Rhythmic Directionality by Positional Licensing

René Kager, Utrecht University

Fifth HIL Phonology Conference (HILP 5), University of Potsdam, 11 January 2001

1. Introduction

One particularly useful way of addressing the issue of adequacy of constraints is the construction of factorial typologies. If we compare factorial typologies on the criterion of how closely they match actually attested stress systems, we may find reasons to prefer one set of constraints over the other.

Gaps in factorial typologies often diagnose imperfections in the constraint set.
Gaps in directional stress systems to be discussed here:

- the lack of leftward iambic systems (Kager 1993, McCarthy \& Prince 1993, Hayes 1995, Van de Vijver 1998, Alber 2000);
- the lack of bidirectional systems in which stresses alternate toward a fixed secondary stress at an edge (Kager 1990).

Both gaps originate from a single assumption, shared by current metrical models, that directionality involves non-local, symmetrical principles of foot distribution (a 'directionality parameter', Hayes 1980, 1995, or 'foot-to-edge alignment constraints', McCarthy \& Prince 1993).

2. Gaps in metrical typologies

2.1 Strictly binary iambs are rightward

I define a strictly binary system as one in which all feet are disyllabic (unary feet are disallowed). In such systems, a word with an odd number of syllables cannot be exhaustively parsed into feet, and one syllable must remain unparsed. Under a symmetrical theory of directionality, one expects this to happen at the left edge or the right edge, in both trochaic and iambic systems, predicting four types:

foot type	directionality		even number		odd number
	language				
trochees	left-to-right	$(10)(20)(20)$	$(10)(20)(20) \mathbf{0}$	Pintupi (A.1)	
	right-to-left	$(20)(20)(10)$	$\mathbf{0 (2 0) (2 0) (1 0)}$	Warao (A.2)	
iambs	left-to-right	$(01)(02)(02)$	$(01)(02)(02) \mathbf{0}$	Araucanian (A.3)	
	right-to-left	$(02)(02)(01)$	$\mathbf{0}(02)(02)(01)$	$* * *$	

This typology contains a well-known gap (Kager 1993, Hayes 1995): iambic parsing is leftward under strict binarity. Note that the other three options are all typologically well-attested. This gap is even more puzzling since it cannot be explained by a universal prohibition against leftward iambic parsing. Leftward iambic languages do occur, but all are of the kind that permit unary feet:

foot type	directionality	even number	odd number	language
trochees	left-to-right	(10)(20)(20)	$(10)(20)(20)(2)$	Murinbata (A.4)
iambs	right-to-left	(02)(02)(01)	(2)(02)(02)(01)	Weri (A.5)

The crucial case, Weri, is a precise mirror-image of Murinbata, a rightward trochaic language that allows unary feet.
(2.3) The Iambic Asymmetry: Strictly binary iambic systems are rightward.

If leftward iambs cannot be universally excluded, then what causes the gap in (2.1)? What rules out the iambic mirror-image of Pintupi? Why should there be a relation between three parameters, foot type, minimum foot size, and directionality?

I hypothesize that the explanation resides in the lapse, or sequence of two unstressed syllables, at the beginning of the domain. (E.g., \#0020201.)
(2.4) left-edge lapse $\# 00$ (relatively unacceptable) right-edge lapse $00 \#$ (relatively acceptable)

This asymmetry is well-known from other rhythmic domains, particularly the avoidance of 'double upbeats' in musical rhythm (Lerdahl and Jackendoff 1983).
(2.5) There are languages that

- allow right-edge lapses, but disallow left-edge lapses; (Pintupi A.1)
- allow both right-edge lapses and left-edge lapses; (Cayuvava A.6)
- disallow both left-edge lapses and left-edge lapses; (Warao A.2) but there are no languages that
- allow left-edge lapses, but disallow right-edge lapses.

There is a relation with extrametricality/nonfinality here: right-edge lapses may either be allowed (as in Pintupi), or required (as in Cayuvava). But no language is known to require left-edge lapses.

	required	allowed	disallowed
left-edge lapse	$* * *$	Cayuvava	(many languages)
right-edge lapse	Cayuvava	Pintupi	(many languages)

2.2 Secondaries run toward main stress in bidirectional systems

There is a second gap in the metrical typology, equally puzzling as the iambic gap, which was first observed by Kager (1991). This transpires from a minitypology of bidirectional trochaic systems. In a bidirectional system, one foot is specified at one edge, while the other feet are built starting at the opposite edge. Logically speaking, we can vary the edge (i) of the fixed foot and (ii) the main stress foot ('End Rule' L or R), predicting 4 systems:

(2.7)	fixed foot	directionality	End Rule	even number	odd number	language
	left	right-to-left	left	(10) (20)(20)	(10) 0 (20)(20)	Garawa (A.7)
			right	(20) (20)(10)	(20) 0 (20) (10)	***
	right	left-to-right	left	(20) (20)(10)	$(20)(20) 0(10)$	Piro (A.8)
			right	(10) (20)(20)	$(10)(20) 0(20)$	***

No bidirectional systems occur in which the fixed foot lodges at the edge opposite-to-the-peak. Or, to state it differently, secondaries run toward the main stress in bidirectional systems. Or, to phrase it in local rhythmic terminology, the ternary interval occupies a position after the main stress (if this is
initial), or before the main stress (if this is penultimate). In both cases, the ternary interval occurs adjacent to the peak. [Alleged instantiations of the initial dactyl pattern discussed in Appendix B.]

Again, this gap cannot be simply explained by some universal condition, for example, requiring a match between directionality of footing and the End Rule (Hammond 1984, Van der Hulst 1984). The position of main stress is, typologically speaking, not a reliable diagnostic of directionality. This is because languages exist that exhibit mismatches between directionality and the End Rule:

foot type	directionality	End Rule	even number	odd number	language
trochaic	right-to-left	left	(10)(20)(20)	$0(10)(20)(20)$	Wargamay (A.9)
	left-to-right	right	$(20)(20)(10)$	$(20)(20)(10) 0$	Cairo Arabic (A.10)
iambic	left-to-right	right	(02)(02)(01)	$(02)(02)(01) 0$	Creek (A.11)
	right-to-left	left	(unattested: I	mbic Asymm	

The gap (yet another directionality asymmetry) can be stated as follows:
(2.9) The Bidirectionality Asymmetry: Secondaries run toward the main stress in bidirectional systems. (Or: in bidirectional systems, the edges of the fixed foot and the End Rule match.)

If there is no universal ban against directionality-end-rule-mismatches, then what causes the gaps in (2.7)? What rules out the right-edge main stress counterpart of Garawa and the left-edge main stress counterpart of Piro? Why should there be any relation between three parameters: (i) edge-of-fixedfoot, (ii) End Rule, and (iii) directionality?

As in the iambic asymmetry, I hypothesize that the explanation resides in the position of lapses, now with respect to the main stress foot. More specifically, all systems that tolerate non-peripheral lapses, only tolerate these when adjacent to the main stress.

(Nespor \& Vogel (1989:86) claim that in a rhythmic interval between two peaks, a lapse following a peak is preferred to a lapse preceding a peak. If this is correct, this may point to another asymmetry in the statement of rhythmic constraints.)

2.3 Summary of typological findings

Cross-linguistically, local ternary intervals are restricted to two contexts: they are
(2.12) (i) adjacent to the right edge: Pintupi 102020200
(ii) adjacent to the peak: Garawa 100202020 Piro 202020010

Local ternarity seems not to occur, however,
(i) at the left edge: 002020201
(ii) adjacent to a non-peak:

200202010
102020020
These findings suggest that ternary intervals are locally licensed in the stress domain (Kager 1994), specifically the right edge and the peak. The remainder of this paper will elaborate this idea into a local licensing theory of directionality.

First we must show that the standard symmetrical theory of directionality fails to explain the gaps, due to its intrinsic symmetry.

3. A licensing theory of directionality

3.1 Basic ideas

In the new theory, foot distribution will be controlled by local factors, rather than by long-distance orientation with respect to edges. 'Local' in the sense of strictly adjacent to an edge, or the peak.

For learning, my hypothesis is that local deviations from binarity provide cues to directionality (in the sense of Dresher \& Kaye 1990). That is, the learner focusses on a window at the left or right edge, and determines the (in)stability of local rhythmic patterns across words of different lengths.

In line with observations made in section 2, I eliminate All-Ft-X in favour of constraints that license rhythmically marked intervals (that is, lapses) near the right edge or the main stress.
(3.1) LAPSE-AT-PEAK: Lapse must be adjacent to the peak.
(I.e. If 00 then 100 or 001)
(3.2) LAPSE-AT-EnD: Lapse must be adjacent to the right edge. (I.e. If 00 then 00])

Formally, these constraints assign violation marks in the following way. For each pair of (adjacent) weak syllables, e.g. $\sigma_{\mathrm{i}} \sigma_{\mathrm{j}}$, a test is applied. For example, LAPSE-AT-PEAK tests whether this sequence $\sigma_{i} \sigma_{j}$ is either preceded or followed by a stress peak; if not, a violation mark is assigned. Next, the constraint considers the following pair of unstressed syllables, e.g. $\sigma_{j} \sigma_{\mathrm{k}}$, applying the same test, in an interative fashion, until all pairs of unstressed syllables in a word have been tested.

In a nutshell, the constraints are exemplified by the treatment of Pintupi, whose pattern I repeat:
(3.3) (10)(20)(20)
$(10)(20)(20) 0$
In standard foot alignment theory, this pattern is characterized by the following ranking:
(3.4) Foot alignment analysis of Pintupi

Ft-Bin, Head-L » Parse-Syl» All-Ft-L » All-Ft-R

Input: /pulinkalatju/	Ft-Bin	Head-L	Parse-Syl	All-Ft-L	All-Ft-R
* a. (pú.lin).(kà.la).tju			*	**	*, ***
b. (pú.lij).ka.(là.tju)			*	***!	**
c. pu.(lín.ka).(là.tju)		*!	*	****	**
d. (pú.lig).ka.la.tju			**!*		***
$\begin{aligned} & \text { e. } \\ & \text { (pú.lig).(kà.la).(tjù) } \end{aligned}$	*!			**, ****	*, ***

In rhythmic licensing theory, the following ranking produces the pattern:
(3.6) Rhythmic licensing analysis of Pintupi

FT-Bin, HEAD-L » PARSE-SYL » LAPSE-AT-END » LAPSE-AT-PEAK
(3.7)

Input: /pulinkalatju/	FT-BIN	HEAD-L	PARSE-SYL	LAPSE-ATEND	LAPSE-ATPEAK
* a. (pú.liŋ).(kà.la).tju			*		*
b. (pú.lị).ka.(là.tju)			*	*!	
c. pu.(líŋ.ka).(là.tju)		*!	*		
d. (pú.lị).ka.la.tju			**!	**	**
e. (pú.lị).(kà.la).(t j u)	*!				

Note the gross difference in complexity of evaluation between ALL-FT-X and LAPSE-AT-X in a longer form like:

		All-Ft-L	LAPSE-AT-END
(tií.li).ri.(nu.làm).(pà.tiu)	$\begin{align*} & \hline \mathrm{Ft}_{1}: \tag{3.8}\\ & \mathrm{Ft}_{2}: \\ & \mathrm{Ft}_{3}: \\ & \mathrm{Total}: \end{align*}$	tii, li, ri tii, li, ri, nu, lam *** *****	* li.ri (a nonfinal sequence of unstressed syllables)

For a slightly different approach, see Alber (2000), who abandons ALL-Ft-R while retaining All-Ft-L.

Paralellisms occur between lapse licensing constraints and metrical licensing approaches found in the literature (Zoll 1996, Walker 1997; see also Dresher \& Van der Hulst 1998).

The fundamental insight (due to Zoll 1996) is that a constraint licenses a marked property in a 'strong' position. The marked property is excluded by a context-free constraint, but may be licensed in a limited number of positions. No doubt, lapses are rhythmically marked. No doubt, the peak and the right edge of a domain are 'strong', in the sense that they are natural licensors of marked prosodic properties (such as syllabic appendices, or vowel length).

In the overall constraint system, the lapse licensing constraints function together with a contextfree markedness constraint banning lapses (3.9), and contextual markedness constraints $(3.10,11)$:
*LAPSE: No two adjacent unstressed syllables.
(I.e. *00)
(Selkirk 1984)
*LONG-LAPSE: No lapse in the context of an unstressed syllable.
(I.e. $* 00 / 0)$
(Nespor \& Vogel 1989; Elenbaas \& Kager 1999)
(3.11) *INITIAL-LAPSE: No lapse at the left edge.
(I.e. *00 / [__)

Similar constraint constellations ('licensing systems') have been identified for other properties, such as vowel length, obstruent voicing, etc.
(3.12) A licensing system for length

Context-free: No long vowels.

Contextual: No long vowel in final syllable.
Licensing: VV under main stress, in first syllable/foot only. (Kager 1996, Zoll 1997)

3.2 Accounting for the gaps

Rhythmic licensing theory was primarily motivated by the urge to eliminate two typological gaps, the iambic asymmetry and the bidirectionality asymmetry. Let us see how this works.

A constraint system is typologically validated (with respect to a universally unattested pattern), if no permutation of these constraints generates the ill-formed pattern. This is equivalent to showing that the ill-formed pattern is 'harmonically bounded' (Samek-Lodovici \& Prince 1999). If constraint violations of a candidate C_{1} are a proper subset of the ill-formed pattern C_{2}, then candidate C_{2} cannot be generated under any ranking. (C_{2} is said to be harmonically bounded by C_{1}.)

The candidate to be excluded, (3.13e) is harmonically bounded since its violations are a superset of those incurred by candidates (3.13b,c), which are themselves rhythmically bounded by (3.13.b):

	PARSE- SYL	*LAPSE	*INITIAL -LAPSE	LAPSE- AT-END	LAPSE- AT-PEAK	ALIGN-R	
a. $\quad(02)(02)(02)(01) \mathbf{0}$	$*$					$*$	
b. $(02)(02)(02) \mathbf{0}(01)$	$*$	$*$		$*$			
5	c. $\quad(02)(02) \mathbf{0}(02)(01)$	$*$	$*$	Ω	$*$	$*$	
5	d. $\quad(02) \mathbf{0}(02)(02)(01)$	$*$	$*$		$*$	$*$	
5	e. $\mathbf{0}(02)(02)(02)(01)$	$*$	$*$	$*$	$*$	$*$	

Here, (3.13a) is Creek (A.11), and (3.13b) - nearly - Central Alaskan Yupik (A.12; rightward iambs plus final stress).

The bidirectionality gap is accounted for equally straightforwardly.
(3.14)

		PARSE- SYL	*LAPSE	*INITIAL -LAPSE	LAPSE- AT-END	LAPSE- AT-PEAK	ALIGN- L
a. $(10)(20)(20)(20) \mathbf{0}$	$*$	$*$		$*$	$*$		
5 b. $(10)(20)(20) \mathbf{0}(20)$	$*$	$*$		$*$	$*$		
5 c. $(10)(20) \mathbf{0}(20)(20)$	$*$	$*$		$*$	$*$		
d. $(10) \mathbf{0}(20)(20)(20)$	$*$	$*$		$*$			
e. $\mathbf{0}(10)(20)(20)(20)$	$*$			$*$		$*$	

Pattern (3.14a) is instantiated by Pintupi, (3.14d) by Garawa, and (3.14e) by Wargamay. Patterns (3.14-b-c) are both unattested, as predicted.

The mirror-image patterns, with right-edge peaks, are presented below:

	PARSE- SYL	*LAPSE	*INITIAL -LAPSE	LAPSE- AT-END	LAPSE- AT-PEAK	ALIGN- L
a. $(20)(20)(20)(10) \mathbf{0}$	$*$	$*$				
b. $(20)(20)(20) \mathbf{0}(10)$	$*$	$*$		$*$		
5 c. $(20)(20) \mathbf{0}(20)(10)$	$*$	$*$		$*$	$*$	
5	d. $(20) \mathbf{0}(20)(20)(10)$	$*$	$*$		$*$	$*$

Pattern (3.14a) is instantiated by Cairene Arabic, (3.14b) by Piro, and (3.14e) by Warao. Patterns ($3.14 \mathrm{c}-\mathrm{d}$) are unattested. (See section 6 on alleged cases of the initial dactyl pattern 3.14d.)

3.4 Factorial typology

Preliminary results indicate that rhythmic licensing theory gives a tight factorial typology. [So far I have computed the typology for strictly binary systems, all with Ft-Bin » Parse-SyL.]

Typology for seven-syllable trochees, with the peak on the leftmost foot (HEAD-L » HEAD-R):
(3.16)

7-syllable input	Ranking	Exemple
$\begin{array}{ll} \hline \hline 1 . & \\ \underline{0} & (10)(20)(2 \underline{0}) \\ \hline \end{array}$	Head-L, Align-L, Lapse-at-End * *LAPSE, LAPSE-AT-Pk	Pintupi
$\begin{array}{ll} \hline 2 . & \\ & (1 \underline{0})(20)(20 \end{array}$	Head-L, Align-L, Lapse-at-PK» *LAPSE, LAPSE-AT-END	Garawa
$\text { 3. } \quad 0(10)(20)(20$	*LAPSE, LAPSE-AT-END, LAPSE-AT-PK » HEAD-L, Align-L	Wargamay

Typology for seven-syllable trochees, with the peak on the rightmost foot (HEAD-R » HEAD-L):

7-syllable input	Ranking	Exemple	
1. $(20)(20)(1 \underline{0})$ ALIGN-L, LAPSE-AT-END, LAPSE-AT-PK » *LAPSE, HEAD-R	Cairene Arabic		
$\underline{0}$			
2.	$(20)(20) 0(10$	HEAD-R, ALIGN-L, LAPSE-AT-PK » *LAPSE, LAPSE-AT-END	Piro
3.	$0(20)(20)(10$	*LAPSE, LAPSE-AT-END, LAPSE-AT-PK, HEAD-R » ALIGN-L	Warao

Typology for seven-syllable iambs, with the peak on the leftmost foot (HEAD-L » HEAD-R):
(3.18)

7-syllable input	Ranking	Exemple
$\begin{array}{ll} \hline \hline \text { 1. } & \\ (01)(02)(02) \end{array}$	Head-L, *LAPSE, Lapse-at-End, LAPSE-AT-PK » AlIgn-R	Araucanian
$\begin{array}{\|l} \hline \text { 2. } \\ \\ (01) \underline{0(02)(02} \end{array}$	HEAD-L, ALIGN-R, LAPSE-AT-END, LAPSE-AT-PK» *LAPSE	???

Typology for seven-syllable iambs, with the peak on the rightmost foot (HEAD-R » HEAD-L):

7-syllable input	Ranking	Exemple
$\begin{array}{ll} \hline \hline 1 . & \tag{3.19}\\ 0 & (02)(02)(01) \end{array}$	Head-R, *LAPSE, LaPSE-AT-End, Lapse-at-PK » Align-R	Creek
$\begin{array}{\|lr} \hline 2 . & (02)(02) \underline{0(01} \\ \hline \end{array}$	HEAD-R, Align-R, LAPSE-AT-PK» *LAPSE, LAPSE-AT-END	???

Even though leftward iambs are eliminated, the iambic typology still contains two gaps (predicted yet unattested patterns). However, the new asymmetrical typology is more restrictive than the standard symmetrical one, which also generates both gaps.

4. Extensions to systems with unary feet

4.1 Unary feet and lapse avoidance

Thus far we have dealt with strictly binary stress systems only, which impose an abolute ban against unary feet. However, not all stress systems are of this type.

How to deal with systems like Murinbata and Weri ((2.2), repeated below), which allow unary feet?

(4.1)	$\frac{\text { foot type }}{}$		directionality		even number	
	odd number		language			
trochees		left-to-right		$(10)(20)(20)$	$(10)(20)(20)(2)$	Murinbata (A.4)
	iambs	right-to-left	$(02)(02)(01)$	$(2)(02)(02)(01)$	Weri (A.5)	

Intuitively, unary feet arise under pressure for perfect rhythm (no-clash, no-lapse), under exhaustive parsing. The unary feet is placed at the edge where rhythmic damage (in terms of clash) is minimal. This is at the right periphery in a trochaic parse:
(4.2)

Murinbata	PARSE- SYL	*LAPSE	*CLASH	FT-BIN
* a. $(10)(20)(20)(20)(2)$				$*$
b. $(10)(20)(20)(2)(20)$			$*!$	$*$
c. $(10)(20)(2)(20)(20)$			$*!$	$*$
d. $(10)(2)(20)(20)(20)$			$*!$	$*$
e. $(\mathbf{1})(10)(20)(20)(20)$			$*!$	$*$
f. $(10)(20)(20)(20) 0$	$*!$	$*$		

And at the left edge in iambic systems:
(4.3)

Weri	PARSE- SYL	*LAPSE	*CLASH	FT-BIN
a. $(01)(02)(02)(02)(\mathbf{2})$			$*!$	$*$
b. $(01)(02)(02)(\mathbf{2})(02)$			$*!$	$*$
c. $(01)(02)(\mathbf{2})(02)(02)$			$*!$	$*$
d. $(01)(\mathbf{2})(02)(02)(02)$			$*!$	$*$
$*$ e. $(\mathbf{1})(02)(02)(02)(02)$				$*$
f. $(01)(02)(02)(02) \mathbf{0}$	$*!$			

This is a nice result, since it follows without directionality principles, from 'pure' rhythm (compare Prince's 1983 'perfect grid').

4.2 The distribution of clashes

We now turn to languages in which lapse-avoidance does not go hand in hand with clash-avoidance.
Consider the rhythmic patterns below (references: MacDonald 1990, Dubert \& Dubert 1973, Miller 1996, Miyaoka 1985). These four languages have fixed stresses at two edges (initial and final, initial and penult, or second and final). In the area between the fixed stresses, lapses are strictly avoided, at the expense of clashes:

(4.4)	fixed stresses	even number	odd number	direction, foot	$\underline{\text { langua }}$
	initial \& final	(2)(2)(02)(01)	(2)(02)(02)(01)	leftward iamb	Tauya
	initial \& penult	(2)(20)(20)(10)	$(20)(20)(20)(10)$	leftward trocheeBiangai	
	initial \& final	(10)(20)(2)(2)	$(10)(20)(20)(2)$	rightward trochee	Gosiute
	second \& final	$(01)(01)(01)(2)$	$(01)(01)(01)(02)$	rightward iamb	Central

(In the rightward iambic Central Alaskan Yupik pattern, final stresses occur on non-final units only, carrying a 'pre-boundary regressive accent' that is weaker than the rhythmic stresses in the word, see Miyaoka 1985:69-75. Accordingly, I mark strong rhythmic stresses as ' 1 ', and weaker pre-boundary stresses as ' 2 '.)

If the string of syllables in between the fixed stresses is even-numbered, a clash arises, with either the lefthand or righthand fixed stress.
(4.5) clash with stress at left X202020X
clash with stress at right X020202X
The generalization emerging for the languages in (4.4) is that clashes do not involve the main stress (that is, if there is a single main stress).

That is, given two fixed stresses, and an even-numbered string of syllables between them, and a strict anti-lapse constraint, there is only one attested outcome in each case. This is the one where the clash is between stresses of smallest possible prominence: two secondary stresses (rather than primary and secondary), or a primary and a secondary stress (rather than two primary stresses - as in CA Yupik):

Initial \& final \quad Initial \& penult \quad Initial \& final \quad Second \& final
$\begin{array}{lllll}\text { Attested: } & (\mathbf{2})(\mathbf{2})(02)(01) & (\mathbf{2})(\mathbf{2 0) (2 0) (1 0)} & (10)(20)(\mathbf{2})(\mathbf{2}) & (01)(01)(01)(\mathbf{2}) \\ \text { Unattested: } & (2)(02)(02)(\mathbf{1}) & (20)(20)(\mathbf{2})(\mathbf{1 0)} & (\mathbf{1})(\mathbf{2 0})(20)(2) & (01)(\mathbf{1})(01)(02)\end{array}$
Note that once again, there is no independent role for directionality. Stress distributions follow purely rhythmic patterns, rather than being governed by principles regarding their distances from edges.

We find evidence for a contextual markedness constraint (4.8) next to the general constraint (4.7):
(4.7) *CLASH: No two adjacent stressed syllables. (Liberman \& Prince 1977, Prince 1983)

Constraint (4.8) is related to Hammond's (1984) 'Trigger Prominence Principle', according to which clashes with the main stress are resolved before clashes involving secondary stresses. It is also related to Selkirk’s (1984) 'Montana filter' (banning *Mòntàna cówboy), see also Kiparsky (1979).

Functionally, constraint (4.8) is the counterpart to LapSe-to-Peak. Both constraints have the effect of moving other stresses away from the peak, either by licensing lapse, or banning clash. Intuitively, rhythmic space is not equally dense at all points. Peaks are focal points of rhythmic density, which must be compensated in their immediate surroundings by less dense (rarified) portions.

Tableau (4.9) shows CLASH-AT-PEAK in action, locating the clash away from the main stress:

Tauya (iambic parse)	LEFT	RIGHT	*LAPSE	*CLASH- AT-PEAK	*CLASH
${ }^{*}$ a. $(\mathbf{2) (\mathbf { 2 }) (0 2) (0 1)}$					$*$
b. $(2)(02)(02)(\mathbf{1})$				$*!$	$*$
c. $(2) 0(02)(01)$			$*!$		
d. $(2)(02)(02) 0$		$*!$			
e. $(02)(02)(01)$	$*!$				

The choice between clash with main stress and clash with secondary stress thus depends on rhythmic principles, without any role for foot alignment with respect to edges. (Note, however, that the result has not yet been completely established, since we must also account for the position of the clash near the edge, an issue which will be addressed below.)

One factor which potentially undermines this result must be discussed, though. There may seem to be interaction with foot type, since the location of clashes evidently depends on the headedness of feet. Since it is not so easy to determine foot type in an even number of stresses between fixed stresses, we may legitimately ask whether the result is preserved regardless of headedness.

For Tauya, there is evidence from odd-numbered words that parsing is iambic. Essentially, Tauya is identical to Weri in words of this type. But what if we assumed feet to be trochees? In that case, the tableau in (4.10) would arise:

Tauya (trochaic parse)	LEFT	RIGHT	*LAPSE	*CLASH- AT-PEAK	*CLASH
${ }^{*}$ a. $(\mathbf{2})(\mathbf{2 0) (2 0) (1)}$					$*$
b. $(20)(20)(\mathbf{2})(\mathbf{1})$				$*!$	$*$
c. $(20) 0(20)(1)$			$*!$		
d. $(20)(20)(\mathbf{2 0)}$		$*!$			
e. $0(20)(20)(1)$	$*!$				

The distribution of violation marks is fully identical to the iambic tableau, the only difference being in the location of foot boundaries. For example, the winning (a.) candidates of the tableaux perfectly align in terms of their stresses, although foot boundaries differ:
(4.11)
trochaic
$(2)(20)(20)(1)$
iambic
(2)(2)(0 2)(0 1)

We thus find that the result (the asymmetrical distribution of stresses) hold regardless of foot type.
One important question still remains. Why does the clash drift toward the edge of the domain? In all four of the patterns in (4.4), the clash occurs involves two peripheral syllables:

	Initial \& final	Initial \& penult	Initial \& final	Second \& final
Attested:	$(\mathbf{2})(\mathbf{2})(02)(01)$	$(\mathbf{2})(\mathbf{2 0})(20)(10)$	$(10)(20)(\mathbf{2})(\mathbf{2})$	$(01)(01)(01)(\mathbf{2})$
Unattested:	$(2)(02)(\mathbf{2})(01)$	$(20)(\mathbf{2})(\mathbf{2 0})(10)$	$(10)(\mathbf{2})(\mathbf{2 0})(2)$	$(01)(0 \mathbf{1})(\mathbf{1})(02)$

This gives evidence for the licensing of clashes at edges. The responsible constraint is:
(4.13) Clash-at-Edge: Clash must be adjacent to the left edge.

This licensing constraint is consistent with the rhythmic density view I suggested earlier: clashes are ideally located where rhythmic density is minimal, that is, where there are no neighbouring syllables.

There may be edge-specific versions of these constraints, with left edges taking precedence over right edges in licensing lapses. (Compare lapse licensing and non-finality.) But given the lack of empirical evidence on this matter, I will assume just a single, asymmetrical constraint.

	*LAPSE	*CLASH-AT-PEAK	CLASH-AT-EDGE	*CLASH
${ }^{*}$ a. (2)(2)(02)(01)				$*$
b. $(2)(02)(02)(\mathbf{1})$		$*!$		$*$
c. $(2)(02)(\mathbf{2})(01)$			$*!$	$*$

Finally, foot alignment theory is not able to produce this result, since foot-alignment constraints will produce both left-oriented and right-oriented parsings in the factorial typology, depending on the relative ranking of All-Ft-Left and All-Ft-Right.

	ALL-FT-RIGHT	ALL-Ft-LEFT
a. $(\mathbf{2})(\mathbf{2})(02)(01)$	$* *, * * * *, * * * *!*$	$*, * *, * * * *$
$* \quad$ b. $(2)(02)(02)(\mathbf{1})$	$*, * * *, * * * * *$	$*, * * *, * * * * *$

5. Conclusions

In this paper, I have shown that local rhythmic licensing constraints successfully restrict the typology of alternating stress systems. The general form of these licensing constraints is:

(5.1) Rhythmic Licensing

License a rhythmic configuration X (a clash or a lapse) in the immediate context of element Y (a peak or an edge).

These licensing constraints interact with rhythmic markedness constraints (which ban rhythmically marked configurations), allowing the elimination of ALL-FT-X. However, the theory preserves word-to-foot-alignment, e.g. Align (PrWd, L/R, Foot, L/R).

Note the analogous asymmetry between word-to-category and category-to-word alignment in syllable alignment: while ALIGN (PrWd, L/R, Syllable, L/R) is well-attested, the counterpart Align (Syllable, L/R, PrWd, L/R), is not. (Paul Kiparsky, p.c.)

From the discussion above, the following picture emerges. Rhythmic constraints (regarding clash and lapse) are grounded in a small number of rhythmic laws.
(5.2) Rhythmic Laws
a. Rarefy near peaks. (Hence, license lapse, ban clash).
b. Rarefy at the right edge. (Hence, license lapse, ban final stress).
c. Stress-mark edges. (Hence, ban lapses, license clash).

Each laws constitutes the substantive basis for a set of constraints.

| | Positional markedness | | Licensing | |
| :--- | :---: | :--- | :--- | :--- | :--- |
| clash | lapse | clash | lapse | |
| Rarefy near peaks | *CLASH-AT-PEAK | --- | --- | LAPSE-AT-PEAK |
| Rarefy at right edge | *CLASH-AT-END(?) | --- | --- | LAPSE-AT-END |
| Demarcate edges | --- | *INITIAL-LAPSE | CLASH-AT-EDGE | --- |
| | | *FINAL-LAPSE | | |

This lays the groundwork for a full typology, including quantity-sensitive and ternary systems, which has not been developed yet (work in progress).

This theory has computational advantages, since long-distance, iterative computation of the distance between foot and word edges is no longer required. Finally, this theory brings metrical phonology closer to metrics, which is also based on locally inspectable rhythmic patterns (Paul Kiparsky, p.c.).

References

Alber, Birgit (2000). The right stress comes from the left. Paper presented at International Conference on Stress and Rhythm, Hyderabad, 11-15 December 2000.
Boxwell, Helen, and Maurice Boxwell (1966). Weri phonemes. In S.A. Wurm (ed.) Papers in New Guinea linguistics, vol. 5 (Linguistic Circle of Canberra Publications, Series A, No. 7). Canberra: The Australian National University. 77-93.
Cohn, Abigail (1989). Stress in Indonesian and bracketing paradoxes. Natural Language and Linguistic Theory 7. 167-216
Cohn, Abigail \& John McCarthy (1994). Alignment and parallelism in Indonesian phonology. Ms. Cornell University, Ithaca, N.Y. \& University of Massachusetts, Amherst. [ROA-25, http://ruccs.rutgers.edu/roa.html]
Dixon, R.M.W. (1981). Wargamay. In R.M.W. Dixon \& B.J. Blake (eds.), Handbook of Australian languages, vol. 2. Amsterdam: John Benjamins. 1-144.
Dresher, B. Elan (1999) Charting the learning path: cues to parameter setting, Linguistic Inquiry 30, 27-67.
Dresher, B. Elan \& Harry van der Hulst (1998). Head-dependent asymmetries in phonology: complexity and visibility. Phonology 15. 317-352.
Dresher, Elan \& Jonathan Kaye (1990). A computational learning model for metrical phonology. Cognition 34. 137-195.
Dubert, Raymond \& Marjorie Dubert (1973), "Biangai phonemes", Phonologies of Three Languages of Papua New Guinea, Ukarumpa, Papua New Guinea, Summer Institute of Linguistics, 5-36.
Elenbaas, Nine, and René Kager (1999), "Ternary rhythm and the lapse constraint", Phonology 16, 273-329.
Furby, Christine (1974). Garawa phonology. Canberra: Australian National University.
Green, Thomas \& Michael Kenstowicz (1995) The Lapse constraint. Ms, MIT. [ROA-101]
Hammond, Michael (1984). Constraining metrical theory: a modular theory of stress and destressing. PhD dissertation, UCLA. [IULC, Bloomington.]
Hayes, Bruce (1980). A metrical theory of stress rules. PhD dissertation, MIT. [Published 1985, New York: Garland Press.]
Hayes, Bruce (1985). Iambic and trochaic rhythm in stress rules. In M. Niepokuj, M. VanClay, V. Nikiforidou \& D. Jeder (eds.) Proceedings of the Berkeley Linguistics Society 11. 429-446.
Hayes, Bruce (1995). Metrical stress theory: principles and case studies. Chicago: University of Chicago Press.
Hulst, Harry van der (1984). Syllable structure and stress in Dutch. Dordrecht: Foris.
Hung, Henrietta (1994). The rhythmic and prosodic organization of edge constituents. PhD dissertation, Brandeis University, Waltham, Mass. [ROA-24]
Kager, René (1991). Strict binarity and destressing rules. Ms. Stanford University. Downloadable from http://www.let.uu.nl/~Rene.Kager/personal/publicat.htm.
Kager, René (1993). Alternatives to the iambic-trochaic law. Natural Language and Linguistic Theory 11, 381-432.
Kager, René (1994). Ternary rhythm in alignment theory. Ms. Utrecht University. Downloadable from http://ruccs.rutgers.edu/roa.html.
Kager, René (1996). Stem disyllabicity in Guugu Yimidhirr. In M. Nespor and N. Smith (eds.), Dam Phonology: HIL Phonology Papers II, 59-101. Den Haag: Holland Institute of Generative Linguistics.
Kager, René (1999), Optimality Theory. Cambridge: Cambridge University Press.
Kiparsky, Paul (1979). Metrical structure assignment is cyclic. Linguistic Inquiry 10, 421-442.
Lerdahl, Fred \& Ray Jackendoff (1983). A Generative Theory of Tonal Music. Cambridge, MA: MIT Press.
MacDonald, Lorna (1990). A Grammar of Tauya. New York: Mouton de Gruyter.

McCarthy, John \& Alan Prince (1986). Prosodic morphology. Ms, University of Massachusetts, Amherst and Brandeis University.
McCarthy, John \& Alan Prince (1993). Prosodic Morphology I: constraint interaction and satisfaction. Ms, University of Massachusetts, Amherst \& Rutgers University.
Mester, R. Armin (1994). The quantitative trochee in Latin. Natural Language and Linguistic Theory 12. 1-61.

Miller, Wick (1996). Sketch of Shoshone, a Uto-Aztecan language. In I. Goddard (ed.) Handbook of American Indian Languages, Volume 17. Washington: Smithsonian Institute. 693-720.
Miyaoka, Osahito (1985). Accentuation in Central Alaskan Yupik. In M. Krauss (ed.) Yupik Eskimo prosodic systems: descriptive and comparative studies. Alaska Native Language Center Research Center Research Papers 7. Fairbanks: University of Alaska. 51-75.
Nespor, Marina \& Ireene Vogel (1989). On clashes and lapses. Phonology 6, 69-116.
Osborn, Henry (1966). Warao I: phonology and morphophonemics. International Journal of American Linguistics 32. 108-123.
Pater, Joe (1995). On the nonuniformity of weight-to-stress and stress preservation effects in English. Ms, McGill University. [ROA-107]
Prince, Alan (1980). A metrical theory for Estonian quantity. Linguistic Inquiry 11. 511-562.
Prince, Alan (1983). Relating to the grid. Linguistic Inquiry 14. 19-100.
Prince, Alan (1990). Quantitative consequences of rhythmic organization. In M. Ziolkowski, M. Noske \& K. Deaton (eds.) Papers from the Chicago Linguistic Society 26:2. 355-398.
Prince, Alan \& Paul Smolensky (1993). Optimality Theory: constraint interaction in generative grammar. Ms, Rutgers University, New Brunswick \& University of Colorado, Boulder.
Roca, Iggy (1986). Secondary stress and metrical rhythm. Phonology Yearbook 3. 341-370.
Rosenthall, Sam (1997). The distribution of prevocalic vowels. Natural Language and Linguistic Theory 15. 139-180.
Samek-Lodovici, Vieri and Alan Prince (1999). Optima. Ms. University College, London \& Rutgers University. Downloadable from http://ruccs.rutgers.edu/roa.html.
Selkirk, Elisabeth O. (1984). Phonology and syntax: the relation between sound and structure. Cambridge, Mass.: MIT Press.
Tesar, Bruce (1996). An iterative strategy for learning metrical stress in Optimality Theory. In E. Hughes, M. Hughes \& A. Greenhill (eds.) The proceedings of the $21^{s t}$ annual Boston University Conference on Language Development, November 1996. 615-626. [ROA-177]
Vijver, Ruben van de (1998). The iambic issue: iambs as a result of constraint interaction. [HIL dissertations 37.] Leiden: Holland Institute of Generative Linguistics.
Walker, Rachel (1997). Mongolian stress, licensing, and factorial typology. Ms. University of Southern California. [ROA-172]
Zoll, Cheryl (1996). Parsing below the segment in a constraint based framework. PhD dissertation, UC Berkeley. [ROA-143]

Appendix A: exemplification

(A.1) Pintupi (Hansen \& Hansen 1969): initial main stress, secondaries on odd-numbered non-final syllables.

2σ	10	'pa.na	'earth'
3σ	100	'ทu.ni.tiu	'mother'
4σ	1020	'ma.la.,wa.na	'through (from) behind'
5σ	$102 \underline{00}$	'pu.lij.ka.la.tiu	'we (sat) on the hill'
6σ	102020	'tia.mu.lim.pa.tiuy.ku	'our relation'
7σ	1020200	'tii.li.ri.pu.,lam.pa.tiu	'the fire for our benefit flared up'
8σ	10202020	'ku.ra.„u.lu.,lim.pa.,tiu.„а	'the first one (who is) our relation'
9σ	$1020202 \underline{00}$	'yu.ma., [ip.ka.,ma.ra.tia.„ן.ka	'because of mother-in-law'

(A.2) Warao (Osborn 1966): main stress on penult, secondaries on alternating syllables before it:

3σ	010	ko.'ra.nu	'drink it!'
5σ	02010	yi.,wa.ra.'na.e	'he finished it'
8σ	20202010	,ya.pu.ru.ki.,ta.ne.'ha.se	'verily to climb'
9σ	020202010	e.,na.ho.ro.a.ha.ku.'ta.i	'the one who caused him to eat'

(A.3) Araucanian (Echeverría \& Contreras 1965): main stress on second syllable, secondaries on alternating even-numbered syllables:

2σ	01	wu.'le	'tomorrow'
3σ	010	ti.'pan.to	'year'
4σ	0102	e.'lu.mu..yu	'give us'
5σ	01020	e.lu.a.e.new	'he will give me'
6σ	010202	ki.'mu.fa.lu.wu.lay	'he pretended not to know'

(A.4) Murinbata (Steeet \& Mollinjin 1981): initial main stress, secondaries on odd-numbered syllables:

2σ	10	'mam.je	'I/he/she said/did to her'
3σ	102	'la.la.ma	'shoulder'
4σ	1020	'wa.lu.,mu.ma	'blue-tonge lizard'
5σ	10202		'season just before the "dry",
6σ	102020	'na.řam.ka.ru'.ni.me	'we (excl pc f) arrived'

(A.5) Weri (Boxwell \& Boxwell 1966): final main stress plus secondaries on alternating syllables counting backward.

2σ	01	yın.'tip	'bee'
3σ	201	,ku.lı.'pu	'hair of arm'
4σ	0201	U.lu.a.'mit	'mist'
5σ	20201	,a.ku.ne.te.'pal	'times'

(A.6) Cayuvava (Key 1961): main stress on antepenult, secondaries on every third syllable before it.

2σ	10	'da.pa
3σ	100	'to.mo.ho
4σ	$01 \underline{00}$	a.'ri.po.ro
5σ	$\underline{00100}$	a.ri.'pi.ri.to
6σ	200100	, a.ri.hi.hi.be.e
7σ	0200100	ma.ra.ha.ha.'e.i.ki
8σ	00200100	i.ki.,ta.pa.re.'re.pe.h

'canoe'
'small water container'
'he already turned around'
'already planted'
'I have already put the top on'
'their blankets'
'the water is clean'
(A.7) Garawa (Furby 1974): initial main stress plus secondaries from right edge.

3σ	$\underline{100}$	'pun.ya.la	'white'
5σ	$\underline{000} 20$	'ka.ma.la..ri..ji	'wrist'
6σ	102020	'ya.ka.la.ka.la.mpa	'loose'
7σ	$\underline{002020}$	'jan.ki.ri.ki.rim.pa.yi	'fought with boomerangs'

(A.8) Piro (Matteson 1965): penultimate main stress, secondaries on alternating syllables counting from left edge.

3σ	010	ru.'txi.txa	'he observes taboo'
5σ	$2 \underline{0010}$,sa.lwa.je.'hka.kna	'they visit each other'
6σ	202010	pe.tji.t5hi.ma.'tlo.na	'they say they stalk it'
7σ	$202 \underline{0010}$,ru.slu..no.ti.ni.'tka.na	'their voices already changed'

(A.9) Wargamay (Dixon 1981):

2σ	10	'ba.da	'dog'
3σ	010	mu.'.jan.da	'mountain-LOC'
4σ	1020	'gi.d ${ }^{j}$ a.,wu.lu	'freshwater jewfish'
5σ	01020	$d^{j} u . '$ ra.gay.mi.ri	'Niagara Vale-FROM'

(A.10) Cairene Arabic (Mitchell 1960): stress on the rightmost non-final odd-numbered syllable, counting from the left edge.

3σ	$\underline{100}$	'ka.ta.ba	'he wrote'
4σ	2010	ka.ta.'bi.tu	'she wrote it (m.)'
5σ	$201 \underline{00}$	sa.ja.'ra.tu.hu	'his tree (nom.)'
6σ	202010	sa.ja.ra.tu.'hu.ma:	'their (dual.) tree (nom.)'

(A.11) Creek (Haas 1977): stress on rightmost even-numbered syllable counting from the left edge.

2σ	01	co.'fi	'rabbit'
3σ	010	i.si.ta	'one to take one'
4σ	0201	a.pa.na.'ta	'mist'
5σ	02010	ca.,wa.na.'yi.ta	'one person to tie me'
6σ	020201	i.,si.ma.,hi.ci.'ta	'one to sight at one'
7σ	0202010	i.,ti.wa.,na.yi.'pi.ta	'to tie each other'

(A.12) Central Alaskan Yupik (Leer 1985, Hayes 1995): same as Creek, but with final stresses in phrase-medial words.

3σ	021	qa.'ya:.'ni	'his own kayak'
4σ	0201	an.'yax.pa.'ka	'my big boat'
5σ	02021	qa.'yai.pix.'ka..'ni	'his own future authentic kayak'

Appendix B: Initial dactyls

In section 2 the empirical claim was made that pattern marked '***' is typologically unattested:
(B.1) fix

$\frac{\underbrace{\text { fixed foot }}_{\text {right }}}{}$	directionality left-to-right	End Rule right	$\frac{\text { even number }}{(20)(20)(10)}$	$\frac{\text { odd number }}{(20)(20) \boldsymbol{0}(10)}$
left	right-to-left	right	(20) (20)(10)	(20) 0 (20)(10)

Piro (A.8)
$* * *$

Piro (A.8)
$* * *$
Piro (A.8)
$* * *$

the main
That is, initial dactyls occur after the main stress but are claimed not to occur after a secondary stress. This claim seems problematic given the evidence from various languages. Kager (1990) discusses the evidence. Here I summarise the results for Hawaiian, Indonesian, and Spanish, which suggests that if an initial dactyl pattern exists, it is never the single possible pattern, but alternates with other patterns or is doubtful for other reasons.

5.1 Hawaiian

Prince (1983) analyses 'a simplified Hawaiian' (Hawaiian as reported in Elbert 1970, but with the difference of 'ignoring the contributions of long vowels'), with the pattern 2002010. More recent literature, however, (Schütz 1978, 1981; Elbert and Pukui 1979) sketches a different picture, where secondary stress is more variable than is suggested in Elbert (1970), and in fact partly lexicalized.
(B.2) pùlelehúa 'butterfly' versus Kalikimáka 'Christmas'

A similar situation occurs in Fijian (Schütz 1978, 1985). The generalization is that secondary stress is free within the limits of general rhythmic well-formedness: no lapses, no clashes. Another view is to assume that secondary stress is actually marked in underlying representations.

5.2 Indonesian

Indonesian (Cohn 1989) is claimed to have main stress is on the penult and a secondary stress on the initial syllable in words of minimally four syllables long. In words of six or more syllables, there is a leftward alternation of secondaries on syllables preceding the penult:

$$
\begin{array}{lr}
\text { a. (à.me).ri.(kà.ni).(sá.si) } & \text { 'Americanisation' } \tag{B.3}\\
\text { b. (dè.mi).li.(ta..ri).(sá.si) } & \text { 'demilitarization' }
\end{array}
$$

All exemplifying words are borrowed from Dutch, where the corresponding words have identical secondary stress contours: dèmilitàrisátie, Àmerikànisátie. Both words are morphologically derived: /de+militer+isatsi/, /amerikan+isatsi/, whose bases /milité:r/ and /amerikán/ have final stress, matching the position of secondary stresses in the words derived from them (presumably cyclically). Hence, it is highly plausible that Indonesian simply borrowed these long words together with their secondary stress patterns.

5.3 Spanish

According to Roca (1986), the initial dactyl pattern arises when a word with initial secondary stress occurs after a clitic:
a. constàntinópla
b. cònstantìnopléño
'Constantinople'
c. èl constantìnopléño
'Constantinople guy’
'the Constantinople guy'

The initial dactyl pattern is not basic, but derived. This suggests clash avoidance under faithfulness to the base.

