Cambridge, MA: MIT Press.

Skinner, B. F. (1938). The behavior of organisms. New York: Appleton-Century-Crofts.
Skinner, B. F. (1957). Verbal behavior. New York: Appleton-Century-Crofts.

9781405122870_5_end01.qxd 23/1/09 11:19 AM Page 296

References 297

Skinner, B. F. (1990). Can psychology be a science of mind? American Psychologist, 45,
1206–10.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony
theory. In D. E. Rumelhart & J. L. McClelland (eds.), Parallel distributed processing:
Foundations (vol. 1, pp. 194–281). Cambridge, MA: MIT Press.

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences,
11, 1–74.

Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artificial Intelligence, 46, 159–216.

Smolensky, P. (1991). Connectionism, constituency and the language of thought. In B. Loewer
& G. Rey (eds.), Meaning in mind: Fodor and his critics (pp. 201–27). Oxford:
Blackwell.

Sougné, J. (1998). Connectionism and the problem of multiple instantiation. Trends in Cognitive
Sciences, 2, 183–9.

Staddon, J. E. R. & Higa, J. J. (1993). Temporal learning. In D. Medin (ed.), The psycho-
logy of learning and motivation (vol. 27, pp. 265–94). New York: Academic Press.

Stein-Beling, I. v. (1935). Über das Zeitgedächtnis bei Tieren. Biological Reviews, 10, 18–41.
Stevens, S. S. (1951). Mathematics, measurement and psychophysics. In S. S. Stevens (ed.),

Handbook of experimental psychology (pp. 1–49). New York: John Wiley.
Strong, S. P., de Ruyter van Steveninck, R. R., Bialek, W., & Koberle, R. (1998). On the

application of information theory to neural spike trains. Pacific Symposium on Bio-
computation, 621–32.

Sujino, M., Masumoto, K. H., Yamaguchi, S., van der Hors, G. T., Okamura, H., & Inouye,
S. T. (2003). Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genet-
ically arrhythmic mice. Current Biology, 13, 664–8.

Sun, R. (1992). On variable binding in connectionist networks. Connection Science, 4, 93–124.
Sutton, R. S. & Barto, A. G. (1981). Toward a modern theory of adaptive networks:

Expectation and prediction. Psychological Review, 88, 135–70.
Sutton, R. S. & Barto, A. G. (1990). Time-derivative models of Pavlovian reinforcement. In

M. Gabriel & J. Moore (eds.), Learning and computational neuroscience: Foundations
of adaptive networks (pp. 497–537). Cambridge, MA: Bradford/MIT Press.

Tautz, J., Zhang, S. W., Spaethe, J., Brockmann, A., Si, A., & Srinivasan, M. (2004). Honeybee
odometry: Performance in varying natural terrain. PLoS Biology, 2, 915–23.

Trommershäuser, J., Maloney, L. T., & Landy, M. S. (2003). Statistical decision theory and
rapid, goal-directed movements. Journal of the Optical Society, A(20), 1419–33.

Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (eds.),
Organization of memory (pp. 381–403). New York: Academic Press.

Tulving, E. (1989). Remembering and knowing the past. American Scientist, 77, 361–7.
Turing, A. M. (1936). On computable numbers, with an application to the Ent-

scheidungsproblem. Proceedings of the London Mathematical Society 2nd series, 42,
230–65.

Vander Wall, S. B. (1990). Food hoarding in animals. Chicago: University of Chicago Press.
von Frisch, K. (1967). The dance-language and orientation of bees. Cambridge, MA:

Harvard University Press.
Wagner, A. R., Logan, F. A., Haberlandt, K., & Price, T. (1968). Stimulus selection in ani-

mal discrimination learning. Journal of Experimental Psychology, 76, 171–80.
Wahl, O. (1932). Neue Untersuchungen über das Zeitgedächtnis der Bienen. Zeitschrift für

vergleichende Physiologie, 16, 529–89.
Watson, J. D. & Crick, F. H. (1953). A structure for deoxyribose nucleic acid. Nature, 171,

737–8.

9781405122870_5_end01.qxd 23/1/09 11:19 AM Page 297

298 References

Wehner, R., Lehrer, M., & Harvey, W. R. (eds.). (1996). Navigation: Special issue of The
Journal of Experimental Biology, 199(1). Cambridge: The Company of Biologists, Ltd.

Wehner, R. & Srinivasan, M. V. (1981). Searching behavior of desert ants, genus Cata-
glyphis (Formicidae, Hymenoptera). Journal of Comparative Physiology, 142, 315–38.

Wehner, R., & Srinivasan, M. V. (2003). Path integration in insects. In K. J. Jeffery (ed.),
The neurobiology of spatial behaviour (pp. 9–30). Oxford: Oxford University Press.

Weidemann, G., Georgilas, A., & Kehoe, E. J. (1999). Temporal specificity in patterning of
the rabbit nictitating membrane response. Animal Learning and Behavior, 27, 99–107.

Weiss, P. (1941). Self-differentiation of the basic patterns of coordination. Comparative
Psychology Monographs, 17, 1–96.

White, N. E., Kehoe, E. J., Choi, J.-S., & Moore, J. W. (2000). Coefficients of variation in
timing of the classically conditioned eyeblink in rabbits. Psychobiology, 28(4), 520–4.

Wiltschko, R., & Wiltschko, W. (2003). Avian navigation: From historical to modern con-
cepts. Animal Behaviour, 65, 257–72.

9781405122870_5_end01.qxd 23/1/09 11:19 AM Page 298

Glossary

action potentials Large pulse-like changes in membrane potential that propagate
in the axons of neurons over long distances without degrading; the signals by
which information is rapidly transmitted over long distances in nervous systems.

address bus The set of parallel wires carrying the bit pattern that specifies the address
(location) in memory from or to which a symbol is to be read or written. A
transcription factor that binds to (“is recognized by”) a promoter plays the
role in biological memory of the signal on an address bus, which is recognized
by the hardware at the address it specifies.

addressable memory A memory whose contents may be retrieved by probing with
symbols that encode for the address (location) of the memory. Examples are
(1) the random access memory in a computer, in which the contents of a loca-
tion are retrieved by probing with the address of that location, and (2) genes,
which are activated by probing with a transcription factor that binds to the
promoter for the gene.

algorithm A step-by-step process that determines the output of a function, given
the input. Also called a procedure, particularly when the inputs and outputs
are symbols.

analog principle The principle that analog symbols (and also digital symbols
encoded without the use of combinatorial syntax) demand resources that are
proportional to the number of potential messages for which they encode, mak-
ing such symbols ultimately untenable for use in complex representing systems.

analog symbol/signal A symbol/signal that comes from a non-discrete (continuous),
infinite, and orderable set of possible symbols/signals.

argument An entity chosen from the domain of a function. Also called the input
to the function.

ASCII The American Standard Code for Information Interchange; a code for
assigning bytes to common characters (letters, numbers, punctuation, etc.).

association A conductive connection between two mental or brain units, formed
or altered by experience. The critical aspect of the requisite experience has
traditionally been assumed to be the close temporal pairing of two “ideas” or
sensations (in the doctrines of the empiricist philosophers of the eighteenth
and nineteenth centuries) or of a stimulus and a response (in the Behaviorist
tradition) or of a stimulus and a stimulus, or of a presynaptic action potential

9781405122870_5_end02.qxd 23/1/09 11:19 AM Page 299

Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience C. R. Gallistel
and Adam Philip King © 2010 C. R. Gallistel and Adam Philip King ISBN: 978-1-405-12287-0

300 Glossary

and a postsynaptic depolarization (in contemporary neurobiologically oriented
theorizing).

atomic data The irreducible physical forms that can be distinguished in a repre-
senting system and used in the construction of data strings and symbols.

Bayes’ law The analytic relation between two unconditional probabilities – p(x)
and p(y) – and the corresponding conditional probabilities – p(x|y) and p(y|x):
p(y|x) = p(x|y) p(y)/p(x); the rule governing normative probabilistic inference
from data (signals) to the states of the world that may have generated them.

bijection A function that is both one-to-one and onto.
bit A basic unit of measurement for information. Also, a symbol that comes from

a set of two possible symbols.
bit pattern An ordered set (sequence) of bits.
blocking The phenomenon in classical and operant conditioning in which a previ-

ously learned association between one conditioned stimulus (CS) and an
unconditioned stimulus (US) blocks the formation of an association between
another (potential) CS and that same US when the new CS is always presented
together with (in compound with) the old CS. It is one of the proofs that the
temporal pairing of a CS and a US is not a sufficient condition for the devel-
opment of an association.

Boolean algebra The mathematical system of logical functions and binary symbols.
byte A unit of measurement for information; a byte is eight bits.
Cartesian product The set of all possible pairwise (or triplewise, etc.) combinations

of elements chosen from two or more sets, with one element from each set in
each combination.

channel The medium (such as a wire, a band of radio frequencies, or an axon) that
is used to carry a signal.

checksum Information contained within a signal that is not about the encoded mes-
sage but rather about the signal itself; it is used to help verify that the signal
received is the signal that was sent.

Church-Turing thesis The hypothesis that a Turing machine (and other formally
equivalent systems, such as the lambda calculus or recursive functions) de-
limit the set of functions that may be computed (determined by a generative
mechanism).

circadian clock An endogenous entrainable biochemical cycle with a period of approx-
imately 24 hours that times the daily variations in the activity and physiology
of an organism, organ, tissue, or cell. To say that it is entrainable is to say
that external signals from another cycle with roughly the same period (most
often the cyclical variation in solar illumination) adjust the phase of the cycle
so that it maintains a constant phase relation to the source of the external
signal (called the Zeitgeber, or time-giver).

classical conditioning An experimental protocol in which the temporal contingency
between the conditioned stimulus and the unconditioned stimulus does not
depend on the subject’s behavior.

code The rules that specify the encoding process by which messages are converted
into symbols/signals. More generally, it is the relationship between the set of
possible messages and the set of possible symbols/signals.

9781405122870_5_end02.qxd 23/1/09 11:19 AM Page 300

Glossary 301

codomain The set of distinct (and possibly infinite) elements of which the outputs
(also values) of a particular function are members. For the function f : D → C,
it is the set C.

codon A sequence of three nucleotides that codes for an amino acid or for the punc-
tuation that marks the start and end of a gene, which specifies the sequence
of amino acids in a protein or polypeptide (the molecular building blocks of
organic structure).

cognitive map A data structure in the brain that records the locations (coordinates)
of experienced points of interest in the environment, together with addresses
that permit the retrieval of information pertinent to those locations, such as
compass-oriented views.

combinatorial explosion The effect that results from a set of combinations in which
the number of combinations grows exponentially with the number of differ-
ent elements entering into each combination.

combinatorial syntax Syntax created by combining symbols based on their form
and their ordering (relative positions). Using combinatorial syntax results in
compact symbols, as one can produce dn symbols from d atomic symbols and
strings of length n.

compact (compressed) code A code is compact to the degree by which it minimizes
the average number of bits that are needed to encode for a set of messages.
As this number of bits is reduced, the code is said to be more efficient. A code
is maximally compressed (efficient) when the average number of bits in the
signal or symbol equals the source entropy.

compact procedures Procedures for which the number of bits required to com-
municate them (the bits required to encode the algorithm) is many orders of
magnitude smaller than the number of bits required to communicate the look-
up table for the function realized by the procedure.

compact symbols Symbols that are constructed using combinatorial syntax. Such
symbols require physical resources that grow logarithmically in the number of
entities for which they may encode.

composition of functions The construction of a new function by taking the output
of one function and making it the input to another function. Where · denotes
composition, fa · fb = fa(fb(x)). This creates a new function that has the range
of fa and the domain of fb.

computable numbers Those numbers for which there exists a procedure that will
determine their symbolic representation to an arbitrary level of precision (out
to arbitrarily many decimal places). Most real numbers are not computable.

computation The effecting of a procedure so as to determine the output of a func-
tion, given an input. A computation usually implies that the input and output
are symbols.

conditioned stimulus A stimulus that does not elicit an anticipatory behavior in a
naïve subject.

conditioning Jargon for the learning that occurs in simple experimental paradigms
designed originally to reveal the laws of association formation. From a modern
computational perspective, the term implies a state-memory (rewiring) concep-
tion of the learning process, in that experience is conceived of as altering the

9781405122870_5_end02.qxd 23/1/09 11:19 AM Page 301

302 Glossary

condition (processing state) of the nervous system, so that the animal behaves
differently as a result of the learning experience. In this conception of learn-
ing, there is no symbolic memory. The alternative conception is that experi-
ence imparts information, which is carried forward in a symbolic memory to
inform subsequent behavior.

connectionism The elaboration of psychological models built on neural nets, which
model psychological phenomena without recourse to a symbolic memory,
except as implemented via recurrent connections that allow self-sustaining
activity mediated by signals traveling round and round in loops. Part of the
justification for such models is their putative neurobiological plausibility.

content-addressable memory A memory in which locations may be found not by
probing with their address but rather with partial contents. When a location
matches the partial probe, it returns either: (1) its address, or (2) the rest of
the contents.

countable A set is countable if it can be placed in one-to-one correspondence with
the set of natural numbers, !, that is, if its members can be listed in such a
way that if the list were continued indefinitely any specified member of the set
would eventually appear in the list. Famous proofs by Cantor show that the
rational numbers are countable but the real numbers are not. The computable
numbers are countable, although they include many non-rational numbers, such
as pi, e, and √2.

data bus The set of parallel wires carrying a bit pattern signal from or to a loca-
tion in memory, depending on whether the information in the signal is to be
read from or written to that location.

data strings The ordered symbolic forms composed of one or more atomic data.
For example, a sequence of bits, a sequence of numerals, a sequence of digits,
or a sequence of nucleotides.

data structures Often called expressions in the philosophical and logical literature,
data structures are symbol strings (or, possibly, structures with a more com-
plex topology than that of a one-dimensional string) that have referents by virtue
of the referents of the symbols out of which they are composed and the arrange-
ment of those symbols. For example, the point on the plane represented by
the vector <12, −4> is a data structure, as its referent is determined by the
referents and arrangement of the symbols for the numbers 12 (‘12’) and −4
(‘−4’). Data structures often encode for propositions, statements such as “All
men are mortal,” that express relationships.

dead reckoning The integration of velocity with respect to time (or the summing
of successive small displacements) to obtain the net change in position (aka,
path integration).

decode To reconstitute a message from a symbol/signal.
delta rule Formal description of a process for adjusting the strength of associations

that has first-order kinetics. The change in strength is proportional to the dif-
ference between the sum over all current associations to that element (node)
and a quantity representing the value to which the sum must converge in the
limit under stable conditions.

9781405122870_5_end02.qxd 23/1/09 11:19 AM Page 302

Glossary 303

digital symbol/signal A symbol/signal is digital if it comes from a discrete and finite
set of possible symbols/signals.

dimer Two molecules (temporarily) bound together in a form with a functionality
that the combining molecules do not alone have. Dimerization may implement
at the molecular level the logic functions from which all other functions may
be realized by composition (for example, NOT and AND).

direct addressing Accessing a memory location (a variable) via a symbol that
encodes for the address of the memory location. Using a simple variable in a
traditional programming language is an example of direct addressing.

domain A set of distinct (and possibly infinite) elements from which the inputs (argu-
ments) to functions are chosen.

effective procedure See procedure.
effector A device that converts signals within an information processing device into

external behaviors.
encode To convert a message into a symbol or signal. One then says that the sym-

bol/signal codes for this message.
encoding symbols Symbols related to their referents by generative principles (a com-

pact procedure).
entropy The amount of uncertainty regarding which message in a set of possible

messages will obtain. Given a discrete or continuous probability distribution
on the set of possible messages, it is the sum or integral of plogp with respect
to p. Typically measured in bits.

EPSP An Excitatory PostSynaptic Potential; a temporary depolarization of the
postsynaptic membrane that can result in the initiation of an action potential.

finite-state automaton A computing machine with state memory but without sym-
bolic memory; a Turing machine without a tape to which it can write.

flip-flop A bi-stable memory device that provides the minimal functionality for the
read/write memory of a Turing complete computing device. It also makes state
memory possible.

function A deterministic mapping between elements of one set of distinct entities,
called the domain, to elements from another set of distinct entities, called the
codomain.

grandmother neuron A neuron that is selectively tuned to a combination of stim-
ulus elements from among an essentially infinite set of possible combinations,
implying that there would have to be an infinite number of such neurons to
represent the entire set.

halting problem The problem of determining whether a computer program, given
a particular input, will halt. This problem is not computable, that is, there is
no machine that can give the answer in a finite amount of time in all cases.

Hebbian synapse A synapse whose conductance is altered by the temporal pairing
of a presynaptic signal and a postsynaptic depolarization (EPSP).

homomorphism A structure preserving mapping from one set of entities and func-
tions to another set of entities and functions.

Huffman code A code made efficient by using the probabilities of each message in
the set of potential messages to produce the code.

9781405122870_5_end02.qxd 23/1/09 11:19 AM Page 303

304 Glossary

immediate addressing A misnomer: utilizing a value by embedding it directly
within the computational device itself in non-symbolic form. Such values are
not accessible for general purpose computation. Using a literal (constant) in a
traditional programming language is an example of immediate addressing.

indirect addressing Accessing a memory location (a variable) by probing an
address that contains the address of the location sought. Using an array in a
traditional programming language is an example of indirect addressing. A tran-
scription factor that binds to the promoter of the gene encoding another
transcription factor plays the analogous role in biological memory.

indirect code A code is indirect with respect to intrinsic properties of an entity to
the extent that it produces symbols whose physical form does not reflect these
intrinsic properties in any simple way.

infinitude of the possible The infinite number of possible values that could obtain
for a variable. For example, the (essentially) infinite number of different pic-
tures that a digital camera can take.

information The reduction in the entropy of the receiver’s probability distribution
(over a set of possible messages) effected by a signal. Typically, the signal was
received in the indeterminate past, so the reduction it effected must be carried
forward in time by a symbol. The information carried by a symbol is the dif-
ference between the receiver’s uncertainty about the relevant state of the world,
given that symbol, and the receiver’s uncertainty about that same state of the
world, absent that symbol (assuming that the receiver can decode the symbol).

information source A producer of messages that are to be communicated.
input An entity chosen from the domain of a function. Also called the argument

of the function.
integers Signified by ", this is the infinite set {0, −1, 1, −2, 2, . . .}.
intractable function A function whose determination requires exponential growth

in spatial or temporal resources as the size of the encoding of the input grows
linearly (linearly in the cardinality of the domain). Intractable functions can-
not be computed efficiently.

ionotropic receptor A molecular structure embedded in the postsynaptic membrane
of a neuron, which allows some species of ions (usually, sodium, or chloride,
or calcium or potassium) to flow through it when in the open configuration
but not when in the closed configuration. The configuration is controlled by
the binding of external signal-transmitting substances (neurotransmitters) to por-
tions of the molecular structure on the outside of the membrane.

IPSP An Inhibitory PostSynaptic Potential; a temporary hyperpolarization of the
postsynaptic membrane that can prevent the occurrence of an action poten-
tial. An effect opposite in sign to the effect of an excitatory postsynaptic
potential (EPSP).

joint distribution A function specifying for the Cartesian product of two sets of
messages (that is, for each possible combination of two messages, one from
each set) the probability of that combination. Being a probability distribution,
the set of all the joint probabilities must sum to 1.

likelihood A probability distribution read backward. When read forward, a prob-
ability distribution is taken as the given and we read from it the probability

9781405122870_5_end02.qxd 23/1/09 11:19 AM Page 304

Glossary 305

of different possible signals (data) that we might observe. When read back-
ward, the data are taken as given (already observed) and we read from an hypoth-
esized probability distribution (for example, a distribution with an assumed
mean and standard deviation) the likelihood of our having observed those
signals if that were the distribution from which they came. In the first case,
we infer from the distribution to the probability of the data; in the second
case, we infer from the data back to the likelihood of a source distribution.

likelihood function The function specifying for different possible source distribu-
tions (e.g., normal distributions varying in their mean and standard deviation)
their relative likelihood given some data (observed signals). Because likelihoods,
unlike probabilities, are not mutually exclusive and exhaustive, likelihood
functions rarely integrate (sum) to 1, unlike probability distributions, which
always do. The likelihood function plays a central role in Bayesian inference:
it represents the data, specifying their implications regarding the possible
states of the world, that is, regarding which messages from among a set of
messages are and are not likely in the light of the data.

linked list A linear data structure that is created using a virtual “next to” relation-
ship by specifying along with each symbol the address of the next symbol. If
the data structure also maintains the address of each previous symbol, then it
is called a doubly linked list.

logic function An elementary two-argument function in digital processing (and in
symbolic logic), specifying for each of the four possible combinations of the
two values of two binary variables that serve as inputs or arguments (00, 01,
10, and 11) the value of the output (0 or 1). This specification is called a truth
table. For example, the AND function has the truth table: 00→0, 01→0, 10→0,
11→1, while the OR function has the truth table: 00→0, 01→1, 10→1, 11→1,
and the NAND function has the truth table: 00→1, 01→1, 10→1, 11→0. More
complex functions are constructed from these elementary functions by com-
position. The one-argument NOT function (0→1, 1→0) is generally included
among the logic functions.

look-up table A table structure that defines and determines a function by giving
the explicit mapping of each input to its respective output. Look-up tables demand
spatial resources that grow linearly in the number of potential inputs (the car-
dinality of the domain), making them unusable for functions that have large
domains.

LTP Long-term potentiation: an enduring increase in the conductance of a
synapse, that is, an enduring change in magnitude of an EPSP produced by a
presynaptic action potential. Widely considered to be the physical basis of asso-
ciative memory.

marginal distribution The distribution obtained by summing or integrating over one
or more of the parameters or variables that define a distribution. If one imag-
ines a joint distribution as a probability “hill,” then the marginal distributions
are the distributions that one gets using a bull-dozer that piles up all the prob-
ability mass onto one or the other of the two orthogonal vertical planes.

memory (symbolic) The mechanism that carries information forward in time in a
computationally accessible form. Often used in a much more general sense, to

9781405122870_5_end02.qxd 23/1/09 11:19 AM Page 305

306 Glossary

include the innumerable processes that organize the information (form it into
data structures), revise it, and retrieve it.

message One member from a set of possibilities, typically, possible states of the
world that are to be communicated to a receiver.

metabotropic receptor A molecular structure embedded in the postsynaptic mem-
brane of a neuron, whose configuration is altered by the binding of a neuro-
transmitter substance to a portion of the receptor on the outside of the
membrane. The change in configuration alters the structure of a G protein to
which the inside portions of the structure are coupled, setting in motion an
intracellular signal cascade. These receptors allow signals external to a neuron
to affect its internal signal system.

mutual information The sum of the entropies of two marginal distributions minus
the entropy of the joint distribution. If the two distributions are the source
distribution and the signal distribution, then this is the fraction of the source
information contained in the signal. It is the upper limit on the information
about the source that a signal can transmit to a receiver.

natural numbers Signified by !, this is the infinite set {0, 1, 2, . . .}.
neural net A schematic arrangement of abstract neuron-like elements with many

connections between the elements (nodes). The connections are thought to have
functional properties somewhat like the functional properties of the synapses
by which signals pass from one neuron to another within a nervous system.
Neural net theorists investigate the ability of such nets to mimic behavioral or
mental phenomena. The nets are commonly imagined to have three layers, an
input layer, a hidden layer, and an output layer, corresponding roughly to sen-
sory neurons, interneurons, and motor neurons. In a recurrent net, the pattern
of connections allows for signals to flow round and round in loops.

noise sources All factors other than the message that contribute to variation in a
signal. Noise sources tend to corrupt the signal and make decoding more difficult.

nominal symbol A symbol that maps to its referent in an arbitrary way using a
look-up table; a mapping that is not constrained by any generative principles
and cannot be determined by a compact procedure.

nucleotide The basic building block of the double-helical DNA molecules that carry
inherited information forward in time. Each nucleotide contains one of four
nitrogenous bases (adenine, thymine, cytosine, and guanine or ATCG for
short), which pair to form the cross links within the double helix. The hered-
itary data strings are sequences of these four data elements. Because adenine
can link only with thymine, and cytosine only with guanine, the two helical
strands have complementary antiparallel sequences. This enables the code to
be copied (replicated).

one-to-one function A function where distinct members of the domain get mapped
to distinct members of the codomain, that is, f(a) = f(b) implies a = b.

onto function A function where the range is the same as the codomain, that is, if
every element in the codomain is the output for (is paired with) one or more
elements in the domain.

operant conditioning An experimental protocol in which there is an experimenter-
imposed contingency between the subject’s behavior and some event, such as
the delivery of food.

9781405122870_5_end02.qxd 23/1/09 11:19 AM Page 306

Glossary 307

output An entity from the codomain of a function resulting from a particular input.
Also called the value of the function.

overshadowing The phenomenon in classical and operant conditioning in which
presenting two (potentially) conditionable stimuli together (in compound) leads
to the formation of an association to one or the other but not both. It is one
of the proofs that the temporal pairing of a CS and a US is not a sufficient
condition for the development of an association.

Pavlovian conditioning See classical conditioning.
place coding A proposed encoding scheme by which different states of the world

are represented by the firing of different neurons. Thus, the state of the
world is encoded by the location of activity within neural tissue.

plasticity Neurobiological jargon for the presumed capacity of neural tissue to make
enduring changes in its processing state in response to experience; an allusion
to the presumed capacity for the rewiring of neural connections.

posterior probability The probability of a source message in the light of both the
data (signals received), the likelihood function, and the prior probability. The
posterior probability is the probability after taking both prior probability and
the data into account.

predicate A function that maps one or more arguments to a binary output (True-
False or 1, 0).

prefix code A code that produces variable length symbols/signals that, when strung
together linearly, are unambiguously distinguishable. It achieves this by mak-
ing sure that no encoding appears as the prefix of another. For example, the
code that produces English words is not a prefix code, as it has words such
as “fast” and “fasten.”

prior probability The probability of a source message, the probability based on infor-
mation other than the information contained in a specified signal.

probability density The rate at which probability mass accumulates as one moves
past a given point on the parameter axis of a continuous probability distri-
bution, that is, the point slope (derivative at a point) of the cumulative prob-
ability function. Because it is a derivative (rate of change of probability) rather
than an amount (mass), it may have any positive value.

probability distribution A function specifying for each of a set of possible values
(messages) of a variable (set of possible messages) a probability. Because one
and only one message can obtain at any one time (because the possibilities are
mutually exclusive and exhaustive), the set of all the probabilities must sum
to 1.

problem of the infinitude of the possible This problem recognizes that the possi-
ble number inputs that many functions might take are effectively infinite. As
such, it is not possible to implement such functions using non-compact pro-
cedures (look-up tables).

problem of pre-specification This problem recognizes that if one uses a non-
compact procedure (a look-up table architecture) to implement a function,
then one must specify in advance – and allocate physical resources to – all of
the possible outputs that one might hope to get back from the function.

procedure A step-by-step process (algorithm) that determines the output of a
function, given the input. This term is used most often within a computational

9781405122870_5_end02.qxd 23/1/09 11:19 AM Page 307

308 Glossary

framework, where the inputs and outputs of the function are symbols. One
says that a procedure, when effected as a computation, determines a function,
and that the procedure, as a physical system, implements a function. As a phys-
ical system, the word process is often used as synonymous with procedure.

productivity The ability of a computational mechanism (a procedure that imple-
ments a function) to map an essentially infinite number of possible input argu-
ments to outputs – an ability lacking in a look-up table, because the table must
contain in its physical structure elements unique to all possible inputs and
outputs.

promoter A stretch of DNA to which a transcription factor binds and, in so doing,
promotes the transcription (reading) of a gene. The promoter plays the same
role in the retrieval of genetic information that an address probe plays in the
retrieval of information from a random access computer memory

property A predicate of one argument.
proposition See data structures.
RAM Random Access Memory; addressable, read/write memory in a conventional

computer.
rate coding A proposed encoding scheme in which different rates of firing of a

neuron code for different states of the world.
real numbers Signified by #, the real numbers are those that can encoded by an

infinite decimal representation. Real numbers include the natural, rational, irra-
tional, and transcendental numbers. Geometric proportions are isomorphic only
to the proportions represented by real numbers in that every geometric pro-
portion (for example, the proportion between the side of a square and its diag-
onal or the diameter of a circle and its circumference) maps to a real number
and every real number maps to a geometric proportion. This is not true for
infinitesimal subsets of the real numbers, like, the rational numbers.

receiver A physical system that operates on (decodes) a signal to reconstitute a com-
municated message.

recurrent (reverberating) loop A putative connection between a neuron and itself
or between a sequence of neurons leading back to the first neuron. Such loops
are widely supposed to carry information forward in time by continuously cycling
the information without noise.

register A multi-bit read/write memory device in a conventional computer.
reinforcement A motivationally important outcome of some sequence of stimuli

and/or responses that alters the subject’s future responses. The term presup-
poses an associative theory of learning and memory in that it implies that the
altered behavior is the consequence of the strengthening of some connection
(association).

relation A predicate of more than one argument.
relative validity A conditioning protocol in which it is observed that the best pre-

dicting CS among three different partially predictive CSs is the only CS to which
an association apparently forms. It is one of the proofs that the temporal pair-
ing of a CS and a US is not a sufficient condition for the development of an
association. It is also a strong indication of the computational sophistication
of the process that mediates the formation of putative associations.

9781405122870_5_end02.qxd 23/1/09 11:19 AM Page 308

Glossary 309

representation A representation consists of a represented system, a representing sys-
tem, and structure-preserving mappings between the two systems. The latter
map between entities and functions in the represented system and symbols
and procedures in the representing system in such a way that (at least some)
formal properties of the functions in the represented system are preserved in
the symbols and procedures to which they map and that map back to them.
This preservation of formal structure is what enables the representing system
to anticipate relations in the represented system.

ribosomes The intracellular molecular machine that assembles proteins following
the instructions transmitted from an activated gene by messenger RNA.

Shannon-Fano code A code made efficient by using the relative probabilities (prob-
ability rankings) of the set of messages to produce the code.

shift register A memory register that preserves a sequence of binary inputs by shift-
ing the bit pattern down by one bit as each successive bit is received, preserving
the newly received bit as the top bit in the register.

signal A fluctuation in a physical quantity carrying information across space.
Signals always come from a set of possible signals.

solar ephemeris The compass direction of the sun as a function of the time of day.
In traditional navigation, it refers to both the compass direction (azimuth) and
elevation (angular distance above the horizon) as functions of the time of day
and the date, but there is no evidence that animal navigators make use of the
elevation.

spike trains The sequences of action potentials that function as the universal cur-
rency by which information is transmitted from place to place within neural
tissue.

state memory Memory implicit in the effect of the past on the current state of the
symbol processing machinery, with no encoding of the information into com-
putationally accessible symbolic form.

sun compass A mechanism that uses the sun (and a learned solar ephemeris) to
maintain a constant orientation with respect to the earth’s surface.

symbol A physical entity that carries information forward in time. Symbols in a
representing system encode for entities in a represented system. Symbols
always come from a set of possible symbols. Often used as a general term to
refer to both symbols and signals.

synaptic conductance The scale factor relating the magnitude of a presynaptic sig-
nal to its postsynaptic effect; the magnitude of the postsynaptic effect produced
by a given presynaptic signal. Changes in synaptic conductance are commonly
assumed to be the neurobiological mechanism by which associations form.

syntax The rules that govern the mapping from the structure of symbol strings or
data structures to their referents. The rules are based on the form of the con-
stituent symbols and their spatial and/or temporal context. For example, the
rule that specifies that whether a given power of 2 does or does not form part
of the sum that must be computed to get the numerical referent of a bit string
depends on the bit at the corresponding position when counting from the right
of a bit string (if there is a ‘1’ at that position, that power of 2 is to be included
in the sum; if there is a ‘0’, it is not).

9781405122870_5_end02.qxd 23/1/09 11:19 AM Page 309

310 Glossary

transcription factor A molecule that binds to a promoter or repressor region of
DNA to promote or repress the transcription (reading) of a gene. Plays
roughly the same functional role as a bit pattern on the address bus in ran-
dom access computer memory.

transduce To convert a sensory (proximal) stimulus into a sensory signal, typically
into streams of spikes in sensory axons.

transition table A table specifying for a computing machine what state to transi-
tion to given the current state of the machine and any potential inputs, inter-
nal or otherwise. The table often includes other actions to be taken, such as
producing an output or writing a symbol to memory.

transmitter A physical system that operates on a message to create a signal that
can be sent across a channel. The transmitter encodes the message.

transmitter substance A substance released from a presynaptic ending that diffuses
across the very narrow synaptic cleft and binds to postsynaptic receptors, thereby
affecting signaling in the postsynaptic neuron.

Turing computable A function is Turing computable if, given an encoding of the
inputs and outputs, there is a Turing machine that can determine the function.

Turing machine An abstract computing machine that consists only of a symbolic
memory tape (which may be arbitrarily large), a read/write head, and a tran-
sition table.

two senses of knowing This refers to the distinction between straightforward,
transparent symbolic knowledge (information accessible to general purpose
computation), and the indirect, opaque “knowing” that is characteristic of
finite-state machines, which lack a symbolic read/write memory.

unconditioned stimulus A stimulus that elicits some behavior in a naïve subject. In
conditioning experiments, this is the stimulus that is predicted by a conditioned
stimulus. A subject that experiences this predictive relation comes in time to
make a US-anticipatory response (a conditioned response) to the conditioned
stimulus.

universal Turing machine A Turing machine TM1 that is capable of computing the
function computed by any other Turing machine TM2 on an input x by tak-
ing an appropriate encoding of TM2 and x. A universal Turing machine is a
mathematical model for a general-purpose computer.

value (1) The output of a function for a particular input (argument). (2) The mes-
sage that currently obtains for a given variable (set of possible messages).

variable A set of possible messages; the messages in the set constitute the possible
values of the variable. Physically speaking, the symbol for a variable is the sym-
bol for the address where the current value resides.

variable binding problem The problem of how to locate, retrieve, and set the sym-
bol specifying the current value of a variable. This is a problem for connec-
tionist architectures only. In a conventional computing architecture, this
ability derives transparently from the addressability of the values in memory.

vector In its most general sense, an ordered set (string) of numbers (or symbol ele-
ments, as in a binary vector). In a narrower sense, only such strings as may
be validly subject to vector operations (vector addition and vector subtraction
and multiplication by, for example, rotation matrices). To say that the set is

9781405122870_5_end02.qxd 23/1/09 11:19 AM Page 310

Glossary 311

ordered is to say that the sequence matters; different sequences of the same
elements constitute different vectors. The Cartesian coordinates specifying a
location (point) are examples of vectors in the narrow sense. The words in a
computer (binary strings, e.g., <00011010111001111>) are an example of vec-
tors in the more general sense.

window of associability The elusive temporal window implied by the hypothesis
that temporal pairing is what drives association formation. Its determination
would specify what constitutes temporal pairing. Attempts to determine it exper-
imentally have repeatedly failed.

word The size of the primitive memory unit used in a conventional computer,
typically 32 or 64 bits. The size of a word determines the number of different
possible messages in the set of possible messages that may be encoded by the
form (bit pattern) of the word.

9781405122870_5_end02.qxd 23/1/09 11:19 AM Page 311

2-argument arithmetic function, 58
2-argument functions

implementation of, 49, 54, 284–6
implementing with distributed

representation of the arguments, 284
neurobiological implications of, 53, 285

aboutness
of information, 6, 7, 192

accessibility to computation, xii, xiii, 100,
112, 114, 122, 140, 153, 157, 195,
197, 207–14, 217, 242, 248, 265,
270, 284

action potential, xiii, 1, 5, 21, 74, 77, 82,
129, 171–2, 179–83

speed of propagation, 173
universality of, 287

adaptive specialization
of learning mechanisms, 218–41

addition
machine, 137–41
procedures, 97–100

additivity
of entropies, 9

address field, 168
addressable (memory), viii, xii, xv, 149,

153, 155, 165, 167, 169
and parallel search, 93

addresses
direct, 152–6
immediate (literal), 151
indirect, 156–65
as symbols for variables, 154–65

algebraic representation of geometry,
64–71

algorithms, xi
see also procedures

AM (amplitude modulated)
code, 3

analog
coding, 76, 97, 116
computation, 24, 203–6
vs. digital, 24
principle, 76, 80
signal, 11
source, 11
symbols, 77, 90, 100, 150, 205

AND, 145–6
neurobiological implementation of, 173

animal navigation, xiv
see also dead reckoning

anti-representational
character of associationism, 196
tradition, 101

assignment of credit problem, 227
associability

analogy to stimulus sensitivity, 239
dependence on relative closeness, 239
formula for, 239
and informativeness, 239
window of, 231

association
mechanism of, 177

associations
as symbols, xiv, xv, 190–6

associative connection
philosophical roots of, 189–90

associative learning, 177, 220, 226–40
and LTP, 178
and synaptic plasticity, 177–83

Index

9781405122870_6_ind.qxd 23/1/09 11:19 AM Page 312

Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience C. R. Gallistel
and Adam Philip King © 2010 C. R. Gallistel and Adam Philip King ISBN: 978-1-405-12287-0

Index 313

associative process
many–one character of, 194–5

asymptote in associative strength,
information theoretic reasons for,
230

Atomic data, 79, 305
atomic structure

need for common, 87
axonal conduction

slowness of, 171

back-propagation, 184, 273, 278
base rate, 35
base-pair sequences, 124, 168

see also nucleotides
Bayes’ rule, 27, 28

as law of rational inference, 28–32
proof of, 28
as a proportion, 35
relation to strength of evidence, 30,

31
using to update values, 32–41

Bayes’ theorem
see Bayes’ rule

Bayesian belief networks, 41
Bayesian models, x
bee dance, 222–5
behaviorism, 56, 101
behaviorists, 208

anti-representationalism of, 196
bijection, 45–6
binary counter, 138
bit

as unit of information, 7
blocking (in associative learning), 229,

240

cache retrieval, 156, 160, 213–17
Cartesian coordinates, 66–7, 81

vs. polar, 102–4
Cartesian dualism, 125
Cartesian product, 48–50
Cataglyphis bicolor, 196–7, 198
Categorization

as a function, 46
channel, 6, 126

defined, 5
Church-Turing thesis, 106, 124
circadian clock, 208, 209, 221
classical conditioning, xv, 187–9, 226–41

code
defined, 2
distributed, xiv, 192–5, 284–5
efficient, ix, 16–20
in Paul Revere example, 7
prefix, 17, 19
self-delimiting, 19
Shannon-Fano, 17

coding, 16–20, 89
component of a gene, xii, 168
and procedures, 89–94, 165–7
question, xiii, 175–7, 279–81
and statistical structure, 23

codomain
of a function, 43–6

codon, 73, 79, 81, 83–4, 97, 124, 168
cognitive map, 163

compass-oriented, 223
combinatorial explosion, 92–3, 136

in look-up tables, 92
see also infinitude of the possible

common representational currency, 87
communication

as conceived by Shannon, 2–26
compact procedures, xi, 90, 95–100,

109, 111, 113, 116, 120, 139,
141, 146–7, 149, 158, 261, 264,
286

compact symbols, 75, 79, 87, 90–5, 99,
111, 120

compactness test, 76
composition of functions, x–xi, 46–50,

53–4, 58–9, 65, 69, 86–7, 95–6,
98, 131–2, 145, 169, 202, 283,
286

computability, 105
computable numbers, 120
computation, ix, xi, 104–26

compelling logic of, 144
computational accessibility, see accessibility

to computation
conditioned reflexes, 187
conditioned stimulus, 212
conductors, 128, 171
connectionism, ix, xiv, 56, 83, 95, 101,

128, 193, 226, 230, 237, 242, 253,
257

see also neural net
constructability

of symbols, 74

9781405122870_6_ind.qxd 23/1/09 11:19 AM Page 313

314 Index

context units, 183
contingency, not pairing (in associative

learning), 227–40
convergence

and the logical functions, 172
of neural signals, 172

counter (binary), 137–41
cross bearings, 163
CS, see conditioned stimulus
CS–US interval, 212, 237, 239–40

dance
of the returned forager bee, 222

data
bringing to computational machinery,

283–6
in signals, 22

data strings, 79
data structures, xii, xiv, 149–69

examples, 160–9
in genome, 167–9
procedures and, 165–7

dead reckoning, xiv, 196–206
neural net models of, xv, 242–65
as paradigmatic learning mechanism,

219–20
physical realization of, 203–6
role of symbolic memory in, 203

decode
defined, 6

delta rule, 229
destination

of a signal, 2
digital

code, 3
computation, theory of, 24
signal, 11

discrete source, 11
distinguishability

of symbols, 72
distributed code, see code, distributed
distributive encoding, 194
divergence

of neural signals, 172
DNA, 72, 79, 81, 83–4, 97, 124–5,

281–4
cautionary tale, 282
data structures in, 167–9
and memory, 280

domain
of a function, 43, 305

Dworkin’s paradox, 268–9

effectors, 128
efference copy, 198
efficacy

of symbols, 78
efficient codes, ix, 16–20

see also compact symbols
encoder

defined, 2
encoding

defined, 2
encoding question

for plastic synapses, 78
encoding symbols, xi, 80, 305
encodings

readable and unreadable, 137
entrainment, 209
entrainment by food, 211
entropy, 13–14

difference in, 33, 236
of joint distribution, 14–15
origin in statistical mechanics, 10
per event, 25–6, 236
in signals, 14
source, 10, 14

as explanation for asymptote in
associative strength, 230

of unique events, 25
of US timing in context, 236
of US timing given CS, 236

Entscheidungsproblem, 106
episodic memory, xiv, 157, 213–17,

265
Excitatory PostSynaptic Potential (EPSP),

172
expressions (symbolic)

see data structures, 81, 305
extinction, 227

fan in, 172
fan out, 172
feeding-anticipatory activity, 209
finite-state machine, 100, 122, 131–7, 136,

146, 177, 179–80
finitude of the actual, xi, 136, 147
fire together, wire together, 137

9781405122870_6_ind.qxd 23/1/09 11:19 AM Page 314

Index 315

flip-flop, 146
set-reset, 131
toggle form, 137
toggle variety, 137, 138

FM (frequency modulated)
code, 3

food caching, xiv, 160, 164, 213–17, 268,
277

functional architecture, xi, 126–48, 167
of a neural net, 190

functioning homomorphism, x, 55, 250,
251

functions, 43–54
composition of, x–xi, 46–50, 53–4,

58–9, 65, 69, 86–7, 95–6, 98,
131–2, 145, 169, 202, 283, 286

computable, 52
decomposition of, 49
defining, 51
does brain have a set of primitives? 53
intractable, 89
of more than one argument, 48–54
with multi-part outputs, 49–51
neurobiological implications, 53, 285
of one argument, 43–8
physical implications, 53
uncomputable, 88

gene, 124, 168, 169
bipartite structure of, xii, 124, 168–9
encodes information, xiii, 125
eye, 169–70
molecular identification of, viii, 281,

286–7
as symbol, 97

general equation for a circle, 70
general equation of a line, 67
general process learning theories, 218
geocentric coordinates, 163
geometric

functions, 65
grandmother neuron, 74

habituation
and information, 31

halting problem, 106
Hebbian synapse, 180
hidden layer, 188
hidden units, 183

homomorphism
defined, 55, 63
engineered, 57

immediate addressing, 156
infinitude of the possible, xi, xv, 51, 136,

146, 147, 208, 211, 213, 217
information, ix, 1–26

and the brain, 20
communicated, 9, 10
finding in memory, 151
measurement of, 7–11
modern understanding of, 2
mutual, 13

information-processing framework, 1
information-theoretic deduction of delay

and cue competition results, 233–41
informative priors, 35–41
Inhibitory PostSynaptic Potential (IPSP),

172
innate value, 151
innate variables, 156
input layer, 188
instrumental conditioning, see operant

conditioning
integration

mathematical, 205
physical realization of, 205

interneurons, 188
interval timing, xv, 211–13, 266–77
intractable functions, 89
inverse

of a function, 45
ion channel, 172
ionotropic receptors, 172
irrational numbers, 88

joint distribution
defined, 14

kluge, 255
knowing, two senses of, 100–1

last-in-first-out, 143
learning

associative theory of, 177, 220, 226–40
duration, 211–13
as information extraction, 196–206
modularity of, 218–41

9781405122870_6_ind.qxd 23/1/09 11:19 AM Page 315

316 Index

learning (cont’d)
nature of, 187–206
as rewiring, 187–96
time of day, 208–9

likelihood, 30
likelihood function, 32, 34
literal

definition of in computer science, 151
logic functions, xiii, 133, 145–6

molecular realization, 169
synapses and, 172–3

long-term depotentiation, 179–80, 182
look-up table, xi, 51, 53, 86–7, 90–4, 11,

113, 118, 120, 128–37, 141, 145–7,
155, 246, 250–1, 259, 261

LTP, see synaptic plasticity

map
compass-oriented, 223

mapping
onto, 45

massive parallelism, 174
meanings

irrelevance of, 6
memory

biological, 167
coding question, 279–80
episodic, 213–17
function of, 1, 31
separate from theory of memory, 278

memory field, 168
memory mechanism, 278–87

molecular or submolecular?, 283–7
universal? 286–7

metabotropic receptors, 172
modularity

of associative learning, 226–41
of learning, xiv, 218–41

multivariate, 227
Mutual information

computed from joint distribution, 13

NAND, 145
neural net, 208

architecture, xii, 155
functional architecture of, 187
models, 157
parameter sensitivity, 256
sensitivity to noise, 256

neurobiological plausibility, 217

noise
in information theory, 5
limiting resolution, 11

nominal symbols, 80, 305
non-invertibility

of mapping from experience to synaptic
strength, 191, 194

non-stationary, 227
NOT, 145–6

neurobiological implementation of,
172

nucleotides, 72, 79–80, 83–4, 97, 168,
280–2

oculomotor integrator, 185
opaque encoding, 5
operant conditioning, 226, 228
operon, 168
OR, 145–6

neurobiological implementation of,
172

ordered pair, 50
organs of learning, 219
output layer, 188
overshadowing, 240

parameter estimation (Bayesian), 37–41
parameter sensitivity, 256
parameter setting, 222

as mode of learning, 225
path integration, see dead reckoning
Pavlovian conditioning, xv, 190, 212, 226,

232, 234, 236, 241
place coding, 74, 248, 259
plastic synapses, 187

as symbols, 191
plasticity, 187
polar coordinates, 102–3, 163, 202
posterior probability, 31
posterior probability distribution, ix,

34
poverty of the stimulus, 221
predicates

as functions, 48
prespecification

problem of, 93, 146, 208, 271
prior

informative, 35–41
as repository of what has been learned,

42

9781405122870_6_ind.qxd 23/1/09 11:19 AM Page 316

Index 317

prior probability, 30
prior probability distribution, 33
probability

Bayesian definition of, 29
frequentist definition of, 29

probability distribution
summing to one, 33, 34

problem of learning
ill posed, 221

procedural knowing, 100
procedures, xi, 85–103

for addition, 98–102
coding and, 89–94, 165–7
with compact encoding symbols,

95–7
with compact nominal symbols, 91
for determining parity, 90–2, 95–7
formalized, 105–7
geometric, 102
with non-compact symbols, 90
in representing systems, 60
see also Turing machine

productivity
lack of in look-up tables, 93

promoter (of a gene), xii, 124, 168–70
propositions, 150
proprioceptors, 199
proteins, 168
push down stack, 143
put and fetch

necessity of, 54, 121, 285

RAM (random access memory), 153–5
rate code, 5, 77
rational numbers, 88
read/write memory, viii, 100

implemented as reverberating activity,
245–9

marble machine example, 139, 141
real numbers, 88
relations

as functions, 48–9
receptors, 128
recurrent loops, 168–70, 174, 183–6, 188,

245–60
recursive functions, 120
referential opacity, 63
reflex arc, 188
register memory, 137
relative likelihood, 36

relative validity (in associative learning),
229, 240

representation, ix, x, 55–71
examples, 56–71
notation, 61–71

algebraic of geometry, 64–71
reverberating activity, 183
rewiring by experience, 155, 187–90,

196
ribosomes, 168

scene recognition
speed of, 173

scrub jays, 213–17
sensory neuron, 188
sensory receptor, 188
set of possible messages, ix, 6–7, 13, 16,

55, 58, 78, 99, 150, 152–3, 156–7,
159, 286

central role in the definition of
information, 2, 6

identical with the possible values of a
variable, 152

Shannon-Fano code, 17–20
Shannon’s theory of communication,

2–26
shift register, 141, 142
signals, 2

analog, 24
digital, 24
distinguished from symbols, 245
energy demands of, 185
information carried by, 13, 59

solar ephemeris, xv, 162
learning, 220–6

source statistics, 5, 17–20
space-time trade-off in computation, 174
spatial locations, xiv, 160–5, 213–17,
spikes, 1, 21–2
start codon, 168
state memory, xi, 94–5, 99–100, 112,

114, 116–17, 120, 131–6, 143,
151

inadequacy of, 147–8
state transitions, 94, 110, 112, 115, 130
stop codon, 168, 173
structure-preserving mapping, x, 57
subjectivity

of communicated information, 9
subsymbolic, 56, 194, 242

9781405122870_6_ind.qxd 23/1/09 11:19 AM Page 317

318 Index

summation
arithmetic and synaptic, 189
nonlinearity of, 189

sun-compass, 152, 156, 199, 209, 211,
220–6

symbolic knowing, 100
symbolic logic

relation to Bayes’ rule, 29
symbols, x, 72–84

compactness, 75
constructability, 74
desirable properties of, 72–84
distinguishability, 72
distinguished from signals, 245
in DNA, 72, 79, 81, 83–4, 97, 124–5,

168
efficacy, 79–80
neurobiological basis for, 101
taxonomy of, 79–80

atomic, 79
data string, 79
data structures, 81
encoding, 80
nominal, 80

synapses
defined, 172
and symbolic memory, 190

synaptic conductances
efficacy of as symbols, 79
not accessible to computation, 195,

271
synaptic integration

slowness of, 173
synaptic plasticity, 175–95

and associative theory of learning,
194

inadequacy as a memory mechanism,
180

syntactic properties
as basis for distinguishing symbols,

72
syntax, 87

combinatorial, 87

temporal locations, xiv, 207–17
temporal pairing, 190, 193, 195, 221,

229–31, 241, 243, 287
and concept of a trial, 235–7
neither necessary nor sufficient for

association, 231–40

undefined, 230–40, 244
vs. contingency, 227–40
and window of associability, 234

theoretical computability, 106, 104–26
time code

in neural information transmission, 77
time of day

learning the, 209
time scale problem (difference between

behavioral and neurobiological),
174–5

time series analysis, 227
timing

beat model, 272–4
in cache retrieval, 213–17
intervals on first encounter, 266
neural basis of, 266–77
proportional (scalar), 275
SET (scalar expectancy theory of), 266,

277
spectral theory of, 270

torus (neural net), 254–5
transcription factor, 124, 169
transducers, 128, 145, 171
transition table, xi, 108–13

in memory, 123
and state memory, xi

transmitter substance, 172
transparent encoding, 3, 5
trial

difficulty of defining, 239–40
irrelevance to progress of learning,

232–3
truly random control, 228
Turing, Alan, 105
Turing computability, xi, 104–5
Turing-computable functions, 120
Turing machine

for addition, 115–20
architecture, xii, 108, 104–25, 128,

144–8, 149, 156, 176–7, 187, 203,
242–3, 246, 261, 263

minimal memory structure in, 121
for parity, 111–15
processor, 108
read/write head, 108
for successor function, 110–11
tape, 107
universal, 106, 122–4

two senses of knowing, 100

9781405122870_6_ind.qxd 23/1/09 11:19 AM Page 318

Index 319

uncertainty
and Bayes’ rule, 29
and information, 8–10
measuring, 7–15
about US timing, 235
see also entropy

uncomputable
functions, 88

unconditioned-reflex machine, 131
universal grammar, 226
universal Turing machines, 106, 122
US–US interval, 212, 213, 233–40

values of variables, xii, xiii, 149–69
variable

as a set of possible messages,
6

variable binding, xii, 149–69
variables

creation of, 156–60
relations between, 160

vectors, 66–71, 83, 102, 131, 151, 159,
195, 245, 285

window of associability, 231, 236, 239

9781405122870_6_ind.qxd 23/1/09 11:19 AM Page 319

