Constructing a parsed corpus of Early Modern English

Beatrice Santorini
University of Pennsylvania
http://www.ling.upenn.edu/~beatrice/corpus-ling/index.html

IV Encontro de Corpora - USP
24 August 2004
Overview of presentation

• Some useful URLs

• Motivation for constructing electronic parsed historical corpora

• Goals and principles of our annotation

• How we build a corpus - a flowchart

• CorpusSearch - a search engine for parsed corpora
Some useful URLs

- Annotation manual
 - For beginners
 http://www.ling.upenn.edu/~ataylor/ppcme-lite.htm
 - For advanced users
 http://www.ling.upenn.edu/~ataylor/ppcme2-man-toc.htm

- CorpusSearch manual
 http://www.ling.upenn.edu/mideng/csdocs/CSRefToc.htm
Why construct historical *corpora*?

- Recourse to native speaker intuitions impossible
- Hence, we need representative historical corpora (= collections of texts)
- Corpora can be important even for synchronic studies
 - How do people *actually* speak/write (as opposed to how they say they do)?
 - Basis for statistical parsers
Why *parsed* historical corpora?

- The syntactic structure of sentences is not completely determined by the words and their linear order
- Sentences can be structurally ambiguous
- Sentences can be produced by distinct grammars
- Hence, we need corpora that are annotated with appropriate information
Synchronic structural ambiguity

- ((IP-MAT (NP-SBJ (VAG Flying) (NS planes)))
 (MD can)
 (BE be)
 (ADJP (ADJ dangerous))
 (. .)))

- ((IP-MAT (IP-SBJ (NP-SBJ *arb*)
 (VAG Flying)
 (NP-OBJ (NS planes)))
 (MD can)
 (BE be)
 (ADJP (ADJ dangerous))
 (. .)))
Variation between two grammars

Earlier forms of English showed variation between an old (OV) and a new (VO) grammar.

- ((IP-MAT (NP-SBJ they) (MD will) (NP-OB1 the old house) <-- old (OV) (VB buy) (.)))

- ((IP-MAT (NP-SBJ they) (MD will) (VB buy) <-- new (VO) (NP-OB1 the old house) (.)))
Uncertainty between two grammars

• ((CP-QUE (WNP-1 Which house)
 (IP (MD will)
 (NP-SBJ they)
 (NP-OB1 *T*-1) \(<--- \) old (OV)?
 (VB buy)
 (. ?))))

• ((CP-QUE (WNP-1 Which house)
 (IP (MD will)
 (NP-SBJ they)
 (VB buy)
 (NP-OB1 *T*-1) \(<--- \) new (VO)?
 (. ?))))
Why *electronic* parsed historical corpora?

- To ensure representativity, we need large corpora
- Annotation by hand is slow, expensive, and error-prone
- The answer: automate annotation as much as possible
- Electronic corpora are (relatively) easy to correct and update
- Electronic corpora can be built in stages
Further advantages of electronic corpora

- Electronic corpora can be searched quickly and reliably
- Research hypotheses are more easily tested and refined
- Results become replicable across research groups
- Increased search speed makes possible different kinds of results
Goals and principles of our annotation

- Parsed corpus consists of straight-up ASCII
 - Structural information is represented as labeled bracketing
 - No hidden formatting codes
 - No dependence on obsolescent software
 - If necessary, we would use ISO-Latin-1, ISO-Latin-2, Unicode

- Annotated corpus = God’s truth, not
 - The primary goal of our annotation is to facilitate searches for various constructions of interest.
 - The goal is not (!) to associate every sentence with a correct structural description.
Dealing with uncertainty and ambiguity

- As many syntactic categories as possible should have clear meanings so that the number of unclear cases is minimized.

- We try to avoid decisions that are controversial, very time-consuming, or otherwise difficult.

- To that end, we sometimes omit information.
 - Adjectival vs. verbal passive (*The door is shut*)
 - VP boundaries

- In other cases, we use default rules.
 - Location of wh- traces (= gaps)
 - PP attachment (“when in doubt, attach high”)
OV, or VO + leftward pronoun movement?

• (PP (P until)
 (CP-ADV (C 0)
 (IP-SUB (NP-SBJ (N death))
 (DOP do)
 (VP (NP-OB1 (PRO us))
 (VB part))))))

• (PP (P until)
 (CP-ADV (C 0)
 (IP-SUB (NP-SBJ (N death))
 (DOP do)
 (NP-1 (PRO us))
 (VP (VB part)
 (NP-OB1 *T*-1))))))
Omitting undecidable information

Our solution: a ‘flat’ structure without a VP

(PP (P until)
 (CP-ADV (C 0)
 (IP-SUB (NP-SBJ (N death))
 (DOP do)
 (NP-OBJ (PRO us))
 (VB part))))
Question movement revisited

• ((CP-QUE (WNP-1 Which house)
 (IP (MD will)
 (NP-SBJ they)
 (NP-OB1 *T*-1) \textasciitilde old (OV)?
 (VB buy)
 (. ?))))

• ((CP-QUE (WNP-1 Which house)
 (IP (MD will)
 (NP-SBJ they)
 (VB buy)
 (NP-OB1 *T*-1) \textasciitilde new (VO)?
 (. ?))))
An incorrect, yet useful, structure

Our solution: we consistently put the trace in a position that is linguistically unmotivated, but competely predictable and so exploitable for searches.

((CP-QUE (WNP-1 Which house)
 (IP (NP-OB1 *T*-1)
 (MD did)
 (NP-SBJ they)
 (VB buy)
 (.) ?)))
PP attachment - high or low?

• ((IP-MAT (NP-SBJ They)
 (VBD painted)
 (NP-OB1 (D the) (N man))
 (PP (P with)
 (NP (D a) (N brush)))
 (. .)))

• ((IP-MAT (NP-SBJ They)
 (VBD painted)
 (NP-OB1 (D the) (N man)
 (PP (P with)
 (NP (D a) (N telescope)))))
 (. .)))
Omitting undecidable information

A useful solution: undecidable or difficult cases are attached high by default.

((IP-MAT (NP-SBJ They)
 (VBD saw)
 (NP-OB1 (D the) (N man))
 (PP (P with)
 (NP (D a) (N telescope)))
 (. .)))
Argument *se*

In (European) Portuguese, the clitic *se* can function either as a true argument or as a grammatical function–changing morpheme.

- (IP-MAT (NP-SBJ A Marta)
 (VB-D lavou)
 (NP-OB1 a roupa)
 (. .)))

- (IP-MAT (NP-SBJ A Marta)
 (NP-OB1 (CL se))
 (VB-D lavou)
 (. .)))

--- argument ‘*se*’
Passive *se*

- ((IP-MAT (NP-SBJ os jarros)
 (NP-SE (CL se)))
 (VB-D quebraram)
 (.. .)))

- ((IP-MAT (NP-SBJ os jarros)
 (SR-D foram)
 (VAN-P quebrados)
 (.. .)))
Omitting undecidable information

((IP-MAT (NP-SBJ las criancas)))
 (NP-??? (CL se))
 (VB-D lavaram)
 (.
))

Did the children wash themselves? se = NP-OB1
Or were they washed by someone else? se = NP-SE

A useful solution: undecidable or difficult instances of se are labelled NP-SE by default
How we build a parsed corpus - a flowchart

- POS tagging
 - Automatic preprocessing (punctuation, contractions)
 - Automatic tagging (Brill 1995)
 - Human correction

- Parsing
 - Automatic parsing (Collins 1996, Bikel 2004)
 - Human editing (= correction + addition of information)

- Final editing (partially automated)
Correction software

• We use correction software developed in connection with the Penn Treebank (http://www.cis.upenn.edu/~treebank) and implemented in Emacs Lisp

• Incorrect tags are corrected by positioning cursor on item to be corrected and entering correct tag

• Proposed tag is checked to ensure that new tag is legal

• Incorrect structures can be corrected with mouse clicks and modifier keys

• All correction software leaves input text inviolate
POS tagging - Automatic stage

- Text is tokenized
 - Punctuation is split off from words
 - Contractions are decomposed into (possibly abstract) constituents
 we’ll → $we/PRO $’ll/MD {TEXT:we’ll}/CODE
 pelos → $por/P $os/D {TEXT:pelos}/CODE

- Text is run through tagger (in our case, Brill 1995)
The Brill tagger

- **Step 1:**
 Based on a training corpus (a relatively large corpus of already tagged text), each word is tagged with its most frequent part of speech

 He/PRO opened/VBD a/D can/MD of/P soup/N

- **Step 2:**
 Tagger guesses at the tag for words that are not in the training corpus

 Wimple/? → Wimple/NPR
 wimple/? → wimple/N
The Brill tagger, 2

• Step 3:
 Tagger refines guesses from Step 2 on the basis of morphological clues

 wimpleless/N → wimpleless/ADJ

• Step 4:
 Tagger adjusts tags from Step 1 in light of context

 ... a/D can/MD of/P soup/N → ... can/N ...
My Lord,

 I return my most humble thankes for ye honour of ye Lord=ps= letter. #
I have not yet bin any were, but at shopes and a veseting; but #
I believe shall be on Munday at a ball at St. Jeames, where, as #
they tell me, ther is a famose new danser to apere, which is to #
charme us all, but not make amends for ye loss of Mrs= Ibbings who #
danced at Lincoln's Inn Feild and is lately dead.
My Lord, I return my most humble thankes for your honour of your Lord's letter.
I have not yet bin any were, but at shopes and a veseting; but I believe shall be on Munday at a ball at St. Jeames, where, as they tell me, ther is a famose new danser to apere, which is to charme us all, but not make amends for your loss of Mr. Ibbings who danced at Lincolns Inn Feild and is lately dead.
My Lord, I return my most humble thanks for my honour of your Lord's letter.

I have not been any shopes, but at shopes and a vesting; but I believe shall be on Munday at a ball at St. Jeames, 28.
where, as they tell, ther is a famose new danser to appear, which is to charme us all, but not make amends for y=e loss of M r Ibbings who danced at Lincolns Inn and is lately dead.
My Lord, I return my most humble thanks for your honour of your Lord's letter. I have not yet been any worse, but at shopes and a vesting; but I believe shall be on Monday at a ball at St. Jeames, where, as they tell me, there is a famous dancer to appear, which is to charm us all, but not make amends for the loss of Mr Ibbings who danced at Lincolns Inn and is lately dead.
Parsing - Automatic stage

- POS-tagged text is stripped of all but correct tags
- Text is run through a parser (Collins 1996, Bikel 2004)
- As we have seen, output of parser is in the form of formatted labeled bracketing, in which depth of indenting corresponds to depth of structural embedding
The Collins parser

- Parses strings according to structures most frequently associated to input in a training corpus
- Chooses likely attachment on the basis of both POS tags and lexical items
 - paint the man with a brush (high attachment)
 - paint the man with a telescope (low attachment)
- Like the Brill tagger, the Collins parser can be trained
Parsing - Human editing stage

Editing operations include:

- Changing syntactic tags

- Adding subcategory information
 - ADVP \rightarrow ADVP-TMP, ADVP-LOC, . . .
 - CP \rightarrow CP-THT, CP-QUE, CP-CMP, . . .
 - NP \rightarrow NP-SBJ, NP-OBJ, NP-MSR, . . .

- Changing attachment level

- Breaking up run-on sentences or consolidating fragments
• Adding empty categories (gaps, silent understood subjects, etc.)

• Adding matching indices to gaps and their antecedents
 – What did you drink _?

• Adding matching indices to expletives (‘it’, ‘there’) and their associates
 – It is clear that they are coming .
 – There is a unicorn in the garden.
Sample parsed text, before correction

((IP-MAT (NP-SBJ (PRO I)))
 (HVP have)
 (NEG not)
 (ADVP (ADV yet)) ^ missing -TMP label
 (BEN bin)
 (NP-ACC (Q any))
 (CP (WADVP (WADV were))) ^ parser misled by unusual word boundary
 (, ,)
 (C 0) ^ spurious complementizer
 (PP (P but) (P at)) ^ parser wrongly treats ‘but at’ like ‘out of’
 (CONJP (CONJ and))
 (PP (P a)
 (NP (N veseting)))))
 (. ;))))
Sample parsed text, after correction

((IP-MAT (NP-SBJ (PRO I)))
 (HVP have)
 (NEG not)
 (ADVP-TMP (ADV yet))
 (BEN bin)
 (ADVP-LOC (Q any) (WADV were)
 (, ,)
 (PP (P but)
 (PP (PP (P at)
 (NP (NS shopes))
 (CONJP (CONJ and)
 (PP (P a)
 (NP (N veseting)))))))))
 (. ;)) (ID ALHATTON,2,240.6))
Some recent advances in automation

• The Collins parser is now superseded by Bikel 2004

• Bikel parser based on similar principles as Collins parser

• Allows modification of linguistic parameters, allowing more cross-linguistic flexibility

• Outputs includes grammatical function tags (-SBJ, -OB1, -OB2)
Some recent advances in automation, 2

- Allows multiple passes through a corpus, each pass respecting the previous ones.
 - Multiple passes simplify editing task (divide and conquer)
 - Simplification means improvements in speed and consistency
 - Editing could be carried out by a mixture of more and less highly trained annotators.

- Advances in query language allow yet further automation of corpus construction.
Project management

- Mean editing speed (in language well-known to annotator):
 2,000 words/hours for POS-tagging
 1,000 words/hours for parsing

- Annotators can work approx. 4 hours/day or 20 hours/week

- Annotators are relatively easy to find and train for POS-tagging, but quite a bit harder to find and train for parsing (people are used to thinking about words, but not in terms of constituent structure)
So how long does it take to produce a parsed corpus of 1 M words?

- **POS-tagging stage**
 - $1,000,000$ words / $2,000$ words/hours = 500 hours
 - 500 hours / 20 hours/week = 25 weeks

- **Parsing stage**
 - $1,000,000$ words / $1,000$ words/hours = 1,000 hours
 - 1,000 hours / 20 hours/week = 50 weeks

- **Total**: 75 weeks
CorpusSearch, a search engine for parsed corpora

- A corpus without a search program is like the Internet without Google
- Enter CorpusSearch (Randall 2000), a dedicated search engine for parsed corpora
- Written in Java
- Runs under Linux, Mac, Unix, Windows
Properties of CorpusSearch

- Basic search functions are linguistically intuitive (immediately) precedes, (immediately) dominates
- End user can custom-define further linguistically relevant search expressions
- Searches can disregard material as necessary
- A key feature: The output of CorpusSearch is itself searchable
A key feature: Searchable output

- Complicated and error-prone monster queries can be implemented as a sequence of simpler queries.

- Sequences of queries are consistent with the way that corpus research proceeds, via a successive refinement of hypotheses.

- Generating searchable output slows CorpusSearch down somewhat (searches of 1-2M words can take 2-3 minutes)
A simple sample query

node: IP*
query: ((IP* iDomsNum1 NP-ACC)
 AND (IP* iDomsNum2 MD))

- IP* matches IP-MAT, IP-SUB, IP-INF, etc.

- CorpusSearch searches the corpus for constituents with the label(s) specified in node.

- Whenever it finds such a constituent, it checks whether the material in the constituent matches the condition(s) in query.
 No match: I will eat the pie.
 Match: The pie will I eat. (possible in older forms of English)

- Matching instances of node are recorded in an output file.
A possible query, but long-winded and error-prone

node: IP*
query: ((IP* iDomsNum1 NP-ACC | NP-DAT | NP-GEN)
 AND
 (IP* iDomsNum2 BE-PRES | BE-PAST |
 DO-PRES | DO-PAST |
 HAVE-PRES | HAVE-PAST |
 MD | VB-PRES | VB-PAST))
A better way

define: v2.def

node: IP*

query: ((IP* iDomsNum1 OBJECT)
 AND (IP* iDomsNum2 FINITE-VERB))

Contents of the definition file v2.def:

OBJECT: NP-ACC | NP-DAT | NP-GEN
FINITE-VERB: *-PRES | *-PAST | MD
Ignoring material

• CorpusSearch ignores certain material by default.
 – punctuation
 – page numbers
 – editorial comments

• The default is overridable.

• In addition, other material can be ignored as convenient or necessary (gaps, interjections, parentheticals, vocatives, etc.).
Recent advances in CorpusSearch

- NOT and OR now function more intuitively
- Extraction of subcategorization frames
- “Search and replace” annotation support
Search and replace annotation support

- According to our annotation guidelines, all of the following sentences have parallel structures and include a (possibly silent) complementizer (= subordinating conjunction).
 - I know _ you are coming.
 I know that you are coming.
 - They wonder when _ you arrived.
 They wonder when that you arrived.
 (possible in older forms of English)

- In the past, silent complementizers had to be added by hand or with Perl scripts.

- Now, silent complementizers (and if necessary, traces) can be added automatically, saving days or even weeks of work.
Before and after “search and replace”

• ((IP-MAT (NP-SBJ (PRO They)))
 (VBP wonder)
 (CP-QUE (WADVP (WADV when)))
 (IP-SUB (NP-SBJ you)
 (VBD arrived))) (. .)))

• ((IP-MAT (NP-SBJ (PRO They)))
 (VBP wonder)
 (CP-QUE (WADVP (WADV when)))
 (C 0) <--- added
 (IP-SUB (ADVP *T*) <--- added
 (NP-SBJ you)
 (VBD arrived))) (. .)))
Automatic regularization of P+D combinations

• (PP (P+D-F-P pelas))
 (N-P meninas))

• (PP (P $por))
 (NP (D-F-P $as))
 (CODE {TEXT: pelas})
 (N-P meninas)))
An example from the EModEng corpus

Points of interest (see next slide)

- Expletive *there* is coindexed with logical subject

- Annotation indicates where (silent) relative pronoun is interpreted

- Tokens are identified by reference labels

 ALHATTON 2, 241. 7
 text ID vol. page serial token number

 Volume number is optional; serial token number is unique within text.
Example sentence 1

((IP-MAT (NP-SBJ=1 (EX There)))
 (BEP is)
 (NP-1 (ONE one) (NPR M=r=) (NPR Colson))
 (CP-REL (WNP-2 0)
 (C 0)
 (IP-SUB (NP-SBJ (PRO I)))
 (BEP am)
 (ADJP (ADJ shure))
 (CP-THT (C 0)
 (IP-SUB (NP-ACC *T*-2)
 (NP-SBJ (PRO$ my) (N Lady))
 (HVP has)
 (VBN seen)
 (PP (P at)
 (NP (N diner)
 (PP (P w=th=)
 (NP (PRO$ my)
 (N Unckle))))))
 (..))
 (ID ALHATTON,2,241.7))
 (..))
A second example from the EModEng corpus

Points of interest (see next slide)

- Annotation indicates dependency between measure phrase (*so much*) and degree complement clause

- Locative (as well as directional and temporal) AdvPs are specially marked.
((IP-MAT (NP-SBJ (PRO I)))
 (HVP have)
 (NP-ACC (QP (ADVR so) (Q much)
 (CP-DEG *ICH*-1))
 (N business))
 (ADVP-LOC (ADV here))
 (CP-DEG-1 (C y=t=)
 (IP-SUB (NP-SBJ (PRO I)))
 (VBP hope)
 (CP-THT (C 0)
 (IP-SUB (NP-SBJ (PRO$ my) (N Lady)))
 (MD will)
 (VB excuse)
 (NP-ACC (PRO me))
 (PP (P till)
 (NP (ADJS next)
 (N post))))))))
.
(.) (ID ALHATTON,2,245.46))