What a parsed corpus is and how to use it

Anthony Kroch and Beatrice Santorini
University of Pennsylvania

LSA Summer Institute Workshop on Diachronic Syntax

June 29-30, 2013

Types of annotation

- Lemmatization
 Word sense disambiguation
 Spelling normalization
- Morphological tagging Case, gender, number features on nouns Tense, mood, aspect features on verbs
- Part-of-speech (POS) tagging Elementary syntactic functions
- Syntactic parsing
 Hierarchical structure of phrases / clauses
 Grammatical function of phrases / clauses

POS tags

- POS tags contain elementary syntactic information
- They may also contain some morphological information
- More morphological information for some stages / languages than for others

A sentence with POS tags

```
( (PRO They)
(HVP have)
(D a)
(ADJ native)
(N justice)
(,,)
(WPRO which)
(VBP knows)
(Q no)
(N fraud)
(.;))
```

Syntactic tags

- Grammatical functions are indicated by dash tags, not configurationally
- Various difficult decisions are avoided
 No distinction between PP arguments and adjuncts
 No VP (more on this later)
- Not all grammatical functions are indicated
 No dash tags for PPs

The sentence with syntactic tags

```
( (IP-MAT (NP-SB) (PRO They))
         (HVP have)
         (NP-OBI (Da)
                  (ADJ native)
                  (N justice)
                  (CP-REL (WNP (WPRO which))
                          (IP-SUB (VBP knows)
                                  (NP-OBI(Q no)
                                           (N fraud)))))
 (.;)))
```

Keeping it simple

- Some corpora use standoff annotation (text and annotation belong to different files)
- In the corpora discussed here, the text and the annotation belong to the same file

Simpler corpus construction

Simpler searches

Simpler revision

Simpler software for all of the above

Other syntactic information

- Traces indicate wh-movement
- Other empty categories, including empty complementizer, various types of empty subject
- Verb movement not indicated
- Also added to each token:

Text source and other philological information

The sentence, final version

```
( (IP-MAT (NP-SBJ (PRO They))
         (HVP have)
         (NP-OBI (D a)
                  (ADI native)
                  (N justice)
                  (CP-REL (WNP-1 (WPRO which))
                           (C 0)
                           (IP-SUB (NP-SB) *T*-1)
                                   (VBP knows)
                                   (NP-OBI(Q no)
                                           (N fraud)))))
 (.;))
 (ID BEHN-E3-P1,150.48))
```

What is the purpose of an annotated corpus?

Not (!) intended to represent God's truth

Certainly impossible for languages undergoing change

Impossible even for one that are grammatically stable

- God's truth is elusive
 - Be that as it may, even given these problems, we decided a long time ago to forge ahead, come what might.
- Theoretical assumptions change, as do notations
- Context doesn't always resolve semantic ambiguity
- Structural ambiguity is pervasive

Ambiguity during change

OV > VO

Wh- traces preverbal or postverbal?

OV surface order basic or due to leftward movement?

Mutatis mutandis for VO surface order

V2 > non-V2

SVO surface order V2 or not?

Attachment ambiguity

- They fight never.
- They will never fight. (85%)

They never will fight. (15%)

- They never fight.
- They ____ never fight.

They never ____ fight.

Dealing with ambiguity

Omit some structure
 No verb movement

No VP

• Establish default rules

Wh- traces are clause-initial

If in doubt, attach high

Indirect question trumps free relative

What is the purpose of an annotated corpus?

The purpose is to facilitate the retrieval of sentences with particular linguistic properties of interest.

Searching a corpus

A corpus without a search program is like the Internet without a search engine (Beth Randall)

Diagnostic sentence types for loss of V2

```
    V2
    XP >> V-fin > Sbj
```

• non-V2

```
XP >> Sbj > V-fin
```

V2 sentence

```
( (IP-MAT (PP (P In)
             (NP D +tat) (N book)))
          (BED were)
         (NP-SBJ (D +te)
                 (VAN forsayd)
                 (NS lawes))
          (VAN y-write)
          (.;))
 (ID CMPOLYCH-M3, VI, 35.229))
```

Non-V2 sentence

```
( (IP-MAT (CONJ And)

(ADVP-TMP (ADV +tan))

(NP-SBJ (D the) (N fuyre))

(VBD cesede)

(.,))

(ID CMPOLYCH-M3,VI,13,81))
```

Using definitions files

```
Sbj: NP-NOM* | NP-SBJ*
```

XP: ADVP* | NP-OB1* | NP-OB2* | PP*

V-fin: BED | BEP | DOD | DOP | HVD | HVP |

MD | VBD | VBP

alternatively:

V-fin: BE[DP] | DO[DP] | HV[DP] | MD | VB[DP]

Query for V2 sentences

query: (IP-MAT* iDomsNum 1 XP)

AND (IP-MAT* iDomsNum 2V-fin)

AND (IP-MAT* iDoms Sbj)

AND (IP-MAT* domsTotal< 10)

Query for non-V2 sentences

query: (IP-MAT* iDomsNum 1 XP)

AND (IP-MAT* iDomsNum 2 Sbj)

AND (IP-MAT* iDoms V-fin)

AND (IP-MAT* domsTotal< 10)

Wait a minute...

- The non-V2 sentence and the non-V2 query don't match up!
- The first immediate constituent of the non-V2 sentence is CONI
- The first immediate constituent in the query is XP
- XP doesn't include CONJ
- So how did the query retrieve the sentence?

Ignoring syntactic labels

- Punctuation
- Conjunctions
- Interjections
- Vocatives
- Parentheticals
- Left-dislocated constituents
- Clitics

Query types

- Ordinary queries
- Coding queries
- Revision queries

Coding queries

- Ordinary queries search a corpus and report the matching sentence tokens in a separate output file
- Each query corresponds to a particular sentence type
- Coding queries allow information to be recorded that results from many separate ordinary queries
- The information is added to each sentence token in the form of coding strings

Sample coding query output

```
( (IP-MAT (CODING advp : pro : sbj-v : dirV)
         (ADVP (ADV Here))
         (NP-SBI (PRO we))
         (VBP go)))
( (IP-MAT (CODING pp : np : v-sbj : dirV)
         (PP (P Around)
             (NP (D the) (N corner)))
          (VBD came)
          (NP-SBJ (D the) (N bus))))
```

```
1: { sbj:
         (IP-MAT* iDomsNum 1 NP-SBJ*)
        (IP-MAT* iDomsNum 1 NP-OB1*)
   •••
   advp: (IP-MAT* iDomsNum 1 ADVP*)
        (IP-MAT* iDomsNum 1 PP*)
   DD:
   •••
   -: ELSE
```

```
2: { conj:
             (IP-MAT* iDoms NP-SBI*)
       AND (NP-SB|* iDoms CON|P)
             (IP-MAT* iDoms NP-SBI*)
   pro:
       AND (NP-SBI* iDomsOnly PRO)
   ...
             (IP-MAT* iDoms NP-SBI*)
   np:
   -: ELSE
```

```
3: { sbj-v: (IP-MAT* iDoms NP-SBJ*)
        AND (NP-SBI* hasSister V-fin)
        AND (NP-SBJ* precedes V-fin)
   v-sbi:
              (IP-MAT* iDoms NP-SBI*)
        AND (NP-SBI* hasSister V-fin)
        AND (V-fin precedes NP-SBJ*)
   -: ELSE
```

```
4: { dirV: (IP-MAT* iDoms V*)

AND (V* iDoms go | went | gone |

... | come | came | ... )

ordV: (IP-MAT* iDoms V*)

-: ELSE
```

Poor man's lemmatizer

Coding query for column 4, revised

```
4: { dirV: (IP-MAT* iDoms V*)

AND (V* iDoms $go | $come)

...

ordV: (IP-MAT* iDoms V*)

-: ELSE
}
```

How do the coding strings get used?

• The coding strings alone can be written to a file

```
advp:pro:sbj-v:dirV
pp:np:v-sbj:dirV
dir:pro:sbj-v:ordV
```

 The file can then be exported for analysis to standard statistical software

Why revision queries?

In the analysis of V2 in the history of English, we want to track the following sentence schemas

```
XP Sbj-NP V-fin ...
XP Sbj-pro V-fin ...
XP V-fin Sbj-NP ...
XP V-fin Sbj-pro ...
```

Diagnostic sentence types for V2 in Old English

V2

AdvP V-fin Sbj-NP ...

AdvP Sbj-pro V-fin ...

AdvP Sbj-pro Obj-pro Obj-pro V-fin ...

Non-V2

PP Sbj-NP V-fin ...

Problem, cont'd

- We want to ignore object pronouns
- We don't want to ignore subject pronouns
- So we can't just add PRO to the ignore list

Solution: Revision queries

- Revision queries allow users to add information to (a copy of) the corpus
- In contrast to coding queries, revision queries don't just add coding strings
- Rather, they modify the actual annotation

Sample revision query

```
query: (IP-MAT* iDoms {1}NP-OB1* | NP-OB2*)

AND (NP-OB1* | NP-OB2* iDomsOnly PRO)
```

prepend_label {1}: IGNORE-

Sample revision query output

```
( (IP-MAT (PP (P on)
             (NP (D + t + an))
                  (ADI +triddan)
                  (N mon+de))
          (IGNORE-NP-OB1 (PRO hiene)
          (NP-SBI (PRO man))
          (RP+VBD ofslog)
          (..)
  (ID coorosiu, Or 6:23.144.18.3029))
```

Ordinary V2 query, revised

```
add_to_ignore: IGNORE-*
```

```
query: (IP-MAT* iDomsNum 1 XP)

AND (IP-MAT* iDomsNum 2 V-fin)

AND (IP-MAT* iDoms Sbj)
```

More on revision queries

- Revision queries can greatly simplify complex searches or even make them possible at all
- Queries containing many common search properties can be simplified and speeded up by "predigesting" the corpus to factor out the common properties
- Corpora of various origins can be made to conform to a single set of annotation conventions

Yet more on revision queries

- Revision queries greatly speed up corpus correction, especially when run in suites
- They can be used to construct training corpora for parsers
- In fact, we have used revision queries instead of standard parsers to build entire corpora

The end

```
( (IP-MAT (NP-SB) *pro*)
         (VBP Thank)
         (NP-OB2 (PRO you))
         (PP (P for)
             (NP PRO$ your) (N attention)))
         (.!)
 (ID LSA-2013-06-28,42))
```