Principled Assessment of Population Structure in Models of Language Change

Jordan Kodner & Christopher Cerezo Falco
University of Pennsylvania

DiGS 19, September 8, 2017
Stellenbosch University

Slides Available Here: ling.upenn.edu/~jkodner
Outline

● Frameworks for Population-Level Change
● Description of our Framework
● Population Size and Assumptions about the Grammar
● Realistic Networks and the Path of Change
Modeling Population-Level Change
Why Simulate Change?

- We have lots of data on historical change and change in progress - evidence
Why Simulate Change?

- We have lots of data on historical change and change in progress - evidence
- We have logically derived theories of change - evidence
Why Simulate Change?

- We have lots of data on historical change and change in progress - *evidence*
- We have logically derived theories of change - *evidence*
- But we cannot test large scale language change in the lab - *missing evidence*
Why Simulate Change?

- We have lots of data on historical change and change in progress - evidence
- We have logically derived theories of change - evidence
- But we cannot test large scale language change in the lab - missing evidence

It would be nice to test cause an effect directly.
Why Simulate Change?

- We have lots of data on historical change and change in progress - evidence
- We have logically derived theories of change - evidence
- But we cannot test large scale language change in the lab - missing evidence

It would be nice to test cause an effect directly.

Simulation provides that outlet.

A useful tool in computational biology, epidemiology, computational social sciences, etc.
Three Classes of Framework

1. Concrete Frameworks
2. Network Frameworks
3. Algebraic Frameworks
Three Classes of Framework

1. **Concrete Frameworks**
 - Individual agents on a grid moving randomly and interacting
Three Classes of Framework

1. **Concrete Frameworks**
 - Individual agents on a grid moving randomly and interacting
 - Gradient interaction probability for free
 - Diffusion is straightforward
 - Not a lot of control over the network
 - Thousands of degrees of freedom -> should run many many times -> slow
 - Unclear how to include a learning model
Three Classes of Framework

1. Concrete Frameworks

2. Network Frameworks
 - Speakers are nodes in a graph, edges are possibility of interaction
Three Classes of Framework

1. Concrete Frameworks
2. Network Frameworks
 - Speakers are nodes in a graph, edges are possibility of interaction
 + Much more control over network structure
 + Easy to model concepts from the sociolinguistic lit. (e.g., Milroy & Milroy)

- Nodes only interact with immediate neighbors -> slow and less realistic?
- Practically implemented as random interactions between neighbors -> same problem as #1
Three Classes of Framework

1. Concrete Frameworks
2. Network Frameworks
3. Algebraic Frameworks

- Expected outcome of interactions in a perfectly mixed population is calculated analytically
Three Classes of Framework

1. Concrete Frameworks
2. Network Frameworks
3. Algebraic Frameworks

- Expected outcome of interactions in a perfectly mixed population is calculated analytically

+ Less reliance on random processes -> faster and more direct
+ Clear how to insert learning models into the framework
- No network structure! Always implemented over perfectly mixed populations
Our Framework
Best of Both Worlds

- An algebraic model operating on network graphs
Best of Both Worlds

- An **algebraic model** operating on **network graphs**
 - No random process in the core algorithm
 - Fast and efficient
Best of Both Worlds

- An algebraic model operating on network graphs
 - No random process in the core algorithm
 - Fast and efficient
 - Models language change in social structures
Vocabulary for this Talk

Different research traditions, Different vocabularies

L: That which is transmitted

Language \approx Variety \approx *Lect \approx E-Language

G: That which generates/describes/distinguishes L

That which is learned/influenced by L

Grammar \approx Variant \approx I-Language
The Model

Language change is a two step loop

1. **Propagation**: calculate how grammars spread
2. **Acquisition**: calculate how grammars are learned
The Model

Language change is a two step loop

1. **Propagation**: calculate how grammars spread
2. **Acquisition**: calculate how grammars are learned

If this were a linear chain,

\[L_0 \to G_1 \to L_1 \to G_2 \to L_2 \to \ldots \to L_n \to G_{n+1} \to \ldots \]
The Model

Language change is a two step loop

1. **Propagation**: calculate how grammars spread
2. **Acquisition**: calculate how grammars are learned

If this were a linear chain,

\[L_0 \rightarrow G_1 \rightarrow L_1 \rightarrow G_2 \rightarrow L_2 \rightarrow \ldots \rightarrow L_n \rightarrow G_{n+1} \rightarrow \ldots \]

Our model alternates applying a propagation function and an acquisition function
Formal Description

[REDACTED]
Propagation

Network Structure

● Nodes
 ○ How many people are there? \(n \)
 ○ How are people clustered? Socially or geographically?
 ○ Do people migrate?
Propagation

Network Structure

● Nodes
 ○ How many people are there? \(n \)
 ○ How are people clustered? Socially or geographically?
 ○ Do people migrate?

● Edges
 ○ Are interactions bidirectional?
 ○ Are interactions equal? By likelihood, frequency, or social valuation?
 ○ Can the mode of interaction change over time?
Propagation

Network Structure

● Nodes
 ○ How many people are there? \(n \)
 ○ How are people clustered? Socially or geographically?
 ○ Do people migrate?

● Edges
 ○ Are interactions bidirectional?
 ○ Are interactions equal? By likelihood, frequency, or social valuation?
 ○ Can the mode of interaction change over time?

● Replacement
 ○ Are we modeling large scale (generations) or small scale (older/younger siblings) change?
 ○ Do people die a lot? Does the network grow or shrink?
Propagation

Calculation

- Every person/node has a probably unique G_i
- And produces a sample of L_i
Propagation

Calculation

- Every person/node has a probably unique G_i
- And produces a sample of L_i

We want to know what mix of L someone standing at node i receives as input
Propagation

Calculation

- Every person/node has a probably unique G_i
- And produces a sample of L_i

We want to know what mix of L someone standing at node i receives as input

Simplifying the calculation,
Someone at node 1 hears 6-parts L_2, 1-part L_3, and 5-parts L_4
Acquisition

- How does each learner react to her unique mix of L?
Acquisition

- How does each learner react to her unique mix of L?
- Dependent on the learning model
Acquisition

- How does each learner react to her unique mix of L?
- Dependent on the learning model
- Many learning models can be slotted in
 - trigger-based learner (Gibson & Wexler 1994)
 - Variational learner (Yang 2000)
 - Anything that operates on probabilities...
Population Size and Grammars
Background

• Simulations typically run with **a few hundred agents**
 ○ Kauhanen 2016, Stanford & Kenny 2013, Blythe & Croft 2012, etc.
• **Is this true of actual speech communities?**
Background

● Simulations typically run with a few hundred agents
 ○ Kauhanen 2016, Stanford & Kenny 2013, Blythe & Croft 2012, etc.
● Is this true of actual speech communities?
 ○ Maybe sometimes!
Background

- Simulations typically run with a few hundred agents
 - Kauhanen 2016, Stanford & Kenny 2013, Blythe & Croft 2012, etc.
- Is this true of actual speech communities?
 - Maybe sometimes!
 - But not typically true of the communities under study
- Martha’s Vineyard (Labov 1963)
 - ~5,500 in winter → ~42,000 in summer c. 1960
 - Summer population largely from New England (cf Massachusetts 5.1mil in 1960)
Background

● Simulations typically run with a few hundred agents
 ○ Kauhanen 2016, Stanford & Kenny 2013, Blythe & Croft 2012, etc.

● Is this true of actual speech communities?
 ○ Maybe sometimes!
 ○ But not typically true of the communities under study

● Martha’s Vineyard (Labov 1963)
 ○ ~5,500 in winter → ~42,000 in summer c. 1960
 ○ Summer population largely from New England (cf Massachusetts 5.1mil in 1960)

● Do-Support (Ellegård 1953)
 ○ Rise of do-support constructions in English 1400-1700
 ○ Involved millions of individuals
When is this a Problem?

- If learners internalize a distribution of grammars (e.g. competing grammars) and the population is (approximately) uniformly mixed, it is *not* a problem
 - Change closely approximates the path followed in infinite populations
 - So small-population models are a useful convenience
When is this a Problem?

- If learners internalize a distribution of grammars (e.g. competing grammars) and the population is (approximately) uniformly mixed, it is not a problem
 - Change closely approximates the path followed in infinite populations
 - So small-population models are a useful convenience
- But, if either of the above does not hold, it is a problem (maybe)
 - It becomes impossible to untangle population and learning effects
Demonstration: Neutral Change

- Assume **two connected communities**
 - C1 begins with 100% Grammar 1
 - C2 begins with 100% Grammar 2
Demonstration: Neutral Change

● Assume two connected communities
 ○ C1 begins with 100% Grammar 1
 ○ C2 begins with 100% Grammar 2

● Neutral change
Demonstration: Neutral Change

- Assume **two connected communities**
 - C1 begins with 100% Grammar 1
 - C2 begins with 100% Grammar 2
- **Neutral change**
- Over time, each community should approach 50/50 mix
Demonstration: Neutral Change

- Assume **two connected communities**
 - C1 begins with 100% Grammar 1
 - C2 begins with 100% Grammar 2

- **Neutral change**

- Over time, each community should approach 50/50 mix

- Assume **speakers internalize a single grammar**
 - Chosen probabilistically from mix of L
 - weighted by frequency in their input
Demonstration: Neutral Change

● Assume **two connected communities**
 ○ C1 begins with 100% Grammar 1
 ○ C2 begins with 100% Grammar 2

● **Neutral change**

● Over time, each community should approach 50/50 mix

● Assume **speakers internalize a single grammar**
 ○ Chosen probabilistically from mix of L
 ○ weighted by frequency in their input
 ○ cf Kauhanen 2016
Demonstration: Neutral Change

- Assume **two connected communities**
 - C1 begins with 100% Grammar 1
 - C2 begins with 100% Grammar 2
- **Neutral change**
- Over time, each community should approach 50/50 mix
- Assume **speakers internalize a single grammar**
 - Chosen probabilistically from mix of L
 - weighted by frequency in their input
 - cf Kauhanen 2016
Most trials fix at 0% or 100%

Most trials hover near 50%
Demonstration: Advantage

- Repeating the previous test but with an advantage
 - Single community beginning at 1% innovative grammar
 - Learners choose a single grammar probabilistically, weighted toward innovative
 - Logistic curve predicted

\[n = 200 \]
\[n = 2,000 \]
\[n = 20,000 \]
Demonstration: Advantage

- At small n, S-curve change cannot arise

$n = 200$

$n = 2,000$

$n = 20,000$

Looks a lot like neutral change did!
Demonstration: Advantage

- At small n, S-curve change cannot arise
- At large n, S-curves become smooth

$n = 200$

$n = 20,000$

Looks a lot like neutral change did!
Conclusions

- “Innocuous” assumptions may dominate behavior
 - Here, choice of population size and single-grammar assumptions
 - Conclusions drawable for $n=200$ do not scale to $n=20,000$ or visa-versa
- Slightly different assumptions yield drastically different conclusions
 - Is neutral change well-behaved?
 - Do we expect to see S-curve change?
- Most innovation is meaningless
 - If innovation occurs in a corner of some (small) sub-community, it will probably die off fast
Complex Networks and S-Curves:
The Cot-Caught Merger in New England
Single-Grammar Learners

- The previous section pointed out a problem with single-grammar learners
- But it is not an indictment
Single-Grammar Learners

- The previous section pointed out a problem with single-grammar learners
- But it is not an indictment
- Some changes are neatly modeled as single-grammar processes
 - Can represent the loss of distinctions in the grammar
 - E.g., the spread of mergers, e.g., *cot-caught* on the RI/MA border (Johnson 2007)
Modeling the loss of Distinction

- **Claim:** Mergers tend to spread because the merged grammar has a processing advantage
Modeling the loss of Distinction

- **Claim:** Mergers tend to spread because the merged grammar has a processing advantage
- When two speakers with the distinction \(D^+\) talk, no misunderstanding
Modeling the loss of Distinction

- **Claim:** Mergers tend to spread because the merged grammar has a processing advantage
- When two speakers with the distinction (D+) talk, no misunderstanding
- A distinctionless (D-) speaker misunderstands D+ or D- if s/he misreads the discourse
Modeling the loss of Distinction

- **Claim:** Mergers tend to spread because the merged grammar has a processing advantage
- When two speakers with the distinction (D+) talk, no misunderstanding
- A distinctionless (D-) speaker misunderstands D+ or D- if s/he misreads the discourse
- When D+ hears D-, D+ misunderstands when D- uses variant A but means B
Modeling the loss of Distinction

- **Claim:** Mergers tend to spread because the merged grammar has a processing advantage
- When two speakers with the distinction (D+) talk, no misunderstanding
- A distinctionless (D-) speaker misunderstands D+ or D- if s/he misreads the discourse
- When D+ hears D-, D+ misunderstands when D- uses variant A but means B
Modeling the loss of Distinction

- Claim: Mergers tend to spread because the merged grammar has a processing advantage
- When two speakers with the distinction (D+) talk, no misunderstanding
- A distinctionless (D-) speaker misunderstands D+ or D- if s/he misreads the discourse

- When D+ hears D-, D+ misunderstands when D- uses variant A but means B
- Is it better to be D+ or D-?
- Depends on how many D- are around
Modeling the loss of Distinction

- Claim: Mergers tend to spread because the merged grammar has a processing advantage
- When two speakers with the distinction (D+) talk, no misunderstanding
- A distinctionless (D-) speaker misunderstands D+ or D- if s/he misreads the discourse
- When D+ hears D-, D+ misunderstands when D- uses variant A but means B
- Is it better to be D+ or D-?
- Depends on how many D- are around
- For a cot-caught variational learner, D- is better if at least 17% of the input is D-
The Problem

- A variational learner in a near-uniform population fixes at 0% or 100% immediately
- Because the % of distinctionless speakers ≈ % distinctionless input
- If < 17% are distinctionless, nobody will learn it
- If > 17% are distinctionless, everybody will learn it
- Not what has happened empirically
The Solution

- A more realistic network!
The Solution

● A more realistic network!
● Large populations are not homogeneous
 ○ Tend to consist of many tight clusters loosely connected together
 ○ Echos of Milroy & Milroy’s “strong and weak connections”
The Solution

- A more realistic network!
- Large populations are not homogeneous
 - Tend to consist of many tight clusters loosely connected together
 - Echos of Milroy & Milroy’s “strong and weak connections”
 - Homophily
 - Physical geography
 - etc.
The Solution

- A more realistic network!
- Large populations are not homogeneous
 - Tend to consist of many tight clusters loosely connected together
 - Echos of Milroy & Milroy’s “strong and weak connections”
 - Homophily
 - Physical geography
 - etc.
- So we consider a loosely connected network of centralized clusters
The Solution

- A network of 39 loosely connected centralized clusters - all unmerged
- Plus one merged cluster
The Solution

- A network of 39 loosely connected centralized clusters - all unmerged
- Plus one merged cluster
- **Clusters merges rapidly in succession**
The Solution

- A network of 39 loosely connected centralized clusters - all unmerged
- Plus one merged cluster
- **Clusters merges rapidly in succession**
- But the **community average is an S-curve**
Properties of Change

The averaged S-curve slope:

- depends on the grammatical advantage \textit{and} the network
Properties of Change

The averaged S-curve slope

- depends on the grammatical advantage and the network
- is improved by evolving the network
Properties of Change

The averaged S-curve slope
- depends on the grammatical advantage and the network
- is improved by evolving the network
- is preserved when introduced with a time offset
Properties of Change

The averaged S-curve slope

- depends on the grammatical advantage and the network
- is improved by evolving the network
- is preserved when introduced with a time offset
 - Is compatible with the Constant Rate Effect
Conclusions

Population models and learning models interact
Conclusions

Population models and learning models interact

- They conspire to yield empirical rates of change
Conclusions

Population models and learning models interact

- They conspire to yield empirical rates of change
 - Higher slope indicates greater grammar/social advantage -or- more cohesive network
 - Not possible to draw conclusions about a change’s advantage by slope alone
Conclusions

Population models and learning models interact

- They conspire to yield empirical rates of change
- S-curve change is possible outside competing grammars scenarios
 - Even in small populations
 - Therefore gradual change alone cannot be evidence for competing grammars
Conclusions

Population models and learning models interact

- They conspire to yield empirical rates of change
- S-curve change is possible outside competing grammars scenarios
- Population effects preserve CRE across simultaneous changes with the same advantage
Conclusions

Population models and learning models interact

- They conspire to yield empirical rates of change
- S-curve change is possible outside competing grammars scenarios
- Population effects preserve CRE across simultaneous changes with the same advantage
- We have a solution looking for a problem
Questions?

Code Available Here:

github.com/jkodner05/NetworksAndLangChange

Slides Available Here:

ling.upenn.edu/~jkodner
Extra slides: Maths
Diffusion

\[P_{t+1} = B^\top \alpha (I - (1 - \alpha) A)^{-1} H (H^\top H)^{-1} \]

- A \(n \times n \) adjacency matrix
- \(\alpha \) jump parameter
- H \(n \times c \) community-membership
- B \(c \times g \) distr. of grammars in comms
- P \(c \times g \) distr. of grammars in inputs
Diffusion

\[P_{t+1} = B^\top \alpha (I - (1 - \alpha)A)^{-1} HH^\top H^{-1} \]

- **A** \(n \times n \) adjacency matrix
- **\(\alpha \)** jump parameter
- **H** \(n \times c \) community-membership
- **B** \(c \times g \) distr. of grammars in comms
- **P** \(c \times g \) distr. of grammars in inputs

The network graph

Who speaks what in what proportion

Who hears what in what proportion
Diffusion

\[P_{t+1} = B^\top \alpha (I - (1 - \alpha)A)^{-1} H(H^\top H)^{-1} \]

- **A** \(n \times n \) adjacency matrix
- **\(\alpha \)** jump parameter
- **H** \(n \times c \) community-membership
- **B** \(c \times g \) distr. of grammars in comms
- **P** \(c \times g \) distr. of grammars in inputs

- Indicates directed weighted edges between speakers in network
- Column stochastic
- Easy to make undirected or unweighted
Diffusion

\[P_{t+1} = B^\top \alpha (I - (1 - \alpha)A)^{-1} H(H^\top H)^{-1} \]

- A \(n \times n \) adjacency matrix
- \(\alpha \) jump parameter
- H \(n \times c \) community-membership
- B \(c \times g \) distr. of grammars in comms
- P \(c \times g \) distr. of grammars in inputs

- Decides “fluidity” of interactions
- Jump distances follow a geometric distribution
 - Speakers are most likely to interact with adjacent speakers
 - But occasionally talk to others far away
- Also implemented with Poisson distribution
Diffusion

\[P_{t+1} = B^\top \alpha (I - (1 - \alpha)A)^{-1} H(H^\top H)^{-1} \]

- \(A \) \(n \times n \) adjacency matrix
- \(\alpha \) jump parameter
- \(H \) \(n \times c \) community-membership
- \(B \) \(c \times g \) distr. of grammars in comms
- \(P \) \(c \times g \) distr. of grammars in inputs

- Indicator matrix
- Defines “community” membership
- More on this later...
Diffusion

\[P_{t+1} = B^\top \alpha (I - (1 - \alpha)A)^{-1} H(H^\top H)^{-1} \]

- A $n \times n$ adjacency matrix
- α jump parameter
- H $n \times c$ community-membership
- B $c \times g$ distr. of grammars in comms
- P $c \times g$ distr. of grammars in inputs

- Distribution of grammars
- According to which community members produce utterances
Diffusion

\[P_{t+1} = B^\top \alpha (I - (1 - \alpha)A)^{-1} H(H^\top H)^{-1} \]

- \(A \) \(n \times n \) adjacency matrix
- \(\alpha \) jump parameter
- \(H \) \(n \times c \) community-membership
- \(B \) \(c \times g \) distr. of grammars in comms
- \(P \) \(c \times g \) distr. of grammars in inputs
- Distribution of grammars
- Heard by learners of each community
Tracking Individuals

- The model can the average behavior of “communities” rather than individuals
- If $c = n$, then H is $n \times n$, and the full descriptive detail of the model is available
 - H becomes the identity matrix, and the formula for P can be rewritten

$$P_{t+1} = B^\top \alpha (I - (1 - \alpha)A)^{-1}$$
Tracking Communities

- If fine-grain detail is unnecessary, tracking community averages provides substantial computational speedup when $c << n$
- If each community is internally uniform, $n \times n A$ admits a $c \times c$ equitable-partition A^π
- Yielding a more efficient but equivalent update formula for P

\[
A^\pi = (H^\top H)^{-1} H^\top A H
\]

\[
P_{t+1} = \alpha B^\top H (I - (1 - \alpha) A^\pi)^{-1} (H^\top H)^{-1}
\]

Anecdotally, I can run $n = 20,000$ nets on my laptop with A^π about as fast as $n = 2,000$ net with A
Transmission

- Dependent on the learning model
- Our implementation is modular, so many learning models can be slotted in
 - e.g., trigger-based learner (Gibson & Wexler 1994)
 - Variational learner (Yang 2000)
Transmission

- Dependent on the learning model
- Our implementation is modular, so many learning models can be slotted in
 - e.g., trigger-based learner (Gibson & Wexler 1994)
 - Variational learner (Yang 2000)
- Let L be the distribution of grammars internalized by a learner who heard P
 - L is a matrix consisting of g vectors $l_1, l_2, \ldots l_g$
- Define g transition matrices $T_1, T_2, \ldots T_g$, one for each potential target grammar

$$l_i = \text{dominant eigenvector of } \sum_{j=1}^{g} P_{t+1 \mid j,i} T_j$$
Transmission and Grammatical Advantage

● If $L = P$, learners internalize variants at the rate they hear them
 ○ This yields neutral change

● Otherwise, learners choose variants in a way that biases some over others
 ○ Some variants have an advantage over others
 ○ This yields S-curve change in perfectly mixed populations
Transmission Example

- Let there be two languages L_1 and L_2, the extensions of g_1 and g_2, produced with probabilities P_1 and P_2.
- $a = P_1[L_1 \cup L_2]$ \quad 1 - a = P_1[L_1 \setminus L_2]$
- $b = P_2[L_1 \cup L_2]$ \quad 1 - b = P_2[L_2 \setminus L_1]$
Transmission Example

- Let there be two languages L_1 and L_2, the extensions of g_1 and g_2, produced with probabilities P_1 and P_2.
- $a = P_1[L_1 \cup L_2] \quad 1 - a = P_1[L_1 \setminus L_2]$
- $b = P_2[L_1 \cup L_2] \quad 1 - b = P_2[L_2 \setminus L_1]$
- Let T_1 and T_2 be transition matrices assuming g_1 and g_2 are the target grammars respectively
- $T_1 = \begin{bmatrix} 1 & 0 \\ 1-a & a \end{bmatrix} \quad T_2 = \begin{bmatrix} b & 1-b \\ 0 & 1 \end{bmatrix}$
Transmission Example

\[T_1 = \begin{bmatrix} 1 & 0 \\ 1-a & a \end{bmatrix} \]

\[T_2 = \begin{bmatrix} b & 1-b \\ 0 & 1 \end{bmatrix} \]

- If the target grammar is \(g_1 \), then in the limit...
Transmission Example

\[
T_1 = \begin{bmatrix} 1 & 0 \\ 1-a & a \end{bmatrix}
\]

\[
T_2 = \begin{bmatrix} b & 1-b \\ 0 & 1 \end{bmatrix}
\]

- If the target grammar is \(g_1 \), then in the limit...
 - Learners who initially hypothesize \(g_1 \) will always remain in \(g_1 \)
Transmission Example

$T_1 = \begin{bmatrix} 1-a & a \\ 0 & 1 \end{bmatrix}$

$T_2 = \begin{bmatrix} b & 1-b \\ 0 & 1 \end{bmatrix}$

- If the target grammar is g_1, then in the limit...
 - Learners who initially hypothesize g_1 will always remain in g_1
 - Learners who initially hypothesize g_2 will remain at g_2 with probability a
Transmission Example

\[T_1 = \begin{bmatrix} 1 & 0 \\ 1-a & a \end{bmatrix} \]

\[T_2 = \begin{bmatrix} b & 1-b \\ 0 & 1 \end{bmatrix} \]

- If the target grammar is \(g_1 \), then in the limit...
 - Learners who initially hypothesize \(g_1 \) will always remain in \(g_1 \)
 - Learners who initially hypothesize \(g_2 \) will remain at \(g_2 \) with probability \(a \)
 - Or switch to \(g_1 \) with probability \(1-a \)
Extra Slides:
NCS in the St. Louis Corridor
Not all Change is Ideal

- An empirical fact
- Some change does not reach completion
- So it is obviously not S-shaped
The St. Louis Corridor

- Dialect region within US Midlands between Chicago and St. Louis
- But has features from the Inland North
 - Northern Cities Shift (NCS)
 - Has advanced and retreated

ANAE 2006
The St. Louis Corridor

- NCS entered the Corridor via Route 66 during the Great Depression

Friedman 2014
The St. Louis Corridor

- NCS entered the Corridor via Route 66 during the Great Depression
- Path of change is different On-Route and Off-Route
 - NCS peaks first On-Route
 - NCS peaks higher On-Route

Friedman 2014
The St. Louis Corridor

- NCS entered the Corridor via Route 66 during the Great Depression
- Path of change is different On-Route and Off-Route
 - NCS peaks first On-Route
 - NCS peaks higher On-Route

Friedman 2014
The St. Louis Corridor

- NCS entered the Corridor via Route 66 during the Great Depression
- Path of change is different On-Route and Off-Route
 - NCS peaks first On-Route
 - NCS peaks higher On-Route
- Typical of two-compartment systems

Wikipedia
Modelling the Corridor: Network Structure

Community Types:

- Midlands (1; “background”)
- Chicago (1)
- On-Route (19)
- Off-Route (19)
Modelling the Corridor: Network Structure

Community Types:
- Midlands (1; “background”)
- Chicago (1)
- On-Route (19)
- Off-Route (19)

Connections:
- Midlands to all On-Route and Off-Route
- Chicago to all On-Route
- On-Route to two adjacent On-Route
- On-Route to one adjacent Off-Route
- Off-Route to one adjacent Off-Route
Modelling the Corridor: History

- Vary a single parameter: Direction of movement to On-Route communities
Modelling the Corridor: History

- Vary a single parameter: Direction of movement to On-Route communities
- Tests Great Depression hypothesis
Modelling the Corridor: History

- Vary a single parameter: Direction of movement to On-Route communities
- Tests Great Depression hypothesis
- It would be too “easy” if we could vary multiple parameters
 - Movement Off-Route
 - Strength of connections between On-Route and Off-Route
 - Strength of connections between On/Off-Route and Chicago/Midlands
 - Advantage of NCS
 - Etc.
Modelling the Corridor: History

- Vary a single parameter: Direction of movement to On-Route communities
- Tests Great Depression hypothesis
- It would be too “easy” if we could vary multiple parameters
 - Movement Off-Route
 - Strength of connections between On-Route and Off-Route
 - Strength of connections between On/Off-Route and Chicago/Midlands
 - Advantage of NCS
 - Etc.
- And the results would be less meaningful
Modelling the Corridor: History

- Vary a single parameter: Direction of movement to On-Route communities
- Tests Great Depression hypothesis

Stage 1 - 5 iterations
 No movement (speaker interaction only)

Stage 2 - 20 iterations
 2% movement from Chicago to On-Route “Great Depression”

Stage 3 - 75 iterations
 2% movement from Midlands to On-Route “Post-Depression”
Modelling the Corridor: The Variable

- Treating the NCS as a single binary variable subject to competing grammars
Modelling the Corridor: The Variable

● Treating the NCS as a single binary variable subject to competing grammars
● Community Variable Distributions:
 ○ Chicago fixed at 100% NCS+
 ○ Midlands fixed at 100% NCS-
 ○ On/Off-Route begins 100% NCS- but is allowed to vary
Modelling the Corridor: The Variable

- Treating the NCS as a single binary variable subject to competing grammars
- Community Variable Distributions:
 - Chicago fixed at 100% NCS+
 - Midlands fixed at 100% NCS-
 - On/Off-Route begins 100% NCS- but is allowed to vary
- Tested as neutral, slightly advantaged, and heavily advantaged change
Results: Neutral Change

- A classic two-compartment pattern arises
Results: Neutral Change

- A classic two-compartment pattern arises
- NCS peaks higher and earlier **On-Route** than **Off-Route**
Results: Neutral Change

- A classic two-compartment pattern arises
- NCS peaks higher and earlier on On-Route than Off-Route
- NCS continues to increase off Off-Route even after On-Route population movements are reversed
Results: Advantaged Change

- Advantaged change resists being “tamped down” **Off-Route**
 - NCS recedes given a slight advantage
 - NCS advances given a heavy advantage
Advantaged change resists being “tamped down” Off-Route
 - NCS recedes given a slight advantage
 - NCS advances given a heavy advantage

Exists some threshold above which indirect action On-Route is insufficient
Results: Advantaged Change

- Advantaged change resists being “tamped down” Off-Route
 - NCS recedes given a slight advantage
 - NCS advances given a heavy advantage
- Exists some threshold above which indirect action On-Route is insufficient
- Can be solved with additional model parameters
 - Rate of movement Off-Route
 - The advantage itself
 - etc.
Final Takeaways

Population models and learning models interact!
Final Takeaways

Population models and learning models interact!

- Assumptions must be carefully considered when modelling change
 - Under what assumptions are results generalizable?
Final Takeaways

Population models and learning models interact!

- **Assumptions must be carefully considered when modelling change**
 - Under what assumptions are results generalizable?

- **Attested paths of change are governed by these interactions**
 - Sometimes explicitly e.g., the St. Louis Corridor
 - Sometimes implicitly e.g., New England cot-caught