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Abstract

We present an online learning model of early cross-situational
word learning which maps words to objects from context with
relatively sparse input. The model operates by rewarding and
penalizing probabilities of possible word-to-object mappings
based on real-time observation, and using those probabilities to
determine a lexicon. We integrate prosodic and gestural cues
and allow the learner to evaluate lexical entries. These en-
richments allow efficient learning with minimal computational
effort, producing results comparable to that of more complex
models.
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Introduction

The problem of how children learn the meanings of their first
words, a problem for philosophers at least since the time of
Augustine, has become an object of scrutiny in psychology
and computational cognitive science. On one hand, experi-
mental research shows us that young children can use a va-
riety of cues (Bloom, 2000) to learn meanings from context
with only a few exposures (Carey, 1978); on the other hand,
computational modeling work underlines the difficulty of the
process, requiring either complex statistical algorithms (Yu
and Ballard, 2007; Frank, Goodman, and Tenenbaum, 2009)
or large amounts of data (Fazly, Alishahi, and Stevenson,
2008) to achieve adequate learning. The goal of this paper
is to simplify the computational problem of early word learn-
ing by integrating empirically motivated cues into a simple
statistical model that learns object names in real time with
speed and precision.

Following Yu and Ballard (2007), we integrate prosodic
and gestural cues into a statistical learning algorithm for ob-
ject names (which comprise the bulk of an early child’s vo-
cabulary in many languages, including English). Unlike other
models, we give the learner access to a lexicon that adaptively
changes as new observations are processed. This allows the
learner to check hypothesized word meanings against new
input and to enforce a preference for one-to-one mappings
between words and objects. These enrichments have roots
in experimental research and allow us to construct a simple,
effective, and principled online learning model based on re-
warding and penalizing probabilities (following Yang, 2002)
associated with semantic hypotheses. We believe that this
foundation of minimal complexity and empirical motivation
produces a more psychologically plausible model.

Below we briefly outline some recent experimental and
computational work in this area before presenting the details
of our model and discussing its advantages.

Previous Work
Children are able to learn words from context, often taking
entire sentences as input and breaking that input down to
create word-to-meaning mappings. In addition to this task,
which is far from trivial, children must filter out an infi-
nite number of erroneous but logically possible hypotheses
of word meaning, as Quine (1960) famously noticed. The
quantum leap between considering each member of an infi-
nite set (an impossible task) and considering each member of
a finite set, no matter how large, is the basis for the claim
that word learning relies fundamentally on innately given hy-
pothesis space constraints. The question, then, is not whether
learning is constrained, but how it is constrained. We take
computational models to be tests of purported answers to this
question. As such, models should reflect the representations
and, more loosely, the mechanisms present in human learners.

Experimental Work
We make use of three principles of early word learning that
have emerged from experimental research: (1) mutual exclu-
sivity, (2) the availability of gestural and prosodic cues, and
(3) the apparent ability of learners to evaluate hypothesized
word meanings against new data.

Markman (1992) and others have proposed that word learn-
ing is guided by a mutual exclusivity assumption, a default as-
sumption that objects have only one name. There is indepen-
dent experimental evidence (Ichinco, Frank, and Saxe, 2009)
that suggests that children disprefer many-to-one word-to-
object mappings, and such a preference improves the perfor-
mance of a simple learning model, excluding would-be dis-
tractors from the semantic hypothesis space when those dis-
tractors already have a name in the learner’s lexicon. Mark-
man’s view is that mutual exclusivity acts in concert with
other default assumptions to extract a finite hypothesis space
from Quine’s infamous infinity.

Not only must the learner’s hypothesis space be made fi-
nite, but it must interact with the learning mechanism in a
way that produces quick results. Since Carey (1978) it has
been noted that children learn words with impressive speed,
often after only a few exposures. To achieve this end, we hold
that word learning is guided not only by constraints like mu-
tual exclusivity, but also by principles of salience and knowl-
edge. This view allows the learning algorithm itself to be
quite simple.

Under our conception of the process, word learning is
guided both by word stress and by gestures, with greater
weight being given to semantic hypotheses that map stressed
words to gesturally indicated objects. Together we call these
two cues “salience cues”, reflecting their function of high-



lighting particularly important words and objects and making
them salient to the learner. Without these crucial components,
the data is simply too noisy for a simple learner to navigate.
But these cues are independently justified. It is well known
that babies are attentive to eye gaze and gestures. By nine
months, they are capable of joint attention (Baldwin, 1991;
Bloom, 2000), even responding to the emotional reactions of
others. In short, humans seem to be programmed to pay atten-
tion to the actions of other humans from an early age. Thus,
a gesture can serve as an “attentional magnet” for a young
word learner.

If gesture serves to draw attention within the visual field,
then patterns of prosodic prominence can be thought of as
auditory gesture. Since the prosodic peaks of natural lan-
guage have audible acoustic correlates (which are exagger-
ated in infant-directed speech), and since babies are known
to be sensitive to these correlates (Soderstrom, Seidl, Nelson,
and Jusczyk, 2003; Thiessen, Hill, and Saffran, 2005), we can
posit that phonological phenomena such as word stress can be
brought to bear on the question of how young learners figure
out which words in an utterance are meant to refer. Indeed,
prosodic information has been shown to be a good guide to
word segmentation (Yang, 2004), an ability that must precede
word learning.

Finally, recent work suggests that word learning involves
a form of hypothesis evaluation, whereby learners will guess
at a word’s meaning and then, as further utterances of that
word are processed, search the object space for evidence sup-
porting their guess. Medina,Trueswell, Snedeker, and Gleit-
man (2009) assess mechanisms of cross-situational learn-
ing in adults using the human simulation paradigm (Gillette,
Gleitman, Gleitman, and Lederer, 1999), a method whereby
subjects are given video vignettes of naming events with the
audio track removed and a single nonsense word uttered in
place of some real word. Subjects were asked to give their
best guesses as to the meaning of the nonsense words uttered
in the vignettes. The vignettes were divided into “high infor-
mative” (HI) and “low informative” (LI) vignettes. The HI
vignettes were those which were guessed correctly a majority
of the time in isolation (determined in a separate experiment),
and everything else was coded as a LI vignette.

Interestingly, subjects who saw a HI vignette followed by
four LI vignettes were more likely to guess word meanings
correctly at the end of the experiment than subjects who saw
the same five vignettes in a different order. The authors hy-
pothesize that early low informative instances handicap the
learner, because rather than using the high informativity of
later instances to make correct guesses, learners instead waste
their time checking and rejecting the erroneous guesses they
made previously. Subsequent eye-tracking studies show sim-
ilar effects (Medina, Hafri, Trueswell, and Gleitman, 2010).
Subjects behave as if they are choosing a hypothesized mean-
ing for a novel item, and then verifying or falsifying that
meaning as new data is received. This process of hypothe-
sis evaluation opposes the traditional view of cross-situational

word learning as a process of associating words with sets of
multiple co-present objects. The computational model pre-
sented here reflects these developments; we show that it is
helpful for the learner to be able to evaluate the semantic hy-
potheses contained in their lexicon against new data.

Previous Models
Beginning with Siskind (2000), computational modeling has
been a valuable tool for investigating the early word learn-
ing process. Various approaches have been taken, including
Bayesian (Niyogi, 2002; Xu and Tenenbaum, 2007; Frank
et al., 2009) and machine translation (Yu and Ballard, 2007;
Fazly et al., 2008) approaches.

Yu and Ballard’s (2007) work is particularly interesting for
our purposes because it demonstrates the positive effects that
prosodic and gestural cues can have on model performance.
A machine translation algorithm (Brown et al. 1990) serves
as a purely statistical core which is expanded by external so-
cial factors. The authors code corpus data for both prosodic
peaks and indication by gesture or eye gaze. The words that
represent peaks on an utterance’s pitch track are given more
weight than the other words in the utterance, and objects that
are judged to be indicated in the visual field are given an anal-
ogous boost. We use a similar coding method, but our model
differs from that of Yu and Ballard in a crucial way: it oper-
ates in real time. Yu and Ballard’s is a batch learning model,
which has a complexity disadvantage. Firstly, batch learning
requires all tokens to be stored in memory, whereas online
learning only requires types to be stored. Secondly, a real
time implementation of a batch learning model would neces-
sitate constant recalculation over all observed stimuli; as a re-
sult, the run time of such an algorithm will increase with the
square of the number of observed stimuli, a sharper increase
than that of an equivalent online model.

One of the most powerful recent models is another batch
learning model, the Bayesian model of Frank et al. (2009).
Using Bayesian inference, this model assigns a posterior
probability score to individual lexicons given a corpus of data.
MCMC stochastic search is used to find the lexicon with the
highest score; no claims are made about how human learn-
ers do this. The scoring algorithm considers all possible in-
tended sets of referents for a given scene. For example, if two
objects, a pig and a horse, are visible to the learner during a
particular utterance, four possible intentions must be consid-
ered: the speaker could be talking about the horse, the pig,
both, or neither. Each possible intention yields some proba-
bility value, and those values are added together to obtain the
contribution of that utterance to a lexicon’s overall score.

Although the lack of explicitly given clues about speaker
intent is perceived as an advantage, there is no indication that
this reflects the behavior of human learners. Furthermore,
considering all possible intents adds considerable complexity
to the model in that the lexicon scoring algorithm becomes
exponentially more demanding the more cluttered the room
is. Since values are computed over the power set of visible
objects, a naming event involving n candidate objects will



contribute 2n calculations to the scoring process. This is not
too problematic with relatively clean data, but one can easily
imagine a naturalistic learning environment with 30 distinct
objects in the visual field, which would require over a billion
calculations just to score one lexicon.

The authors claim that Bayesian inference explains mutual
exclusivity. However, it is a choice by the modelers to make
the likelihood term of their probability calculation dependent
on the conditional probability P(word|ob ject), rather than
P(ob ject|word). Thus, mutual exclusivity is built into the
inference mechanism, not explained by it. In the absence of a
deep explanation, we treat ME as an external cue rather than
an architectural fact.

Fazly et al. (2008) present a more computationally plau-
sible incremental model, but rather than focusing on object
names as other models do, their model learns rich concep-
tual structures and as a result necessitates larger amounts of
data to converge on correct meanings. Where their model
requires as many as 20,000 utterance-situation pairs for ac-
curate learning, our model learns with precision after fewer
than 500, with some words being learned after fewer than six
exposures. This reflects young children’s famous ability to
learn effectively from sparse input via fast-mapping.

Model Overview
Word learning is mediated by a probability matrix with word
types on the vertical axis and object types on the horizontal
axis, illustrated in Figure 1.

The semantic hypothesis space for a potential object name
is both open-ended and contingent on observation. This
means that:

• A word-to-object mapping gets a value if and only if the
word and the object have co-occurred.

• New words and objects can be introduced into the matrix
at any time.

For example, the words can, read, and books are never uttered
in the presence of the object coded ‘EYES’ in our evaluation
corpus. Therefore, mappings from these words to ‘EYES’
have no value in Figure 1. This has the effect of reducing the
size of a word’s hypothesis space and preventing completely
unfounded mappings from receiving a positive value when
other mappings are penalized.

Novel words are mapped to ‘NULL’ with probability 1,
with co-occurring objects receiving a value of 0. The ‘NULL’
mapping corresponds to the hypothesis that a word does not
refer to an object. We take this to be the learner’s default
assumption. New objects are introduced into an old word’s
hypothesis space with a probability value of 1

n , where n is
the new size of that word’s hypothesis space. The rest of the
probability vector is normalized to accommodate the addi-
tion. This gives new semantic hypotheses a fair shot at lexi-
con inclusion.

This matrix provides us with a way to add and track prob-
abilities of word-to-object mappings. Learning proceeds by

BOOK BIRD RATTLE FACE EYES NULL
look 0.45 0.00 0.01 0.38 NA 0.16
we 0.00 0.01 0.00 0.01 NA 0.98
can 0.00 0.01 0.00 0.01 NA 0.98
read 0.01 0.00 0.01 0.00 NA 0.98
books 0.23 0.00 0.00 0.36 NA 0.41
david 0.36 0.00 0.00 0.23 NA 0.41

Figure 1: A partial probability matrix for words and objects

updating these probabilities. We use Bush and Mosteller’s
(1951) Linear Reward-Penalty (LR-P) scheme, which was
first applied to linguistic learning by Yang (2002). Below are
the LR-P functions for rewarding and penalizing the proba-
bility of a hypothesis.

Table 1: Linear Reward-Penalty functions for a hypothesis h.

REWARD(h) p(h) = p(h)+ γ(1− p(h))
where γ is some constant between 0 and 1

For all h′ 6= h:
p(h′) = p(h′)∗ (1− γ)

PENALIZE(h) p(h) = p(h)∗ (1− γ)

For all h′ 6= h:
p(h′) = γ

n−1 + p(h′)∗ (1− γ)
where n is the number of hypotheses being
considered

The learning coefficient γ determines the severity of re-
wards and penalties. The final version of our model uses
variable γ values to represent the privileged status of salient
words and objects. Using these functions we update probabil-
ities on the fly, and we use the results to update the learner’s
current lexicon of word-object pairs by including all and only
those pairs whose probability values exceed a given thresh-
old. This threshold (set to 0.65 in our simulations) serves to
transform the probabilities into a discrete set of mappings that
the learner can evaluate.

We implement different versions of the model to test the
effect of each ability we give the learner. We use as our base-
line a simple nested loop which rewards, in random order,
all candidate objects for all words in each utterance (we call
this process “multiple-candidate rewarding”). This is essen-
tially a real-time equivalent of simple association frequency.
We then add the hypothesis evaluation component by treat-
ing words that are in the current lexicon differently than other
words. If a word is already mapped to an object, then the
probability associated with that mapping is rewarded or pe-
nalized depending on whether that object is in the present sit-
uation (i.e. depending on whether the learner’s hypothesis is
consistent with current observation). In this case, no other
candidates are rewarded. In all models, mutual exclusivity



For each observation, consisting of an utterance U and a
randomly-ordered set of possible object referents O:

For each word w in U :

1. If w is novel, assign probability 1 to w→ NULL
2. Else, add new objects to w’s hypothesis space.
3. If w is in the current lexicon:
⇒ If w’s hypothesized meaning m is an element of O,

reward(w→ m).
⇒ Else, penalize (w→ m).

4. If w is not in the current lexicon:
⇒ For each o in O:
⇒ If o is not in the current lexicon, reward(w→ o).

Update the current lexicon.

Figure 2: An online cross-situational learning algorithm
[The arrow (→) in the algorithm should be read “maps to”.]

x
x x x

x x x x . x x .
There’s a bear looking at David

Figure 3: Stress on a prosodic grid

is enforced by exempting objects that already have names
from multiple-candidate rewarding. The algorithm with both
multiple-candidate rewarding and single-hypothesis evalua-
tion is outlined in Figure 2.

The final component of our model is the integration of the
salience cues. Objects in our video corpus were coded for
gesture. An object was considered to be indicated by gesture
during an utterance if it any point it was both (1) judged to be
in the baby’s field of vision, and (2) pointed to or held up in
front of the baby. Eye gaze, being less obvious in the videos
and therefore more prone to errors, was not coded.

Words were coded for prosodic accent. Utterances were
given prosodic grid structures like the one in Figure 3, repre-
senting peaks in stress. Any word that received stress above
the lexical level was coded as a stressed word. In typical adult
speech the acoustic correlates of stress are subtle, and thus
coding in this way is prone to subjectivity. However, this
problem is ameliorated here, at least in part, by the exagger-
ated pronunciations utilized in the child-directed speech in
the evaluation corpus.

Information about stress and gesture is used to determine
the value of the learning coefficient γ for each rewarding or
penalizing event. We give the model three parameters:

• γH is the learning coefficient used when rewarding or pe-
nalizing a mapping that is already in the lexicon (hypothe-
sis evaluation).

• γM is the default learning coefficient used when reward-
ing possible mappings that are not already in the lexicon
(multiple-candidate rewarding).

• b determines how much weight is given to hypotheses that
map stressed words to gesturally indicated objects during
multiple-candidate rewarding.

For words already in the lexicon, single hypotheses are re-
warded or penalized with γ = γH . For words not in the lexi-
con, multiple possible mappings are rewarded with a different
gamma value; mappings between stressed words and gestu-
rally indicated objects are rewarded with γ = γM ∗ b, while
other mappings are rewarded with γ = γM ∗ (1−b). The best
performance is achieved when γH and γM are relatively high
(0.4 and 0.36, respectively), and when most of the weight is
given to salient mappings (b = 0.98).

To restate, the learner rewards and penalizes more drasti-
cally when checking their current lexicon against the world
than when making multiple associations, and when the
learner is making multiple associations, more weight is given
to hypotheses that map stressed words to gesturally indicated
objects.

To illustrate, consider the utterance in Figure 3. Assume,
as shown in Fig. 4, that there are five visible objects accompa-
nying this utterance, and only one of them is indicated by ges-
ture (the mother is pointing to the bear and ignoring the other
objects). Upon hearing this utterance, the learner possesses a
lexicon of one entry: the word “david” maps erroneously to
the object ‘MIRROR’.

These data will be processed incrementally by the learner
in the following way:

1. Since there’s is not in the lexicon, it undergoes multiple-
candidate rewarding rather than single hypothesis evalua-
tion. Since it is not stressed, all present object meanings
are rewarded using the coefficient γM ∗ (1−b).

2. The unstressed article a undergoes the same process as
there’s.

3. The lexicon does not have a mapping for bear, so it un-
dergoes multiple-candidate rewarding, but since bear is
stressed, the learning coefficient can vary. The gestu-
rally indicated object referent ‘BEAR’ is rewarded with the
higher coefficient γM ∗b, while the other non-indicated ob-
jects are rewarded with γM ∗ (1−b).

4. The stressed verb looking undergoes the same process as
bear.

5. The unstressed preposition at behaves like there’s and a.

6. Since david has a mapping in the learner’s current lexicon,
only that mapping is considered. In this case, david maps
to ‘MIRROR’, and the object ‘MIRROR’ is not present in
the current scene, so the learner’s hypothesis is penalized.
If the penalty lowers the probability value below the given
threshold, then david → ‘MIRROR’ is kicked out of the
lexicon.



uttered: {there’s, a, bear, looking, at, david}
stressed: {bear, looking, david}
visible: {BOOK, BIRD, RATTLE, BEAR, BOTTLE}
indicated: {BEAR}

lexicon: {david→MIRROR}
Figure 4: Example stimulus and accompanying lexicon

Performance and Comparisons
All models were run on hand codings of two videos of
mother-child interaction from the Rollins corpus (CHILDES,
MacWhinney, 2000). Together the videos consist of 496
utterance-situation pairs (about 20 minutes of video). Per-
formance was evaluated by aggregating the precision and re-
call against a gold standard over 100 simulations1, and taking
the harmonic mean of the average precision and recall to pro-
duce an F-score. Model performance is detailed in Table 2.
Three online models were tested: the baseline model, which
does not utilize hypothesis evaluation, and two versions of
the model given in Figure 2, one with a fixed γ value, and one
which uses stress and gesture to determine γ. These models
are compared to two implementations of Frank et al.’s (2009)
Bayesian model: a direct implementation and a variant that
only computes over stressed words and indicated objects.2

Table 2: Model performance comparison.

Model type Precision Recall F-score
Bayesian (FGT 09) 0.36 0.29 0.32
Bayesian (FGT 09)
+ stress and gesture 0.72 0.38 0.52
Real-time updating 0.24 0.06 0.10
Real-time w/ evaluation 0.36 0.06 0.10
Real-time w/ evaluation
+ stress and gesture 0.92 0.32 0.48

We see that adding prosodic and gestural information is
a boost to both types of models; however, the cues have a
more drastic effect on the real-time model. Once the cues are
integrated, the F-scores for both types of models are compa-
rable. Though the Bayesian model achieves a slightly higher
F-score, the real-time model has a decided advantage in pre-
cision, with almost no erroneous mappings remaining in the
lexicon. This is a desirable result because as learning contin-
ues beyond 20 minutes of interaction, the absence of mislead-
ing lexical entries will make for a more efficient process. The

1Multiple simulations account for slight variations in output
caused by randomizing the order in which multiple candidates are
rewarded.

2We used our own hand-coding of the same videos that were
used by Frank et al. For the Bayesian implementations, the authors’
original code was used, strongly suggesting that the discrepancy be-
tween the performance reported here and the performance reported
in Frank et al. (2009) is due to differences in the coding of the data.

Word Object Word Object
book book piggies pig
bear bear hat hat

bunny bunny moocow cow
kittycat cat meow cat

sheep sheep bigbird bird
bird duck ring ring

Figure 5: Most frequent output lexicon

majority of simulations using this model produce the lexicon
seen in Figure 5.

Performance is comparable to the Bayesian model of Frank
et al. (2009), and our online learning model represents a
computational simplification. Beal and Roberts (2009) argue
for the importance of complexity analysis in computational
cognitive science. A cognitive model should operate within
known limits of human computational power, and complexity
analysis is necessary to evaluate how realistic a model could
be. Beal and Roberts show the Bayesian model of Xu and
Tenenbaum (2007) to be quite costly from this perspective.
Frank et al.’s model is even more costly. As mentioned above,
it is problematic to sum probabilities for all possible intention
sets for each situation. If the number of objects seen at one
time has some upper bound N, then the upper bound asymp-
totic complexity will be O(2N); the time it takes to process
one situation will grow exponentially with the number of vis-
ible objects. This is not a problem for relatively clean data
like the videos from the Rollins corpus, where the number of
visible objects does not typically exceed 6 or 7, but an espe-
cially cluttered room may force the learner to make billions of
calculations to score one lexicon against one interaction. This
problem does not arise in our model. Furthermore, in con-
trast to batch learning models, our model necessitates only
one pass through the input data.

Finally, the model presented here holds the promise of fur-
ther unification with experimental research. Experiments like
those described by Medina et al. (2009, 2010) may prove to
be valuable both as a testing ground and as a source of refine-
ment for research of this type, whose goal is to incorporate
observable human behaviors into a psychologically plausible
computational learning model.

Conclusion
We have presented a model of object name learning that re-
lies on gestural and prosodic cues and utilizes both single-
candidate and multiple-candidate probability updating mech-
anisms. The model operates in real time, making only one
pass through a corpus and updating a lexicon after each suc-
cessive utterance-situation pair. Performance is close to that
of a comparable Bayesian model. The simplicity and success
of the model suggests two things: (1) having access to word
stress and gestural information makes word learning consid-
erably easier, and (2) the ability to test beliefs about indi-
vidual words makes learning more efficient. The next step



in this line of research is to link up this computational ap-
proach even closer with experimental findings, and it is our
hope that in doing so we may contribute to the growing pool
of knowledge about how children learn the meanings of their
first words.
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