Globality in Kashaya
Metrical Structure

EUGENE BUCKLEY
UNIVERSITY OF PENNSYLVANIA

5 April 2012
CUNY Linguistics Colloquium
Outline of talk

• Kashaya stress patterns
 – interactions with morphological structure

• evidence for global interaction
 – problems with ordered operations

• fully global OT
 – problems with morphology and opacity

• Stratal OT combined with Candidate Chains
 – promising, but still not a perfect solution
LR iambs and lengthening

- morphological bracketing plays an important role later; roots in bold
- data from Oswalt (1961, 1964) and dictionary notes

\[\text{[[cad-uced] un]} \]
(ca dú·) (ce dun)
‘while looking’

\[\text{[[ti-cc-iced] u]} \]
(tíc) (ci ce·) du
‘jerk one’s foot back’

\[\text{[[mo-mul-ie’-ed] u]} \]
(mo mú·) (li c’e·) du
‘run in circles’

\[\text{[[kel-mul-ad-uced] u]} \]
(kél) (mu la·) (du ce·) du
‘keep peering around’
Syllable extrametricality

- occurs only in disyllabic or prefixed roots (Buckley 1994)
- blocked by minimality for monosyllabic roots

[qahmat-ibic biw]
\langle qah \rangle (ma tí·) (bic’) (biw)
‘must have been mad’

[qaʔc’aṭ-ad-uced u]
\langle qaʔ \rangle (c’a ťá·) (du ce·) du
‘used to cry and cry’

[qaʔc’aṭʔkʰe tʰin]
\langle qaʔ \rangle (c’áť’) (kʰe tʰin)
‘shouldn’t cry’

[pi-hset’-ibic-ed u]
\langle pih \rangle (se t’í·) (bi ce·) du
‘(hair) kept springing up’
Foot extrametricality

• applies to initial Cv· foot
• long vowel can be derived by elision

[[wa-ad] uʔba-em]
《wa·》(dúʔ) (bem)
‘could walk away’

[[di·eʔ-id] ba]
《di·》(c’ín’) ba
‘after having said’

[cu·se-to-ʔna]
《cu·》(se tóʔ) na
‘at our uncle’s house’

[ma·kina]
《ma·》(ki ná)
‘car’ < Sp. máquina
Plus syllable extrametricality

- “initial” Cv· relative to syllable extrametricality, if present
- therefore cumulative when root is disyllabic or prefixed

- [[duʔya·q-ad-qa] ba]
 〈duʔ〉 〈ya·〉 (qán’) (qa ba)
 ‘after thinking about it

- [[ba-ne-aduc-qa] ·li]
 〈ba〉 〈ne·〉 (dúcʰ) (qa·) li
 ‘when (they) sent it off in the distance’

- [[šula·m] iʔba]
 〈šu〉 〈la·〉 (máʔ) ba
 ‘would get sick’

- [[qa-de-ibic-qa-wac’] in]
 〈qa〉 〈de·〉 (bícʰ) (qa wa·) (c’in)
 ‘when they tried prying’
Foot Flipping

• initial $Cv\cdot Cv \rightarrow CvCv\cdot$
• results in a “perfect iamb”, which is also extrametrical

[[t’e·t-ibic] ba]
《t’e ti·》 (bíc’) ba
‘having stood up’

[[ca-ad-uced] u]
《ca du·》 (ce dú)
‘flies along’

[[mo-ala-wad-adas] u]
《mo la·》 (wa dá·) (da du)
‘run down intermittently’

[[di·c’-id-uad-adad] u]
《di c’i·》 (du wá·) (du ce·) du
‘he used to tell (this story)’
Plus syllable extrametricality

- cumulative, just like plain foot extrametricality
- as a result, accent can fall as far in as the 5th syllable

```plaintext
[muna·c-id] uʔba
〈mu〉 〈na ci·〉 ( dúʔ ) ba
   ‘would be shy’

[bide-aloq-ic’] ti
〈bi〉 〈da lo·〉 ( qóʔ ) ti
   ‘in order to carry them back up here’

[loq’o·c-ad-uwad] u
〈lo〉 〈q’o ca·〉 ( du wá· ) du
   ‘make noise by moving around’

[si-de-ac’-iyic’] in
〈si〉 〈de c’i·〉 ( yi c’ín )
   ‘while they were sailing along’
```
Level ordering

- fundamental structure of a Kashaya verb

 \[
 \text{ROOT} \quad \text{ibic} \quad \text{STEM} \quad \text{ba} \quad \text{WORD}
 \]

- “Level 1” = Stem Level suffixes ≈ derivational
 - a verb can contain many such suffixes, but sometimes none
 - directionals, inceptives
 - reflexive, reciprocal
 - causative
 - duratives, distributive

- “Level 2” = Word Level suffixes ≈ inflectional
 - every verb requires one slot to be filled, chosen from several categories
 - absolutive
 - evidentials
 - imperatives
 - modals
 - switch reference
 - certain other suffixes can precede or follow this slot
No word-level lengthening

- Stem Level suffixes undergo Lengthening and Flipping
- Word Level suffixes do not undergo either process

[[**mo-mac-ed**] ela]
(mo má·) (ce de·) la
‘I keep running in there’

[[**t-ala-mec’**] tʰi-pʰila]
(ta lá·) (me?) (tʰi pʰi·) la
‘if (you) don’t climb down’

[[**hoṭʰ-ala**] s’uw-em]
(ho tʰá·) (la s’u·) (wem)
‘it would warm (us) up’

[[**s’i-yic’**] ?cid-tʰi-mi-ya-em]
(s’i yí?) (ci?) (tʰi mi·) (yam)
‘they never used to do (that)’
No word-level lengthening

• this is true even in the main-stress syllable
• syllable extrametricality of course affects the location of feet

[[s’i] phila]
(s’i phí) la
‘if it happens’

[[cad] ela]
(ca dé) la
‘I see (it)’

[[bawil] ela]
⟨ba⟩ (wi lé) la
‘I am putting (it) in’

[[ca-hke] wi-ya-e·]
⟨cah⟩ (ke wí) (ye·)
‘it blocked me from sitting’
No word-level Flipping

- Foot Flipping occurs only if the entire $Cv\cdot Cv$ is located in the Stem
- otherwise the $Cv\cdot$ remains a nonbranching (and extrametrical) foot

\[
\begin{align*}
\text{[[q’a·] mela]}
\quad \langle q’a\cdot \rangle (\text{ me lá)} \\
& \quad \text{‘I left’}
\end{align*}
\]

\[
\begin{align*}
\text{[[sima·q] eti]}
\quad \langle si \rangle \langle ma\cdot \rangle (\text{ qa tí)} \\
& \quad \text{‘although he’s asleep’}
\end{align*}
\]

\[
\begin{align*}
\text{[[qa-ţ’o·] wi-ya-e·]}
\quad \langle qa \rangle \langle ţ’o\cdot \rangle (\text{ wi yé·)} \\
& \quad \text{‘rubbed off (my skin)’}
\end{align*}
\]

\[
\begin{align*}
\text{[[Šo-ţ’o·] tʰi-pʰila]}
\quad \langle Šo \rangle \langle ţ’o\cdot \rangle (\text{ tʰi pʰí) la} \\
& \quad \text{‘if (you) don’t peel it’}
\end{align*}
\]

\[
\begin{align*}
\quad & \ast \langle q’a \rangle \langle me\cdot \rangle (\text{ lá)} \\
\quad & \ast \langle si \rangle \langle ma \rangle \langle qa\cdot \rangle (\text{ tí)} \\
\quad & \ast \langle qa \rangle \langle ţ’o \rangle \langle wi\cdot \rangle (\text{ yé·)} \\
\quad & \ast \langle Šo \rangle \langle ţ’o \rangle \langle tʰi\cdot \rangle (\text{ pʰí lá)}
\end{align*}
\]
Word vs. Stem suffixes

• the Stem Level suffix undergoes Foot Flipping
• but not the Word Level suffix under the same syllable configuration

[[q’a·] mela]
《q’a·》(me lá)
‘I left’

[[sima·q] eti]
⟨si⟩《ma·》(qa tí)
‘although he’s asleep’

[[qa-ṭ’o·] wi-ya-e·]
⟨qa⟩《ṭ’o·》(wi yé·)
‘rubbed off my (skin)’

[[q’a·-cid] u]
《q’a ci·》(dú)
‘keep leaving’

[[sima·q-ad] u]
⟨si⟩《ma qa·》(dú)
‘usually sleep’

[[qa-ṭ’o·-cid-uced] u]
⟨qa⟩《ṭ’o ci·》(du cé·) du
‘be peeling with the teeth’

• a degenerate foot such as (dú) is permitted when necessary
• so this cannot be what causes avoidance of Flipping in the Word level
No Flipping before CVC

• since Flipping applies to \(C_v \cdot C_v \), it is blocked in \(C_v \cdot C_v C \)
• this is true even fully within the Stem Level

\[
\begin{align*}
\text{[[q’a’-cid] ba]} & \quad \text{[[q’a’-cid] u]} \\
\langle q’a’ \rangle (\text{cín’}) \ ba & \quad \langle q’a ci’ \rangle (\text{dú}) \\
\text{‘after leaving’} & \quad \text{‘keep leaving’}
\end{align*}
\]

\[
\begin{align*}
\text{[[sima•q-ad] th-e]} & \quad \text{[[sima•q-ad] u]} \\
\langle si \rangle \langle ma • \rangle (qá?) \ t^h e & \quad \langle si \rangle \langle ma qa • \rangle (\text{dú}) \\
\text{‘can’t sleep’} & \quad \text{‘usually sleep’}
\end{align*}
\]

\[
\begin{align*}
\text{[[qa-ṭ’o’-cid] thu]} & \quad \text{[[qa-ṭ’o’-cid-uced] u]} \\
\langle qa \rangle \langle ḏ’o’ • \rangle (\text{cí?}) (\ t^h u?) & \quad \langle qa \rangle \langle ḏ’o ci’ \rangle (\text{du cé•}) \ du \\
\text{‘don’t peel (it)!’} & \quad \text{‘be peeling with the teeth’}
\end{align*}
\]

• Flipping has to apply only within the Stem Level suffixes
• but whether \(C_v C \) blocks Flipping depends on the Word Level suffixes
Ordering analysis of Lengthening

• apply Lengthening to the Stem
 – only Stem level suffixes are present at this point

 \[\text{hoṭʰ-ala} \]
 \(\text{(hoṭʰá·) la} \)

• then add the Word level suffixes without Lengthening
 – new suffixes do not undergo the process

 \[\text{[(hoṭʰá·)la] s’uw-em} \]
 \(\text{(hoṭʰá·) (la s’u) (wem)} \)

• this approach can be implemented in Lexical Phonology (Buckley 1994)
 – also in any derivational theory that permits an intermediate representation of
 the Stem to which phonological processes apply
Final extrasyllabicity

• extrasyllabic final C in Stem to permit Lengthening there
 [mo-mul-ic’-ed]
 (mo mú·) (li c’e·) d

• necessary since often ends up as an open syllable due to Word suffix
 [[mo-mul-ic’-ed] u]
 (mo mú·) (li c’e·) du ‘run in circles’

• if the syllable ends up closed, it will shorten again independently
 [mo-mul-ic’-ed]
 (mo mú·) (li c’e·) d

 [[mo-mul-ic’-ed] ba]
 (mo mú·) (li c’en’) ba ‘after running in circles’

• so here, look-ahead is not crucial; but Flipping is more complicated...
Look-ahead for Flipping

- when we see just the Stem with extrasyllabicity, Flipping should apply
 \[q'a\cdot - cid \]
 \(\langle q'a\ ci\cdot \rangle d \)

- but we can’t predict whether we’ll eventually have \(CvC \) or \(Cv \)
 \[[[q'a\cdot -cid] ba] \]
 \(\langle q'a\cdot \rangle (cín') ba \)
 ‘after leaving’

 \[[[q'a\cdot -cid] u] \]
 \(\langle q'a\ ci\cdot \rangle (dú) \)
 ‘keep leaving’

- and we can’t just undo it by shortening, unlike with Iambic Lengthening
 \[[[q'a\cdot -cid] ba] \]
 \(\langle q'a\ ci\cdot \rangle d ba \)

 \(\rightarrow \langle q'a\ ci\cdot n' \rangle ba \)

 \(\rightarrow * \langle q'a\ cin' \rangle (bá) \sim * (q'a\ cín') ba \)
Avoiding look-ahead

• Buckley (1994) splits the effect of Foot Flipping into two steps
 – first set the stage for Flipping
 – implemented later only if syllable structure permits
 – converted here to a two-level analysis

• Stem Level: adjoin the Cv to Cv·, creating anti-iamb Cv·Cv

 \[
 \text{Foot Extrametricality} \quad \q'a\cdot ci \quad d \\
 \text{CV Adjunction} \quad \q'a\cdot ci \quad d
 \]

• Word Level: closed syllable destroys Cv·Cv, else Flipping occurs

 \[
 \text{[[q’a\cdot-cid] ba]} \quad \text{[[q’a\cdot-cid] u]} \\
 \q'a\cdot ci \quad d \quad ba \quad \q'a\cdot ci \quad d \quad u \quad \q'a\cdot ci \quad d \\
 \q'a\cdot (cin') \quad ba \quad \q'a\cdot ci \quad du
 \]
Lexical Phonology summary

• advantages
 – architecture captures Stem / Word distinction
 – Iambic Lengthening, CV Adjunction simply turn off
 – the general problem of opacity has an easy solution in ordered rules

• disadvantages
 – Flipping is split into two processes
 • temporary anti-iamb violates general pattern of language
 – makes no connection with Lengthening
 • yet both are fundamentally about changes in vowel length

• classic Optimality Theory avoids the look-ahead problem
 – evaluates the output directly, with surface syllabification present
 – but requires some other means of identifying the lengthening suffixes
 • some domain equivalent to the Stem
 • or a long list of relevant morphemes
Constraint Domains

• Buckley (1996, 1997) proposes Constraint Domains
 – index constraints to particular substrings of the output
 – roughly the same as the morphological bracketing, but not nested

\[
\begin{align*}
&\text{[[sima\cdot q] eti]} & \text{[[sima\cdot q-ad] u]} \\
&\{ \text{si ma\cdot q} \}_S \{ \text{e ti} \}_W & \{ \text{si ma\cdot qa d} \}_S \{ \text{u} \}_W \\
&\langle \text{si} \rangle \langle \text{ma\cdot} \rangle (\text{qa tí}) & \langle \text{si} \rangle \langle \text{ma qa\cdot} \rangle (\text{dú})
\end{align*}
\]

• ranking ensures that Word suffixes are faithful to underlying length
 – IDENT-LENGTH : the length of a segment is identical in input and output
 – *(CV·)CV or other FTFORM constraints that force Flipping to occur
 – IDENT-LENGTH\text{WORD} \gg *(CV·)CV \gg IDENT-LENGTH\text{STEM}
Flipping with Stem vs. Word suffixes

<table>
<thead>
<tr>
<th></th>
<th>{sima·qad}ₜ{u}ₜ</th>
<th>IDENT-Lₜ</th>
<th>*(CV·)CV</th>
<th>IDENT-Lₛ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>si (ma·) (qa dú)</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>si (ma qa·) (dú)</td>
<td></td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>{sima·q}ₜ{eti}ₜ</th>
<th>IDENT-Lₜ</th>
<th>*(CV·)CV</th>
<th>IDENT-Lₛ</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.</td>
<td>si (ma·) (qa tí)</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>si (ma qa·) (tí)</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

- here Flipping causes two IDENT violations, unlike Buckley (1997)
- the difference is not crucial
Similar for Iambic Lengthening

\[
\begin{array}{|c|c|c|}
\hline
\{\text{hoṭʰ-ala}\}_S \{\text{s’uwem}\}_W & \text{IDENT-}L_W & \text{SWP} \\
\hline
\text{a.} & \text{(ho ṭʰá) (la s’u) (wem)} & *!*
\hline
\text{b.} & \text{(ho ṭʰá·) (la s’u) (wem)} & * & * \\
\hline
\text{c.} & \text{(ho ṭʰá·) (la s’u·) (wem)} & *! & * \\
\hline
\end{array}
\]

- SWP = **Stress-to-Weight Principle**: a stressed syllable is heavy
 - causes Iambic Lengthening
- it may be possible to unify the constraints for Lengthening and Foot Flipping
 - cf. also **Perfect-Iamb** or **Uneven-Iamb**: a foot has the shape CvCv·
 - I haven’t worked out those details
- Buckley (1997) used gradient foot alignment for Foot Flipping
 - favored expanding a foot rightward
 - this type is now generally deprecated in favor of categorical constraints
 - Kager (2001), McCarthy (2003), Buckley (2009)
No look-ahead required

<table>
<thead>
<tr>
<th></th>
<th>{q’a·cid}_S{u}_W</th>
<th>IDENT-L_W</th>
<th>*(CV·)CV</th>
<th>IDENT-L_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(q’a·)(cidú)</td>
<td></td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>(q’aci·)(dú)</td>
<td></td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>{q’a·cid}_S{ba}_W</th>
<th>IDENT-L_W</th>
<th>*(CV·)CV</th>
<th>IDENT-L_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>(q’a·)(cí’n’)ba</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>(q’aci·n’)(bá)</td>
<td></td>
<td>!*</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>(q’acin’)(bá)</td>
<td></td>
<td>!</td>
<td></td>
</tr>
</tbody>
</table>

- forms (d) and (e) would be distinguished by a phonotactic constraint *v·C
- the main point is that they both lose
Constraint Domains summary

• advantages
 – IDENT-L connects Lengthening and Flipping
 • one indexed constraint for the Word level accounts for both
 – no need for look-ahead
 • the full output is evaluated at once

• disadvantages
 – stipulates Stem / Word distinction
 • laid on top of output, rather than part of architecture
 – has no inherent account for opacity
 • would require extra mechanisms just like Classic OT
 – e.g., Phrasal footing can be different from Word, without Flipping
 \[[[\text{baco} \cdot]] [[\text{si-bo-ad}] u] \]
 \[\langle \text{ba} \rangle \langle \text{co} \cdot \rangle (\text{si bó} \cdot) \text{ du} \]
 ‘a group of boats is sailing along’
 \[*\langle \text{ba} \rangle \langle \text{co} \text{ si} \cdot \rangle (\text{bó} \cdot) \text{ du} \]
 – yet the entire sequence /co·si/ is in two Stem domains
 • so changes to vowel length there ought to be permitted

hat tip to Paul Kiparsky
Stratal Optimality Theory

- fixed stages in derivation (Kiparsky, Bermúdez-Otero)
 - Stem, Word, Phrase
 - output of level n is input to level $n+1$
 - limited handling of opacity across strata

- assume each stage is internally global like Classic OT
 - candidates evaluated against constraint ranking

<table>
<thead>
<tr>
<th>Stem Level</th>
<th>morphology</th>
<th>output of Eval</th>
<th>SWP >> IDENT-L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hoṭʰ-ala</td>
<td>(ho ṭʰá·) la</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word Level</th>
<th>morphology</th>
<th>output of Eval</th>
<th>IDENT-L >> SWP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(hoṭʰá·)la-s’uw-em</td>
<td>(ho ṭʰá·) (la s’u) (wem)</td>
<td></td>
</tr>
</tbody>
</table>
Stratal OT and globality

- stratum-internal globality won’t help with the look-ahead problem
 - in this regard, it’s exactly like Lexical Phonology
- still need some equivalent to CV Adjunction in the Stem level
 - but what kind of constraints will generate this result?
 - why no Lengthening at the Word level if Flipping occurs there?

<table>
<thead>
<tr>
<th>Stem Level</th>
<th>morphology</th>
<th>q’a·-cid</th>
<th>output of Eval</th>
<th>(q’a· ci) d</th>
<th>PARSE-SYL >> Ft-FORM?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word Level</td>
<td>morphology A</td>
<td>(q’a·ci)d-u</td>
<td>output of Eval</td>
<td>(q’a ci·) (dí)</td>
<td>PERFECT-IAMB?</td>
</tr>
<tr>
<td>or</td>
<td>morphology B</td>
<td>(q’a·ci)d-ba</td>
<td>output of Eval</td>
<td>(q’a·) (cí’’) ba</td>
<td>*V·C >> Ft-FAITH?</td>
</tr>
</tbody>
</table>
Global evaluation of Stratal OT

• proposal: maintain the Stratal OT levels of representation
 – Stem ⇒ Word ⇒ Phrase
• but evaluate all representations globally
 – somewhat similar idea in Baker (2009)
• borrow the notion of Chains from OT-CC
 – Eval compares CHAINS of candidates (McCarthy 2007)
 • a set of representations moving from input to output
 – but here, a fixed number of steps in chain, defined by strata
 – certain affinities to Constraint Domain approach
• unlike OT-CC, which is GRADUAL
 – one step in the chain for every faithfulness violation
 – more like traditional derivational phonology
 • except that each step must be HARMONICALLY IMPROVING
 – won’t get into details of that theory here
 • it was designed to handle opacity
 • moves away from global evaluation and won’t help the Kashaya problem
 • also does not address level-ordering issues
Stratal Chains

- same structural relations among Stem, Word, Phrase levels
 - but choice of output n is potentially affected by output $n+1$
- chain consists of Input (\approxUR) plus three stratal outputs
 - first item in chain, the Input, might be “fully faithful parse” of UR
 - with syllabic and possibly moraic structure added; not foot structure
 - morphology is not present from the beginning
 - unlike OT-CC and Classic OT
- $<\text{Input }, \text{Stem-Output }, \text{Word-Output }, \text{Phrase-Output} >$
- I’ll mostly set aside the Phrase-Output here
 - but it’s actually central for other facts about Kashaya stress, which is assigned to the phonological phrase and can span words (Buckley & Gluckman 2012)
 - in particular, a degenerate foot is probably not created until the Phrase level (lower ranking of FT-BIN there)
 - the effect of Foot Extrametricality is felt in the Phrase as well
Kashaya derivations

- vowel length in the Stem depends on the suffix added in the Word level

<table>
<thead>
<tr>
<th>Input</th>
<th>root</th>
<th>faithfule parse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q’a·</td>
<td>q’a·</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stem Level</th>
<th>morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q’a·-cid</td>
</tr>
<tr>
<td>output of Eval</td>
<td>(q’a ci·) d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word Level</th>
<th>morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(q’a·ci)d-u</td>
</tr>
<tr>
<td>output of Eval</td>
<td>(q’a ci·)(dú)</td>
</tr>
</tbody>
</table>

- global evaluation of the chains can achieve this effect

 < q’a·, (q’aci·)d, (q’aci·)(dú) >

 < q’a·, (q’a·)ci d, (q’a·)(cín’)ba >
SL and WL for /q’a·-cid-u/

Stem Level

<table>
<thead>
<tr>
<th></th>
<th>*V·C</th>
<th>*(CV·)CV</th>
<th>IDENT-L<sub>S</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>q’a·-cid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. (q’a·) ci d</td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>b. (q’a ci·) d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Word Level

<table>
<thead>
<tr>
<th></th>
<th>*V·C</th>
<th>IDENT-L<sub>W</sub></th>
<th>*(CV·)CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (q’a·)cid-u</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. (☞) (q’a·) (ci dú)</td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>ii. (q’a ci·) (dú)</td>
<td></td>
<td></td>
<td>⬤*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>*V·C</th>
<th>IDENT-L<sub>W</sub></th>
<th>*(CV·)CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. (q’aci·)d-u</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. (☞) (q’a ci·) (dú)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SL and WL for /q’a·-cid-u/

Stem Level

<table>
<thead>
<tr>
<th>q’a·-cid</th>
<th>*V·C</th>
<th>*(CV·)CV</th>
<th>IDENT-L_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q’a·) ci</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q’a ci·)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Word Level

<table>
<thead>
<tr>
<th>(q’a·)cid-u</th>
<th>*V·C</th>
<th>IDENT-L_W</th>
<th>*(CV·)CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q’a·) ci</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dú</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>i.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q’a ci·)</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>ii.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q’a ci·)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dú</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(q’aci·)d-u</th>
<th>*V·C</th>
<th>IDENT-L_W</th>
<th>*(CV·)CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>b.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q’aci·) ci</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dú</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q’aci·)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dú</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WL of stem output /q’a·cid/

Stem Level

<table>
<thead>
<tr>
<th></th>
<th>*V·C</th>
<th>*(CV·)CV</th>
<th>IDENT-L<sub>S</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>q’a·-cid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. (q’a·) ci d</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ☞ (q’a ci·) d</td>
<td></td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

Word Level

<table>
<thead>
<tr>
<th></th>
<th>*V·C</th>
<th>IDENT-L<sub>W</sub></th>
<th>*(CV·)CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (q’a·)cid-u</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. ☞ (q’a·) (ci dú)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>ii. (q’a ci·) (díu)</td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>b. (q’aci·)d-u</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. ☞ (q’a ci·) (díu)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WL of stem output /q’aci·d/

Stem Level

<table>
<thead>
<tr>
<th></th>
<th>*V·C</th>
<th>*(CV·)Cv</th>
<th>IDENT-Ls</th>
</tr>
</thead>
<tbody>
<tr>
<td>q’a·-cid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td></td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Word Level

<table>
<thead>
<tr>
<th></th>
<th>*V·C</th>
<th>IDENT-Lw</th>
<th>*(CV·)Cv</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (q’a·)cid-u</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i.</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ii.</td>
<td></td>
<td>!∗</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>*V·C</th>
<th>IDENT-Lw</th>
<th>*(CV·)Cv</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. (q’aci·)d-u</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Global evaluation of /q’a·-cid-u/

- violations for each step in the chain are considered as a group, but presented heuristically
- candidate a.i. without Flipping fails because it violates the relevant constraint without being forced to by a higher constraint
- candidate a.ii. is homophonous with the winner but only by chance; it is rejected due to Word-level Flipping

<table>
<thead>
<tr>
<th></th>
<th>*V·C</th>
<th>IDENT-L_W</th>
<th>*(CV·)CV</th>
<th>IDENT-L_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.i.</td>
<td>(q’a·) ci d</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(q’a·) (ci dú)</td>
<td>IDENT-L_W</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>a.ii.</td>
<td>(q’a·) ci d</td>
<td>IDENT-L_W</td>
<td>*(CV·)CV</td>
<td>IDENT-L_S</td>
</tr>
<tr>
<td></td>
<td>(q’a ci·) (dú)</td>
<td>IDENT-L_W</td>
<td>!</td>
<td>IDENT-L_S</td>
</tr>
<tr>
<td>b.i.</td>
<td>(q’a ci·) d</td>
<td>IDENT-L_W</td>
<td>*(CV·)CV</td>
<td>IDENT-L_S</td>
</tr>
<tr>
<td></td>
<td>(q’a ci·) (dú)</td>
<td>IDENT-L_W</td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

35
SL and WL for /q’a·-cid-ba/

Stem Level

<table>
<thead>
<tr>
<th></th>
<th>q’a·-cid</th>
<th>*V·C</th>
<th>*(CV·)CV</th>
<th>IDENT-L_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>(q’a·) ci d</td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>b.</td>
<td>(☞) (q’a ci·) d</td>
<td></td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

Word Level

<table>
<thead>
<tr>
<th></th>
<th>(q’a·)cid-ba</th>
<th>*V·C</th>
<th>IDENT-L_W</th>
<th>*(CV·)CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>(q’a·)cid-ba</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i.</td>
<td>(☞) (q’a·) (cín’) ba</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii.</td>
<td>(q’a ci·n’) (bá)</td>
<td></td>
<td>!</td>
<td>**</td>
</tr>
<tr>
<td>b.</td>
<td>(q’aci·)d-ba</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i.</td>
<td>(q’a ci·n’) (bá)</td>
<td></td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>ii.</td>
<td>(☞) (q’a cin’) (bá)</td>
<td></td>
<td>!</td>
<td></td>
</tr>
</tbody>
</table>
Global evaluation of /q’a·-cid-ba/

- crucial example of the Word level affecting the Stem level
- candidate *b.i.* has Flipping and leaves an ill-formed syllable
- candidate *b.ii.* has Flipping with Word-level shortening

<table>
<thead>
<tr>
<th></th>
<th>*V·C</th>
<th>IDENT-L_W</th>
<th>*(CV·)CV</th>
<th>IDENT-L_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.i.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q’a·)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(q’a·) (cín’) ba</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.i.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q’a ci·)</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(q’a ci·n’) ba</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.ii.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q’a ci·)</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(q’a cin’) ba</td>
<td></td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>
Conclusion

• global evaluation of stratal chains
 – captures the Stem / Word dichotomy like Stratal OT
 – captures the central role of IDENT-LENGTH like Constraint Domains

• generates a superset of the grammars that regular Stratal OT does
 – necessary power for Kashaya
 – more cases?

• could it help with level-internal opacity?
 – claimed to be a problem for Stratal OT (McCarthy 2007)
Yahwíy!
(Thank you.)
References

• Kiparsky, Paul. 2000. Opacity and cyclicity. The Linguistic Review 17, 351-367. [among other works]
• McCarthy, John. 2003. OT constraints are categorical. Phonology 20, 75-138.