i

Contents

1 CORPUSSEARCH USER’S MANUAL 1
1.1 Getting Started oL o 1
1.1.1 input to CorpusSearch o 1
1.1.2 output of CorpusSearch 2
1.1.3 running CorpusSearch on babelo 000000 3

1.2 The Rocche Sentence 5
1.3 CorpusSearch General Principles 6
1.3.1 labelsand text 6
1.3.2 fuzzy tree structure 6
1.3.3 wildecards 6
1.3.4 * (character wild card) Lo 6
1.3.5 searching for * 7
1.3.6 # (digitwildcard)o o o 7
1.3.7 node boundary command00 7
1.3.8 nodestoignore L e 8
1.3.9 searching outputo 10

1.4 Query Language 11
1.4.1 search function arguments 11
1.4.2 wildcardso 11
1.4.3 search function calls 11
1.4.4 logical operators 11
1.4.5 a formal grammar of the query language. 12

1.5 Search Functions 13
1.5.1 xsearch-function y 13
1.5.2 exists 13
1.5.3 precedes L 13
1.5.4 iPrecedes 13
1.5.5 anyPrecedes 14
1.5.6 dominates 14
1.5.7 1Dominates 14
1.5.8 1DomsOnly 15
1.5.9 1DomsNumber# 15
1.5.10 1DomsLast# 16
1.5.11 domsWords# 16
1.5.12 domsWords<# 17
1.5.13 domsWords># 17
1.5.14 1DomsTotal# 17
1.5.15 1iDomsTotal<#t 18
1.5.16 1DomsTotal>4 18
1.5.17 shorthand for search-function names 19

1.6 Logical Operators e 20
1.6.1 about logical operators oo 20
1.6.2 search-function operators vs. argument operators 20
1.6.3 AND; time-saver 20
1.6.4 same-instance Lo 20
1.6.5 AND; same-instance with prefix indices 21
1.6.6 ! (not-argument) L 21
1.6.7 ! (not-argument) reports last legitimatenode L. 22
1.6.8 !oneargumentat atime L. 22
1.6.9 not before prefix indices Lo 22
1.6.10 orargumento 22

CONTENTS 11

1.6.11 negating a list L L 23

1.7 The Command File 24
1.7.1 optional commands: L 24

1.7.2 boolean shorthand 24

1.7.3 search commands L 24
1.7.4 printing commands:o 0oL oL 25

1.7.5 debugging commands: L 0oL o 31

1.8 Understanding the Output o 33
1.8.1 general form of the output o oo 33

1.8.2 atypical output file 34

1.8.3 preface. 34

1.8.4 header 35

1.8.5 comment block with output sentence L. 36

1.8.6 footer 37

1.8.7 summary block 37

1.8.8 using nodes_only and removemodes oL 38

1.9 How to Make Your Corpus Compatible with CorpusSearch 44
1.9.1 your corpusol 44

1.9.2 parse completely 44

1.9.3 labels must be single words oL o 44

1.9.4 labels must not begin with digits o0 44

1.9.5 no dashes preceded by aspace oL 45
1.9.6 number trouble 45

1.9.7 tree must be described with round parentheses 45
1.9.8 wrap your sentences L L 46

1.9.9 use identification nodeso 46
1.9.10 give corpus files a standard endingo 47
1.9.11 the corpus bug-hunter is label-dependent 47
1.9.12 an example of an incompatible corpus 48

2 CORPUSSEARCH QUICK REFERENCE SHEET 51
2.1 torun CorpusSearch 51
2.2 §query components: L. 51
2.3 §command-file components: 51
3 PPCME2 Labels 52
3.1 Phrase Labels 52
3.2 Word Labels 54
3.3 Word-orPhrase Labels 55
3.4 Trace Labels 56
3.5 Suffix Labels 56

1 CORPUSSEARCH USER’S MANUAL 1

1 CORPUSSEARCH USER’S MANUAL

1.1 Getting Started

CorpusSearch is a search program that searches for linguistic structures in a corpus of parsed, labelled
sentences. The following diagram describes the system of input and output to CorpusSearch:

r- - - - - = n r—- - - - - = n
| command file | I source file(s) |
L - _ _ _ L - _ _
CORPUSSEARCH
r--—-—-—--"—-"—-—-"—--"—- - = 1
I output file, (complement file) I
L - - - - - - _

Figure 1: input and output to CorpusSearch

1.1.1 input to CorpusSearch

CorpusSearch needs two pieces of information:
1.) what sentences to search (source file(s)).

2.) what structures to search for (command file).

source file(s)
A source file 1s any file that contains parsed, labelled sentences. This could be a file from the

Middle English (or other) corpus, an output file from a previous search, or perhaps a file of sentences

1 CORPUSSEARCH USER’S MANUAL 2

that the user has cut and pasted together.

command file
The command file contains a query, which describes the structures being searched for, and
possibly other material, describing what node boundaries in which to search, and various options

for printing the output (see The Command File).

1.1.2 output of CorpusSearch

CorpusSearch prints out an output file, and optionally, a complement file.

output file(s)

The output file contains the sentences that were found to contain the searched-for structure,
along with comments describing where the structures were found. Statistics are kept detailing the
number of sentences found with the structure, the total number of sentences searched, and the
number of distinct boundary nodes containing the structure (”hits”). Notice that the number of

hits may change depending on the definition of the boundary node (see The Command File).

complement file(s)

A complement file is produced if the command file contains this line:

print_complement: true

The complement file, if there is one, contains all the sentences in the source file that do not
contain the searched-for structure. The output file and complement file are complementary sets that

together contain all the sentences in the source file.

1 CORPUSSEARCH USER’S MANUAL 3

1.1.3 running CorpusSearch on babel

babel is a mainframe computer run by the Linguistics Department at the University of Pennsylvania.
The following instructions are for those who have an account on babel.

To run CorpusSearch on babel, add these lines to your .cshrc file:

prepend PATH /pkg/java-1.2ea6/bin
setenv CLASSPATH /pkg/ling/MIDENG/PPCME2/clean_search
set mecorpus = /home/ataylor/MIDENG/PPCHME2/SearchMe

The line beginning “prepend PATH” enables your account to run java programs.
The line beginning “setenv CLASSPATH” ensures that java will be able to find CorpusSearch
when you call it from any directory in your account.
The line beginning “set mecorpus” saves typing. Instead of typing” /home/ataylor/MIDENG/PPCME2/SearchMe

(where the corpus is stored) in your java command, you can type “$mecorpus” to get the same result.

your query/output directory
Make a new directory in your account; you might call it “corpus_stuff”. This directory will
hold your query files (ending with “.q”), your output files (ending with ”.out”), and possibly your

complement files (ending with “.cmp”).

your command file
Make a new file in your directory, using emacs, vi or any standard editor. Give the file a name

“.q”. This will be your command file. The only thing this file must contain is a query —

ending in
all other commands are optional (see The Command File). To see how the program runs, you might

want to try using an extremely simple command file. Your command file , let’s call it “NP.q”, could

contain just this line:

query: (NP* iDominates PPx*)

This query searches for noun phrases that immediately dominate prepositional phrases.

1 CORPUSSEARCH USER’S MANUAL 4

running the search

This is the general form for running CorpusSearch:

java CorpusSearch <command file> <source file(s)>

Here’s an example:

java CorpusSearch NP.q $mecorpus/*

This command will search the entire corpus (because of the “/*” after “$mecorpus”.. The output
will appear 1n a file called “NP.out”.
Be patient; a search of the entire corpus currently takes about 5 minutes, depending on the

complexity of the query. To run a search in the background, write “&” at the end of your command:

java CorpusSearch NP.q $mecorpus/* &

To run a search only on Malory, use this command:

java CorpusSearch NP.q $mecorpus/*malory* &

In general, to run a search on a subset of the entire corpus, describe your subset using standard

Unix terminology as it applies to the names of the particular files you want to search.

1 CORPUSSEARCH USER’S MANUAL 5

1.2 The Rocche Sentence

I chose a simple sentence to use as an example throughout the user’s manual. I'll call it “the rocche
sentence”. Here it is as Malory wrote it:

and so hit londid under that rocche.

The sentence describes Percivale’s ship, landing under a cliff (“rocche”).

Here it 1s, parsed and labelled, as it appears in the corpus:

((IP (CONJ and)
(ADVP (ADV so))
(NP-SBJ (PRO hit))
(VBD londid)
(PP (P undir)
(NP (D that) (N rocche)))
(E_s D))

and here 1t 1s drawn as a tree:

1P
| T
CONJ ADVP NP-SBJ VBD PP
.
and ADV PRO londid P NP
SO hit undir D/\N

that rocche

Figure 2: the rocche sentence shown as a tree

1 CORPUSSEARCH USER’S MANUAL 6

1.3 CorpusSearch General Principles
1.3.1 labels and text

“Labels” are the all upper-case tags inserted by the linguists who prepared the corpus (e.g., “IP”,
“CONJ”, “N”) “Text” refers to the mostly lower-case original words of text (e.g. “so”, “hit”). Every
node in the tree has a label, and the leaf nodes also have text. CorpusSearch can conduct searches
on labels or text, as described below. When searching for text, spelling and upper-case/lower-case

variations must be described explicitly (usually with an argument list.) For instance:

(C iDominates that|That)

1.3.2 fuzzy tree structure

For the purposes of dominance, text and its associated node label are considered separate objects.
Thus, “PRO” dominates “hit” in the rocche sentence. For the purposes of precedence, text and its
associated label are considered to be one object. Thus, “that” sister-precedes “rocche” in the rocche

sentence, because the labels associated with “that” and “rocche” are sisters.

1.3.3 wild cards

CorpusSearch supports two wild cards, namely * and #.

1.3.4 * (character wild card)

“*” works as in regular expressions, that is, it stands for any combination of symbols.

The operator
For instance, “CP*” means any label beginning with the letters CP (e.g. CP, CP-ADV, CP-QUE-
SPE). “*-SPE” means any label ending with “-SPE”. and *hersum* means any string containing

the substring “hersum” (e.g., “hersumnesse”, “unhersumnesse”). * by itself is the wild card and will

match any label or text. For instance,

1 CORPUSSEARCH USER’S MANUAL 7

(PP iDomsOnly *)

*

will return all sentences containing a PP with a single child (not the rocche sentence). * may be

used anywhere in the function argument; beginning, middle or end.

1.3.5 searching for *

Some labels, for example “*con*”. contain the character ‘*’. If you’re looking for such a label, use
(escape character) to show that you’re searching for * and not using it as a wild card. For instance,

to search for *con* dominated by a noun phrase, you could use this command:

(NP* dominates *con*)

1.3.6 # (digit wild card)

The # operator is the wild card for digits. For instance, (PP iDominates P#) will return nodes like

this:
(20 PP (21 P21 wi+t)
(22 P22 ynne)

(23 NP (24 D +tat)
(25 N citee)))

1.3.7 node boundary command

The node boundary command tells the program what kind of node to search for to contain the
described structures. If the command file doesn’t list a “node:” command, CorpusSearch uses the
default node boundary IP*.

CorpusSearch can treat one instance of a label as the node command and also the argument to

a search function, as in:

node: PPx*
query: (PP iDomsNumberi RP)

1 CORPUSSEARCH USER’S MANUAL 8

If you don’t have a particular node in mind, use the node command “*”.

CorpusSearch will accept a list of nodes for the node boundary command. For instance, this is

a legitimate command:

node: PP*|NP*|ADJP*

This structure is contained in the rocche sentence:

node: PP
query: (NP iDominates N)

(PP (P undir)
(NP (D that) (N rocche)))

By default, only the nodes specified in the node command will be printed out (not the entire

sentence containing them). To print the entire parsed sentence, include this line in your command

file:

nodes_only: false

1.3.8 mnodes to ignore

There are some nodes in the corpus that linguists usually don’t want to consider as part of the
strucure of the sentence, for instance, punctuation, line breaks, page numbers, and comments.
CorpusSearch will ignore all nodes whose labels are contained in the “ignore- list”. This is the

default version of the ignore-list:

COMMENT |[CODE|ID|LBI|’ "], |E_SI/

For instance, if you run this query:

query: (NP* iPrecedes PPx*)

This sentence will be returned:

1 CORPUSSEARCH USER’S MANUAL 9
kR ok kR kR kR Rk Rk Rk Rk Rk kR Rk kR kR kR kR ok Rk Rk kR kR Rk kbegin_comments

1 IP-MAT-SPE: 5 NP-1, 9 PP
skeokskok oo ok s ok sk sk koo sk koo s s skakok sk sk skl sk sk skok sk sk sk skok sk skskosk ok sk sk skskok sk sk skskok ok kkksk ok kkkend _comment s
kR Rk Rk Rk Rk Rk Rk Rk Rk kR Rk kR Rk Rk Rk kR kR Rk Rk begin_ur_text

There ar two bretheren beyond the see,
(CMMALORY, 15.439)

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ok s ok s sk ok sk ok ok sk ok ok ok ok ok sk skeok sk sk ok skok sk sk kok sk sk sk skok sk skokokskok sk k kkkkkkkend _ur_text

(o
(1 IP-MAT-SPE
(2 NP-SBJ-1 (3 EX There))
(4 BEP ar)
(5 NP-1 (6 NUM two)
(7 NS bretheren))
(8 CODE <P_15>)
(9 PP (10 P beyond)
(11 NP (12 D the)
(13 N see)))
(14 E_S ,))
(15 ID CMMALORY,15.439))

Notice that NP-1 immediately precedes PP in spite of the intervening node (8 CODE <P_15>).
This is because CODE is on the default ignore-list.

To add labels to the default ignore-list, include this command in your command file:

add_to_ignore: <list_of_labels>

For instance, if you want to ignore traces, include this command in your command file:

add_to_ignore: **

To replace the default ignore-list with your own ignore-list, include this command in your com-

mand-file:

ignore_nodes: <your_ignore_list>

To tell CorpusSearch not to ignore any nodes, include this command in your command file:

1 CORPUSSEARCH USER’S MANUAL 10

ignore_nodes: null

I will sometimes refer to nodes that are not to be ignored as “legitimate” nodes.

1.3.9 searching output

The output of one search may be used directly as input to the next search. CorpusSearch recognizes

[4 49 ”

output files as those ending in “.out” or “.cmp”.

1 CORPUSSEARCH USER’S MANUAL 11

1.4 Query Language
1.4.1 search function arguments

The arguments to a search function are usually node labels or lists of node labels (e.g. “NP”, “CP”,

“VB*|HV*”). Text can also be used (e.g. “Percivale, “that|That”.)

1.4.2 wild cards

CorpusSearch supports two “wild cards” for use in search function arguments, namely *, which

represents any (or no) characters, and #, which represents digits.

1.4.3 search function calls

The most basic query is a search-function call. Each one of the following search-function calls is a

correct query in itself. Any number of these calls can be combined into more complex queries.

(NP-SBJ iDomsLast N)
(VBD|VBG iPrecedes NEG)

(WP* iDominates 'NPR)

1.4.4 logical operators

Search-function calls may be combined using the logical operator AND. Because of the constraints

of the same-instance problem, search-function calls must be appended to the query one at a time:

(((NP-SBJ iDomsLast N) AND (VBD|VBG iPrecedes NEG)) AND (C dominates that))

AND acts on search-function calls. There are also logical operators that act on arguments to search
functions. These are |, which means “or” for a list of arguments (e.g. “MD*|HV*” means “MD*
or HV*”), and “I”| which negates an argument (or list of arguments) (e.g. “NP-SBJ dominates IN”

returns cases where NP-SBJ does not dominate N.)

1 CORPUSSEARCH USER’S MANUAL

1.4.5 a formal grammar of the query language.

arg — an argument to a search function. Examples: NP-SBJ, NP* INPR, Percivale.
un — a unary search function. Example: exists, domsWords#, iDomsTotal#.
bin — a binary search function. Examples: iDomsLast#, iPrecedes, precedes, iDomsNumber#.
AND — binary logical operator AND.

< stmt > — < call >

| (< stmt >< append >)
< append > — AND < call >
< call > — (arg bin arg)

| (arg un)

12

1 CORPUSSEARCH USER’S MANUAL 13

1.5 Search Functions
1.5.1 x search-function y

I commonly refer to the first argument to a search function as “x” and the second argument as “y”.

1.5.2 exists

searches for label or text anywhere in sentence. These structures are found in the rocche sentence:

(rocche exists)

(PRO exists)

1.5.3 precedes

precedes means“sister precedes”. That is, x sister precedes y when x and y are immediately dom-
inated by the same node, and x is previous to y. This function will accept label or text as any

combination of x and y. These structures are found in the rocche sentence:

(ADVP precedes VBD)

(that precedes rocche) (see“fuzzy tree structure” above)
but this structure is not found in the rocche sentence:

(ADVP precedes PRO) (because ADVP and PRO are not sisters.)

1.5.4 iPrecedes

1Precedes means “immediately sister precedes.” That is, x immediately sister precedes y when x and
y are immediately dominated by the same node, and x is immediately previous to y. “iPrecedes” 1s

a subset of “precedes”. These structures are found in the rocche sentence:

(ADVP iPrecedes NP-SBJ)

(so iPrecedes hit)

1 CORPUSSEARCH USER’S MANUAL 14

but this structure 1s not found in the rocche sentence:

(ADVP iPrecedes VBD) (because it does not immediately precede)

1.5.5 anyPrecedes

anyPrecedes means “precedes anywhere but does not dominate.” That is, x precedes y somewhere
in the sentence, but y is not contained in the sub-tree dominated by x. “anyPrecedes” is a superset

of “precedes”. The following structures are found in the rocche sentence:

(ADVP anyPrecedes PRO)

(hit anyPrecedes londid)

but this structure 1s not found in the rocche sentence:

(NP-SBJ anyPrecedes PRO)

1.5.6 dominates

dominates means “dominates to any generation.” That is, y is contained in the sub-tree dominated
by x. Dominates will accept text as y, but text as x will always return an empty set (text never

dominates a subtree.) These structures are found in the rocche sentence:

(PP dominates N)

(PP dominates rocche)

but this structure 1s not found in the rocche sentence:

(D dominates N)

1.5.7 1Dominates

iDominates means “immediately dominates”. That is, x dominates y if y is a child (exactly one

generation apart) of x. These structures are found in the rocche sentence:

1 CORPUSSEARCH USER’S MANUAL 15

(ADVP iDominates ADV)

(PRO iDominates hit)

but this structure 1s not found in the rocche sentence:

(PP iDominates N) (N and PP are more than one generation apart)

1.5.8 iDomsOnly

1DomsOnly means “immediately dominates as an only child.” That is, x immediately dominates y as
an only child if x immediately dominates y and y is the only legitimate child of x. These structures

are found in the rocche sentence:

(NP-SBJ iDomsOnly PRO)

(PRO iDomsOnly hit)

but this structure 1s not found in the rocche sentence:

(PP iDomsOnly P) (because P is not the only child)

1.5.9 iDomsNumber#

1iDomsNumber# means “immediately dominates as the #th child” where # 1s tacked on to the end
of iDomsNumber. “iDomsNumber#” must be picked up by the parser as one string.) That is, x
immediately dominates y as the #th child if x immediately dominates y and y is the #th child of x.
Notice that iDomsNumberl is a superset of iDomsOnly. These structures are found in the rocche

sentence:

(NP iDomsNumber2 N)

(VBD iDomsNumberi1 londid)

but this structure 1s not found in the rocche sentence:

(PP iDomsNumber P)2 (because P is the number 1 child)

1 CORPUSSEARCH USER’S MANUAL 16

1.5.10 iDomsLast#

1iDomsLast is similar to iDomsNumber but it counts backward from the last child. So iDomsLast1
means “immediately dominates as the last child”, iDomsLast2 means “immediately dominates as

the second-to-last child”, and so on. These structures are found in the rocche sentence:

(IP iDomsLast1 PP)

(IP iDomsLast3 NP-SBJ)

but this structure 1s not found in the rocche sentence:

(IP iDomsLast2 NP-SBJ)

1.5.11 domsWords#

domsWords# counts the number of words dominated by the search-function argument. So “domsWords4”
means “dominates 4 words”, domsWords2 means “dominates 2 words” and so on. A word in this

case 1s defined as a leaf node that is not on the word_ignore list. Here’s the default word_ignore_list:

COMMENT |CODE|IDILBI’ "], |E_S|O|*x*

Thus, traces, 0 complementizers, punctuation, and comments are not counted as words.

So this query:

(NP domsWords4)

will return this structure (ignoring the trace *ICH*-1):

(NP
(NP-POS
(D the)
(N$ modirs)
(NP-PRN *ICH#*-1))
(N syde)
(NP-PRN-1 (NPR Igraymne))))

1 CORPUSSEARCH USER’S MANUAL 17

1.5.12 domsWords<#

domsWords<# is just like domsWords# except that it returns structures that dominate strictly less

than the given number of words. For instance, this query:
(NP domsWords<3)
will return this structure (ignoring the trace *ICH*-3):
(wp

(D a)

(N knyght)
(CP-REL *ICH*-3)))

1.5.13 domsWords>#

domsWords># is just like domsWords# except that it returns structures that dominate strictly

more than the given number of words. For instance, this query:

(NP domsWords>3)

will return this structure:

(wp
(N accord)
(PP
(P betwixe)
(wp
(wp
(D the)
(¥ lady)
(NP-PRN
(NPR Igrayne)))
(conJpP
(CONJ and)
(wp

(PRO hym)))))))

1.5.14 iDomsTotal#

1iDomsTotal# counts the number of daughters immediately dominated by the search- function argu-

ment. So this query:

1 CORPUSSEARCH USER’S MANUAL 18

(PP iDomsTotal3)

will return this structure:

(PP
(RP oute)
(P of)
(wp
(D the)
(N castel)))

Notice that the PP in this case immediately dominates a total of 3 daughters (RP, P, NP), but

dominates 4 words (oute, of, the, castel).

1.5.15 iDomsTotal<#

1iDomsTotal<# is like iDomsTotal# except that it returns structures that immediately dominate

strictly less than the given number of words. So this query:

(PP iDomsTotal<3)

will return this structure:

(PP
(P within)
(wp
(ADJ forty)
(NS dayes)))

Notice that in this case the PP immediately dominates a total of less than 3 daughters (P, NP)

but dominates 3 words (within, forty, dayes).

1.5.16 iDomsTotal>#

1iDomsTotal># is like iDomsTotal# except that it returns structures that immediately dominate

strictly more than the given number of words. So this query:

(PP iDomsTotal>3)

1 CORPUSSEARCH USER’S MANUAL 19

will return this structure:

(PP
(ADV clene)
(RP oute)
(P of)
(wp
(D the)
(N sadyll)))

Notice that in this case PP immediately dominates a total of 4 daughters (ADV, RP, P, NP) but

dominates 5 words (clene, oute, of, the, sadyll).

1.5.17 shorthand for search-function names

CorpusSearch allows shorthands and lower-case/upper-case variations for the names of search func-
tions. For instance, “iDominates” may be written “idominates” or “iDoms”. If you try a shorthand
and it 1sn’t allowed by CorpusSearch, you’ll get an error message from the query parser. If you feel

that a certain shorthand should be allowed, write to the SearchMistress, Beth Randall.

1 CORPUSSEARCH USER’S MANUAL 20

1.6 Logical Operators
1.6.1 about logical operators

CorpusSearch supports the following logical operators:

AND (and search-function call)
! (not argument)
| (or argument)

Also, the printing command print_complement can be thought of as NOT applied to a query.

1.6.2 search-function operators vs. argument operators

AND acts on search-function calls; ! and | act on arguments to the search functions.

1.6.3 AND; time-saver

AND has a time-saving switch, so that if the first structure is not found in the sentence being
searched, the second structure is not looked for. Therefore, if you know that one structure is rarer
than the other, you can save time by listing the rarer structure first.

1.6.4 same-instance

AND has been implemented with same-instance as a default. So

((IP iDomsNumberi VBP|VBD) AND (IP iDomsNumber2 ADVP|PP*))

will return only sentences where the same instance of IP has the described number 1 and 2 children.
Sentences containing one IP with number 1 child VBP and some other IP with number 2 child
ADVP will not be returned.

Same-instance is triggered by matching argument strings. So
((ADVP precedes MD|HV*|VB*) AND (MD|HV#*|VB* precedes NP-SBJ))

will return only sentences with the same instance of MD |HV*|VB*, but

1 CORPUSSEARCH USER’S MANUAL 21

((ADVP precedes MD|VB*|HV*) AND (MD|HV#*|VB* precedes NP-SBJ))

will return sentences with the same instance or different instances (because the argument lists do

not match as strings.)

1.6.5 AND; same-instance with prefix indices

If you need to specify which arguments coincide (that is, refer to the same instance) and which
don’t, you can use prefix indices. Arguments with the same pre-index must coincide, arguments
with different pre-indices must not coincide. For example, suppose you are looking for two noun-
phrases which are sisters; each noun-phrase immediately dominates a pronoun. Use pre-indices as

follows:

((([1]¥P* precedes [2]NP%*)
AND ([1]NP# iDominates [3]PRO))

AND ([2]NP* iDominates [4]PRO))

Or, suppose you're looking for one NP* which immediately dominates PRO and a different NP*

which immediately precedes VBD. Use pre-indices as follows:

(([1]NP* iDominates PRO) AND ([2]NP* iPrecedes VBD))

1.6.6 ! (not-argument)

!'is used to negate the argument to a search function. For instance,

('NP-SBJ iPrecedes VBD)

will return sentences that contain the structure “something, not NP-SBJ, immediately precedes

VBD” (not including the rocche sentence.)

1 CORPUSSEARCH USER’S MANUAL 22

1.6.7 ! (not-argument) reports last legitimate node

If there is more than one candidate for the largument, CorpusSearch reports the last legitimate node

encountered. For instance,

(IP iDominates 'NP-0B1)

will report the last node iDominated by IP, if none of those nodes are NP-OB1. Thus, in the

rocche sentence, IP iDominates CONJ, ADVP, NP-SBJ, VBD, and PP. After checking that none of

those are NP-OB1, CorpusSearch reports PP as the result.

1.6.8 ! one argument at a time

CorpusSearch does not allow you to negate both arguments to a single search function. So this is

not a legitimate command, and will abort the search:

('NP-SBJ iPrecedes !'VBD)

1.6.9 not before prefix indices

If you need to use both ! and prefix indices, put the ! before the indices. This is a legitimate query,

that looks for two different noun phrases, neither of them immediately dominating a trace:

query: (([1]NP* iDominates ![3]/**) AND ([2]NP* iDominates ![4]/#**))

If you didn’t use the prefix indices 3 and 4 in the above query, you wouldn’t find any sentences.
Without the indices, CorpusSearch would look for two different noun phrases, each immediately

dominating the same not-trace object.

1.6.10 or argument

Any number of arguments to a search function may be linked together into an argument list using

|, which means “or”. For instance,

1 CORPUSSEARCH USER’S MANUAL 23

(*VB* | *HV* | *BE* | #DO* | *MD* iPrecedes NP-SBJ*)

means “*VB* or *HV* or *BE* or *DO* or *MD* immediately precedes NP-SBJ*.”

1.6.11 negating a list

If a list is preceded by !, the entire list is negated. So,

(V*VB* | *HV* | *BE#* | #D0* | *MD* iPrecedes NP-SBJ*)

means, “none of these (¥*VB* or *HV* or *BE* or *DO* or *MD?*) iPrecedes NP-SBJ*”.

1 CORPUSSEARCH USER’S MANUAL 24

1.7 The Command File

1.7.1 optional commands:

Optional (non-query) commands must be written before the query. All the optional commands have

default values which are used if no value i1s found in the command file.

1.7.2 boolean shorthand

For commands that take a boolean argument, CorpusSearch will accept any of these strings: “true”,

((TRUE?? , ((T?? , ((t?? , or ((false77 , ((FALSE?? , ((F?? , ((f?? .

1.7.3 search commands

add_todgnore: (String label list)
default “” (empty string)

adds given labels to the ignore_list. For instance,
add_to_ignore: **

will tell CorpusSearch to ignore traces for this search.

ignore nodes: (String ignore list)
default COMMENT [CODE|IDILBI’I’.,IES|/

tells CorpusSearch what nodes to ignore, usually punctuation and comments.

node: (String node_boundary)
default TP*
gives CorpusSearch a node boundary to search within.
The node boundary influences the statistics kept by CorpusSearch, since the number of hits is

the number of boundary nodes containing the structure described in the query.

1 CORPUSSEARCH USER’S MANUAL 25

Also, the node boundary determines what nodes are removed if remove_nodes is true, and the

nodes that are printed if nodes_only is true.

query: (String query)
default ERROR
Every command file must contain a query, although it need not contain anything else. The query

must be the last item in the command file.

1.7.4 printing commands:

These commands do not in any way influence the current search. They only give instructions about
how the results of the current search should be printed. However, because these commands can
cause the output of the current search to take different forms, they may influence future searches

which will take as their input the output of the current search.

begin_remark: (String remark) end_remark

default “” (empty string)

tells CorpusSearch to print user’s remark in the output Preface. This is a way for the user to
write a note to herself, for instance to remember the goal of the search.

For instance, the command file “pro-obj.q” contains this command:

begin_remark:
pronoun objects
end_remark

which is printed in the output preface like this:

kR kKRR ARk Rk kR ok Rk kR kR kR kR kR kR kR kkkkkkkkkkbegin_preface
PREFACE: regular output file.
CorpusSearch copyright Beth Randall 1999.
Date: Wed Nov 03 19:12:03 EST 1999

command file: pro-obj.q

1 CORPUSSEARCH USER’S MANUAL 26

input file: ipmat-2vb.out
output file: pro-obj.out
remark:

pronoun objects
node: IP#*

query: (NP-0B# iDominates PRO)
stokokoks s skok ook ok sk s stk ok skkokok sk sk sk kok ook skl ok koo kbbb sk kb ok skkkkkend _preface

nodes_only: (boolean true or false)

default true

If true, CorpusSearch prints out only the nodes (as defined in “node”. above) that contain the
structure described in “query”.

If false, CorpusSearch prints out the entire sentence that contains the structure described in
“query”.

For instance, suppose you have this query:

node: ADVP*
query: (ADVP* iDominates ADVPx*)

Here’s what a piece of the output looks like with nodes_only true.

kR ok kR kR kR Rk Rk Rk Rk Rk kR Rk kR kR kR kR ok Rk Rk kR kR Rk kbegin_comments
2 ADVP: 3 ADVP

ootk ke ke ok ke ok ke ok ke ke ke ke ke ek sk sk sk skl sk sk skl s o s sk ok ok ok ke kok sk sk sk skl sk sk ok s sk sk sk sk skok ok sk ok kokskskkkend _comment s

kR Rk Rk Rk Rk Rk Rk Rk Rk kR Rk kR Rk Rk Rk kR kR Rk Rk begin_ur_text

certayn and wit-owte doute, Ihon is is name.
(CMAELR3,45.574)

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ok s ok s sk ok sk ok ok sk ok ok ok ok ok sk skeok sk sk ok skok sk sk kok sk sk sk skok sk skokokskok sk k kkkkkkkend _ur_text

(NODE (ADVP
(ADVP (ADV certayn))
(CONJP (CONJ and)
(PP (P wit-owte)
(NP (N doute))))
(, ,))(ID CMAELR3,45.574))

1 CORPUSSEARCH USER’S MANUAL 27

And here’s the same piece of output with nodes_only false:

kR ok kR kR kR Rk Rk Rk Rk Rk kR Rk kR kR kR kR ok Rk Rk kR kR Rk kbegin_comments
2 ADVP: 3 ADVP

ootk ke ke ok ke ok ke ok ke ke ke ke ke ek sk sk sk skl sk sk skl s o s sk ok ok ok ke kok sk sk sk skl sk sk ok s sk sk sk sk skok ok sk ok kokskskkkend _comment s

kR Rk Rk Rk Rk Rk Rk Rk Rk kR Rk kR Rk Rk Rk kR kR Rk Rk begin_ur_text

certayn and wit-owte doute, Ihon is is name.
(CMAELR3,45.589)

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ok s ok s sk ok sk ok ok sk ok ok ok ok ok sk skeok sk sk ok skok sk sk kok sk sk sk skok sk skokokskok sk k kkkkkkkend _ur_text

(
(IP-MAT
(ADVP
(ADVP (ADV certaymn))
(conJP (CONJ and)
(PP (P wit-owte)
(NP (N doute)))))
G oy

(NP-0B1 (NPR Ihomn))
(BEP is)
(NP-SBJ (PRO$ is)
(N name))
(E_.S .))
(ID CMAELR3,45.589))
only ur_text: (boolean true or false)
default false
If true, CorpusSearch prints out only the ur_text version of the sentences containing the searched-for
structure. It also prints the ur_text version of the nodes in which the structures were found. This
could be a useful step at the very end of a search, providing a file full of sentences ready to be copied
into a research paper.
NOTE: Since the output of an only_ur_text search contains no parsed sentences, it cannot be

used as the input to a new search.

Here’s a piece of only_ur_text output resulting from this query:

node: ADVP*

1 CORPUSSEARCH USER’S MANUAL 28

query: (ADVP* iDominates ADVPx*)

***begin_ur_text

certayn and wit-owte doute, Ihon is is name.
(CMAELR3,45.589)

ADVP: certayn and wit-owte doute

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ok s ok s sk ok sk ok ok sk ok ok ok ok ok sk skeok sk sk ok skok sk sk kok sk sk sk skok sk skokokskok sk k kkkkkkkend _ur_text

print_comments: (boolean true or false)
default true
tells CorpusSearch whether or not to print a comment block before each output sentence.
Here’s an example of a comment block, describing where the structure (NP* iPrecedes PP*) was

found in the output sentence:

**begin_CommentS

1 IP-MAT-SPE: 5 NP-1, 9 PP

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ke s ok e sk ok sk ok ok sk ok ok ok ok ok s sk ok sk ok ok skok sk ok sk ok ok ok sk skok sk skokokskok sk k k ok kkkkend _comment s

print_complement: (boolean true or false)

default false

The idea behind print_complement is to split the input file into two complementary sets, the
output file and the complement file.

If print_complement is true, CorpusSearch prints a separate file containing all the sentences found
in the input that did not contain the searched-for structure. The name of the complement file is the

same as the name of the output file, but with “.cmp” replacing “.out”.

print_indices: (boolean true or false)
default true

tells CorpusSearch whether or not to print indices in the output.

1 CORPUSSEARCH USER’S MANUAL 29

Indices start at 0 and are used to label every node in the tree. CorpusSearch uses indices to
distinguish, for instance, between several different NP nodes in the same sentence.

Here’s a piece of an output sentence with indices:

(10 NP-0B1 (11 NPR Morgan)
(12 NPR 1le)
(13 NPR Fay)

Here’s how it looks without indices:
(NP-PRN (NPR Morgan)
(NPR 1le)
(NPR Fey)))
print_parsed: (boolean true or false)
default true

tells CorpusSearch whether or not to print the parsed sentences which contain the searched-for

structure.

print_ur_text: (boolean true or false)

default false

if true, CorpusSearch prints an ur_text block above every output sentence, containing the original
sentence in text-only form.

If false, CorpusSearch omits the ur_text block.

Here’s an example of an ur_text block:

***begin_ur_text

And the thyrd syster, Morgan le Fey, was put to scole in a nonnery,
(CMMALORY,5.117)

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ok s ok s sk ok sk ok ok sk ok ok ok ok ok sk skeok sk sk ok skok sk sk kok sk sk sk skok sk skokokskok sk k kkkkkkkend _ur_text

remove _nodes: (boolean true or false)

default true

1 CORPUSSEARCH USER’S MANUAL 30

removes nodes of the same species as the node boundary, which did not contain the searched-for
structure.

The purpose of this is to make it easier to search output. For instance, if you were looking for
IP nodes containing a certain structure, remove_nodes will ensure that your output contains only IP
nodes with that structure, and no other IP nodes.

CorpusSearch uses this algorithm to find the node species: start with the node boundary. If the
node boundary contains a hyphen (‘-’), the node species is the substring of the node boundary up to
the first hyphen, with a ‘“*’ tacked on. If the node boundary does not contain a ‘-’, the node species
is simply the node boundary with a ‘*’ tacked on if the node boundary didn’t already have one.

For instance, if the node boundary is IP-PRN*, the node species is ITP*.

For example, consider this command file. Remove nodes is true by default, and the node bound-

ary is IP* by default, resulting in a node species of IP*:

query: (NP-0B* iDoms PRO)

Here’s a piece of the output:

kR ok kR kR kR Rk Rk Rk Rk Rk kR Rk kR kR kR kR ok Rk Rk kR kR Rk kbegin_comments
1 IP-MAT-SPE: 8 NP-0B1, 9 PRO the

ootk ke ke ok ke ok ke ok ke ke ke ke ke ek sk sk sk skl sk sk skl s o s sk ok ok ok ke kok sk sk sk skl sk sk ok s sk sk sk sk skok ok sk ok kokskskkkend _comment s
kR Rk Rk Rk Rk Rk Rk Rk Rk kR Rk kR Rk Rk Rk kR kR Rk Rk begin_ur_text

’And T shall defende the,’ seyde the knyght.
(CMMALORY, 39.1264)

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ok s ok s sk ok sk ok ok sk ok ok ok ok ok sk skeok sk sk ok skok sk sk kok sk sk sk skok sk skokokskok sk k kkkkkkkend _ur_text

(0 (1 IP-MAT-SPE (2 ’)
(3 CONJ And)
(4 NP-SBJ (5 PRO I))
(6 MD shall)
(7 VB defende)
(8 NP-0B1 (9 PRO the))
(10 , ,)

1 CORPUSSEARCH USER’S MANUAL 31

(11 >)
(12 IP-MAT-PRN REMOVED)
(13 E_S .))(ID CMMALORY,39.1264))

Notice that the sub-sentence “seyde the knyght” has been removed from the parsed sentence. A
search on this output will be a search only on IP* nodes that contain a pronoun object, and on no

other nodes.

set_margin: (int margin)
default 78
sets margin for CorpusSearch comments and ur_text, but not for parsed sentences, which wrap

around the screen.

1.7.5 debugging commands:

The debugging commands are intended for the use of Corpus-Mistresses. The average user probably

has no cause to use these commands.

debug_corpus_begin:, debug_corpus_end: (int sentence number)

default 0

tells CorpusSearch to print (in the output file) the corpus sentences beginning with the begin
number and ending with the end number.

For instance, to print sentences number 1 through 10 in the output file, put these lines in your

command file:

debug_corpus_begin: 1
debug_corpus_begin: 10

debug function_calls: (boolean true or false)
default false

tells CorpusSearch to print the function calls vector to the screen.

1 CORPUSSEARCH USER’S MANUAL 32
debug report_numbers: (boolean true or false)

default false

reports numbers of sentences being searched. The sentence corresponding to the last number

reported may have an error.

hunt_bugs: (boolean true or false)
default false
For use by the Corpus-Mistress. Sends the input files to the bug-hunter, and outputs any errors

discovered. The bug-hunter is the one piece of CorpusSearch that is label-dependent.

comments

Comments may be added to the command file using // or /*. Do not add comments after the

query!

1 CORPUSSEARCH USER’S MANUAL 33

1.8 Understanding the Output

1.8.1 general form of the output

CorpusSearch output files have the following structure:

Preface

Header

(1 per output file)

(1 per input file)

comment block
ur_text sentence
parsed sentence

(1 set per output sentence)

Footer

Summary

(1 per input file)

(1 per output file)

Figure 3: the structure of output files.

Since output files can be used as input to a search, everything that should not be searched (that

is, everything that wasn’t originally in the corpus) is explicitly labelled. Labels begin with a row

of *¥**s. This includes headers, footers, comment blocks, text versions of corpus sentences (but not

parsed and labelled versions!), and summary blocks.

1 CORPUSSEARCH USER’S MANUAL 34

1.8.2 a typical output file

As an example, I'll walk through a typical output file, from a search done by Ann Taylor. The query
was designed to search for inverted pronoun subjects, that is; pronoun subjects that appear after
the tensed verb.

To make this example easier to follow, these lines were added to the command file:

nodes_only: £
remove_nodes: f

I will discuss nodes_only and remove_nodes below.

1.8.3 preface

kR kKRR ARk Rk kR ok Rk kR kR kR kR kR kR kR kkkkkkkkkkbegin_preface
PREFACE: regular output file.
SearchMyCorpus copyright Beth Randall 1999.
Date: Sun Sep 12 15:34:42 EDT 1999

command file: invert.q
output file: invert.out

remark: this query searches for inverted pronoun subjects.

node: IP*

query: (((([1]NP*|ADJP*|ADVP*|PP* iPrecedes [2]#VBx*|*HV#*|*BE*|*DOx* |*MD*)
AND ([1]NP+*|ADJP*|ADVP*|PP* iDominates !*T*))
AND ([2]+#VB*|*HV*|+BE*|+D0*|*MD* iPrecedes [3]NP-SBJ*))
AND ([3]NP-SBJ* iDominates PRO|MAN))

***end_preface

The preface begins with a label identifying this as a regular output file, that is, not a complement
file. This is followed by a copyright declaration and the date and time of the search.

The names of the command file and output file are listed. If this search had been performed using
an output file as input (instead of a corpus file), the name of the output-as-input file would also
have been listed in this block. But because the input file is a corpus file, the header and summary

blocks contain all the necessary information (for more on searching output files, see below).

1 CORPUSSEARCH USER’S MANUAL 35

The remark was found in the command file. It serves as a reminder of the purpose of the query.

The beginning of the query,

(([1]1NP*|ADJP* | ADVP*|PP* iPrecedes [2]*VB*|*HV*|*BE*|*D0x |*MD*)
AND ([1]NP#*|ADJP*|ADVP#*|PP* iDominates !*T*))

requires a constituent (NP*|ADJP*|ADVP#|PP#) which immediately precedes the tensed verb
(*VB#* | *HV* | *BE# | *DO#* | *MD*). The constituent is required not to have a trace (*¥T*) (a place-
holder for a word which would appear in that place under some circumstances, but in fact appears
elsewhere in this particular sentence.) This requirement was put in to preclude questions (such as,
“Kepte he his fadir scheep full mekly?”), where there is no constituent before the inverted pronoun
subject other than the tensed verb. In Middle English, there must be one constituent before the
tensed verb in statements, as the first two lines of the query describe.

The last two lines of the query,

AND ([2]*VB*|*HV*|*BE#*|*D0*|*MD* iPrecedes [3]NP-SBJ*))
AND ([3]NP-SBJ* iDominates PRO|MAN))

describe the tensed verb (*VB*|*HV#* | *BE* | *D0* | #MD*) which precedes the subject noun phrase
(NP-SBJ#), which itself immediately dominates a pronoun (PRO|MAN), that is, the subject is a pro-

noumn.

1.8.4 header

**begin_header

HEADER:
source file: cmcapchr.m4.psd

3 3k ok ok s ok ok sk ok ok ok e sk ok sk ok sk sk ok ok ke s ok e sk ok skeok ok sk ok ok ok ok ok sk sk ok sk sk ok skok sk ok sk ok ok sk sk skok sk skok kokok sk k kk kkkkkk end_header

Here, the source file is listed as its name appears in the corpus directory. If this had been an
output file, the source file would have been listed as its name appears in the ID node of each sentence,

that is, CMCAPCHR.

1 CORPUSSEARCH USER’S MANUAL 36

1.8.5 comment block with output sentence

Here’s an example of a comment block followed by an output sentence, first presented as the original

text, then parsed and labelled as it appears in the corpus:

kR ok kR kR kR Rk Rk Rk Rk Rk kR Rk kR kR kR kR ok Rk Rk kR kR Rk kbegin_comments
1 IP-MAT: 2 NP-0B1, 7 VBD kepte, 6 N scheep, 8 NP-SBJ, 9 PRO he

ootk ke ke ok ke ok ke ok ke ke ke ke ke ek sk sk sk skl sk sk skl s o s sk ok ok ok ke kok sk sk sk skl sk sk ok s sk sk sk sk skok ok sk ok kokskskkkend _comment s
kR Rk Rk Rk Rk Rk Rk Rk Rk kR Rk kR Rk Rk Rk kR kR Rk Rk begin_ur_text

His fadir scheep kepte he ful mekly;
(CMCAPCHR,32.13)

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ok s ok s sk ok sk ok ok sk ok ok ok ok ok sk skeok sk sk ok skok sk sk kok sk sk sk skok sk skokokskok sk k kkkkkkkend _ur_text

(o
(1 IP-MAT
(2 NP-0B1
(3 NP-POS (4 PRO$ His)
(5 ¥$ fadir))
(6 N scheep))
(7 VBD kepte)
(8 NP-SBJ (9 PRO he))
(10 ADVP (11 ADVR ful)
(12 ADV mekly))
(13 E_S ;))
(14 ID CMCAPCHR,32.13))

Notice that the default word order would be “He kepte his fadir scheep ful mekly”, but in this
case the object “his fadir scheep” has been moved to the beginning of the sentence. Since only one
constituent can precede the verb, the subject “he” must be moved after the verb “kepte” — that is,
subject and verb have been inverted.

The first item in the list of indices and structures is the boundary node (in this case, 1 IP), which
fit the “node: ” line of the command file. It is followed by a colon to separate it from the rest of
the list, which details the structures that correspond to the “query: ” line of the command file. The

list of indices and structures has been weeded out so that no node is reported more than once.

1 CORPUSSEARCH USER’S MANUAL 37

The parsed version of the output sentence is indented to show the structure of the tree. Sisters
have the same indentation (for instance, 2 NP-OB1 and 7 VBD kepte.) Daughters are indented

further than their mothers.

1.8.6 footer

ook ok Rk Kok KoKk Kok Kk kR Rk ok kR ok Rk Rk Rk Rk Rk kR kR Rk Rk k Rk Rk kb Rk kbegin_footer
FOOTER
source file: cmcapchr.m4.psd
hits found: 220
sentences containing the hits: 220

total sentences searched: 4175

3 3k ok ok s ok ok sk ok ok ok e sk ok sk ok sk sk ok ok ke s ok e sk ok sk sk ok sk ok ok ok ok ok sk skeok sk sk ok skok sk sk kok ok sk sk skok sk skok koskk sk k sk k kkkkkkend_footer

“hits found” gives the number of hits, or distinct boundary nodes containing the looked-for
sentence structure, found in the input file. “sentences containing the hits” gives the number of
sentences which contained the hits. The number of hits is always greater than or equal to the
number of sentences found in the input file. The number of sentences found in any given input file

should not vary from search to search.

1.8.7 summary block

ok kbR ok kR R kR Rk R Rk Rk kR Rk Rk Rk Rk Rk Rk Rk Rk Rk kR kR kbegin_summary
SUMMARY: regular output file.

command file: invert.q
output file: invert.out

source files, hits, sentences, total:

cmaelr4.m4.psd 46/46/766
cmcapchr.mé. psd 220/220/4175
cmcapser .mé.psd 12/12/91
cmedmund .m4 . psd 2/2/300
cmfitzja.mé4.psd 14/14/228
cmgregor .m4.psd 14/14/2631
cminnoce.m4.psd 6/6/208
cmkempe .m4 . psd 203/202/3851

cmmalory.mé.psd 214/213/4995

1 CORPUSSEARCH USER’S MANUAL 38

cmreynar .mé.psd 36/36/547
cmreynes .mé.psd 0/0/245
cmsiege.m4.psd 6/6/731

grand total hits : 773
grand total sentences: 771
grand total sentences searched: 18772

***end_summary

The summary, like the preface, is labelled “regular output file” to show that it is not the summary
of a complement file.

The summary block gives the same information as the footer blocks for each input file, but
brought together in one place. This summary block was produced by a search on all corpus files

whose titles contain “m4”, meaning they are from the fourth chronological period (1420 — 1500).

1.8.8 using nodes_only and remove nodes

Consider this query file, called ipmat-2vb.q:

begin_remark:
This query searches for matrix clauses which contain a
subject and at least two verbs. The subject precedes
both verbs.

end_remark

node: IP-MAT*

query: (((((IP-MAT#* iDoms NP-SBJ*)

AND (NP-SBJ* precedes #MD|#HVP|*HVD|*DOP |*DOD |*BEP |*BED|*VBP|*VBD))
AND (NP-SBJ#* precedes VB|VAN|VBN|HV|HAN|HVN|DO|DAN|DON|BE|BEN))

AND (*MD|*HVP|*HVD |*DOP|*DOD | *BEP | *BED | *VBP | #VBD iDoms !1*%))
AND (VB|VAN|VBN|HV|HAN|HVN|DO|DAN|DON|BEIBEN iDoms !2*%))

Because remove_nodes and nodes_only are true by default, the output will print only the boundary
nodes containing the structure, and irrelevant boundary nodes will be removed. The purpose of this
1s to ensure that subsequent searches are conducted only on the matrix clauses that contain a subject
preceding two verbs. Here’s a sample output sentence: in Modern English, this sentence would be:

“He would have told you more if you had allowed him to.”

1 CORPUSSEARCH USER’S MANUAL 39
kR ok kR kR kR Rk Rk Rk Rk Rk kR Rk kR kR kR kR ok Rk Rk kR kR Rk kbegin_comments

1 IP-MAT-SPE: 5 NP-SBJ, 7 MD wolde, 8 HV a
1 IP-MAT-SPE: 5 NP-SBJ, 7 MD wolde, 9 VBN tolde

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ke s ok e sk ok sk ok ok sk ok ok ok ok ok s sk ok sk ok ok skok sk ok sk ok ok ok sk skok sk skokokskok sk k k ok kkkkend _comment s
***begin_ur_text

and more he wolde a tolde you and $ye wolde a suffirde hym.
(CMMALORY,35.1106)

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ok s ok s sk ok sk ok ok sk ok ok ok ok ok sk skeok sk sk ok skok sk sk kok sk sk sk skok sk skokokskok sk k kkkkkkkend _ur_text

(0 (1 IP-MAT-SPE (2 CONJ and)
(3 NP-0B1 (4 QR more))
(5 NP-SBJ (6 PRO he))
(7 MD wolde)
(8 HV a)
(9 VBN tolde)
(10 NP-0B2 (11 PRO you))
(12 PP (13 P and)
(14 CP-ADV (15 C 0)
(IP-SUB REMOVED)))
(24 E_S .))(ID CMMALORY,35.1106))

Notice that the IP-SUB clause, “$ye wold a suffirde hym”, has been removed.
Suppose we run this output through a search for pronoun objects; using this query file, called
“pro-obj.q”.
begin_remark:
pronoun objects
end_remark
add_to_ignore: *x*

print_complement: t
query: (NP-0B* iDoms PRO)

The “suffirde” sentence shows up again, because it has a pronoun object “you”.

**begin_CommentS

1 IP-MAT-SPE: 10 NP-0B2, 11 PRO you

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ke s ok e sk ok sk ok ok sk ok ok ok ok ok s sk ok sk ok ok skok sk ok sk ok ok ok sk skok sk skokokskok sk k k ok kkkkend _comment s

1 CORPUSSEARCH USER’S MANUAL 40
seskokokok o ook s s sk b kb kokok ok ok ok sk kbl ok kb ok ok bk Rk ke g in_ur_text

and more he wolde a tolde you and $ye wolde a suffirde hym.
(CMMALORY,35.1106)

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ok s ok s sk ok sk ok ok sk ok ok ok ok ok sk skeok sk sk ok skok sk sk kok sk sk sk skok sk skokokskok sk k kkkkkkkend _ur_text

(0 (1 IP-MAT-SPE (2 CONJ and)
(3 NP-0B1 (4 QR more))
(5 NP-SBJ (6 PRO he))
(7 MD wolde)
(8 HV a)
(9 VBN tolde)
(10 NP-0B2 (11 PRO you))
(12 PP (13 P and)
(14 CP-ADV (15 C 0)
(16 IP-SUB REMOVED)))
(17 E_S .))(ID CMMALORY,35.1106))

Notice that the comments block describes one structure,
1 IP-MAT-SPE: 10 NP-OB2, 11 PRO you
This structure will be counted as one hit in the final summary block.

Now suppose we run the same series of searches, but this time we add this line to the command files:

nodes_only: £

When nodes_only is false it makes remove_nodes false automatically.
Here’s how the “suffirde” sentence looks after running ipmat-2vb.q with nodes_only and remove_nodes

false:

**begin_CommentS

1 IP-MAT-SPE: 5 NP-SBJ, 7 MD wolde, 8 HV a
1 IP-MAT-SPE: 5 NP-SBJ, 7 MD wolde, 9 VBN tolde

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ke s ok e sk ok sk ok ok sk ok ok ok ok ok s sk ok sk ok ok skok sk ok sk ok ok ok sk skok sk skokokskok sk k k ok kkkkend _comment s
***begin_ur_text

and more he wolde a tolde you and $ye wolde a suffirde hym.
(CMMALORY,35.1106)

1 CORPUSSEARCH USER’S MANUAL 41
ok kok kR ok ok kKRR KoKk R kR sk Kk kR sk ok ok ok sk ok kRl ok kR kR kR kR kkkend_ur_text

(o
(1 IP-MAT-SPE (2 CONJ and)
(3 NP-0B1 (4 QR more))
(5 NP-SBJ (6 PRO he))
(7 MD wolde)
(8 HV a)
(9 VBN tolde)
(10 NP-0B2 (11 PRO you))
(12 PP (13 P and)
(14 CcP-ADV (15 C 0)
(16 IP-SUB
(17 NP-SBJ (18 PRO $ye))
(19 MD wolde)
(20 HV a)
(21 VBN suffirde)
(22 NP-0B1 (23 PRO hym)))))
(24 E_S .))
(25 ID CMMALORY,35.11086))

Notice that the clause “$ye wolde a suffirde hym” is printed out in full.

Now we run pro-obj.q on this output. Here’s the “suffirde” sentence resulting from this search:

**begin_CommentS

1 IP-MAT-SPE: 10 NP-0B2, 11 PRO you
16 IP-SUB: 22 NP-0B1, 23 PRO hym

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ke s ok e sk ok sk ok ok sk ok ok ok ok ok s sk ok sk ok ok skok sk ok sk ok ok ok sk skok sk skokokskok sk k k ok kkkkend _comment s
***begin_ur_text

and more he wolde a tolde you and $ye wolde a suffirde hym.
(CMMALORY,35.1106)

3 3k ok ok 3 ok ok sk ok ok ok e sk ok sk ok sk ok ok ok ok s ok s sk ok sk ok ok sk ok ok ok ok ok sk skeok sk sk ok skok sk sk kok sk sk sk skok sk skokokskok sk k kkkkkkkend _ur_text

(o
(1 IP-MAT-SPE (2 CONJ and)
(3 NP-0B1 (4 QR more))
(5 NP-SBJ (6 PRO he))
(7 MD wolde)
(8 HV a)
(9 VBN tolde)
(10 NP-0B2 (11 PRO you))
(12 PP (13 P and)
(14 CcP-ADV (15 C 0)

1 CORPUSSEARCH USER’S MANUAL 42

(16 IP-SUB
(17 NP-SBJ (18 PRO $ye))
(19 MD wolde)
(20 HYV a)
(21 VBN suffirde)
(22 NP-0B1 (23 PRO hym)))))
(24 E_S .))
(25 ID CMMALORY,35.1106))

Notice that here the comments block contains two different structures,

1 IP-MAT-SPE: 10 NP-0B2, 11 PRO you
16 IP-SUB: 22 NP-0B1, 23 PRO hym

The structure

16 IP-SUB: 22 NP-0B1, 23 PRO hym

is reported in this case because remove nodes was false in the previous search. The pronoun object
“hym” was found in a subordinate clause, not the matrix clause that was of interest to the last
search.

Because the structures occur in two distinct boundary nodes (1 IP-MAT-SPE and 16 TP-SUB),
this will count as two hits in the summary block, in contrast to the one hit counted when re-
movemnodes was true. This explains why the “removemodes: true” version of the search counts
fewer objects than the “remove_nodes: false” version of the search.

Here’s the summary block from the “remove nodes: true” version:

***begin_summary

SUMMARY: regular output file.

command file: pro-obj.q
input file: ipmat-2vb.out
output file: pro-obj.out

source files, hits, sentences, total:
CMMALORY 177/176/875

grand total hits : 177

grand total sentences: 176

grand total sentences searched: 875

1 CORPUSSEARCH USER’S MANUAL

***end_summary

And here’s the summary block from the “remove_nodes: false” version:

***begin_summary

SUMMARY: regular output file.

command file: pro-obj.q
input file: ipmat-2vb.out
output file: pro-obj.out

source files, hits, sentences, total:
CMMALORY 290/249/875

grand total hits : 290

grand total sentences: 249

grand total sentences searched: 875

***end_summary

43

1 CORPUSSEARCH USER’S MANUAL 44

1.9 How to Make Your Corpus Compatible with CorpusSearch
1.9.1 your corpus

With the invention of trainable parsers more corpora are being built. So far, CorpusSearch has been
used to search Middle English, Chinese, Korean and Yiddish corpora. If you’re building a corpus,

here’s what you need to know to ensure that you can use CorpusSearch to search it.

1.9.2 parse completely

CorpusSearch expects sentences to be completely parsed. That is, every piece of text is expected to
have a label affixed to it. If your sentence is only partially parsed, CorpusSearch won’t break, but

you won’t have any way to search the partially parsed areas of text.

1.9.3 labels must be single words

W

CorpusSearch expects labels to be single strings, that is, containing no spaces . If your label
consists of multiple strings, the first string will be interpreted as the label and the next string will
be ignored (in the case of a phrase label), or picked up as original text (in the case of a word label).
For instance, if you try to use “NOUN PHRASE” as a label, CorpusSearch will interpret “NOUN”

as the label and ignore “PHRASE”. On the other hand, “NOUN_PHRASE” will be interpreted as

a label and could be found using CorpusSearch.

1.9.4 labels must not begin with digits

Labels must not begin with digits (“0”, “17, ..., 79”). Digits before labels will be interpreted as
indices left over from a previous search, and so will be ignored. Labels are allowed to end with digits,

though. So “PP1” is an acceptable label, but “1PP” is not.

1 CORPUSSEARCH USER’S MANUAL 45

1.9.5 no dashes preceded by a space

The java StreamTokenizer, which is used to process the input text file, has a few bugs. One of these
is that a “-” preceded by a space is presumed to be a minus sign. If it is followed by anything other
than a digit (“0”, “1”7 ..., “9”), the Tokenizer chokes. So, NP-SBJ where the dash is preceded by a
letter, is fine, but (PUNCT -), will cause trouble. Notice that this is a fairly natural way to represent
dashes encountered in the text.

It’s entirely possible that later versions of java will have fixed this bug, but for now you must
find some other way to represent dashes. You might consider changing dashes in the text to DASH

or \-. So either one of these is acceptable: (PUNCT DASH) or (PUNCT \-).

1.9.6 number trouble

A bug related to the dash problem is the problem of “.” and “0”, both of which are interpreted
by the java StreamTokenizer as numbers whose value 1s 0. To distinguish between “” and “0”
CorpusSearch looks at the environment surrounding them. If the preceding label was “E_S” (end of
sentence), CorpusSearch records a “.” If the preceding label was “NUM”, CorpusSearch can handle
any of these constructions correctly: (NUM .iij.) (this occurs in Middle English), (NUM 0.5), (NUM
.8).

You may need to use the “E_S” and “NUM” labels to get “.” and “0” handled correctly.

1.9.7 tree must be described with round parentheses

CorpusSearch expects the structure of the sentence to be described with round parentheses (“)”,
“)”). If your tree is described with “{” or “[” or some other system, you will have to convert it to

(((77 and (()77.

1 CORPUSSEARCH USER’S MANUAL 46

1.9.8 wrap your sentences

CorpusSearch expects every sentence to have a “wrapper”, that is, a pair of parentheses surrounding
the sentence. The wrapper is a useful place to store items that are extraneous to the sentence but
linked to it, for instance ID nodes (see below). Here’s an example: the “wrapper” consists of the

first and last parentheses seen here:

((IP-MAT
(ADVP-TMP
(ADV Thenne))
(NP-SBJ
(NPR quene)
(NPR Igraymne))
(7 VBD waxid)
(8 ADVP-TMP
(9 ADV dayly))
(10 ADJP
(11 ADJR gretter)
(12 CONJ and)
(13 ADJR gretter))
(14 E_S .))
(15 ID CMMALORY,5.120))

1.9.9 use i1dentification nodes

Although CorpusSearch can function without identification nodes (labelled “ID”), it’s better to have
them. When CorpusSearch searches the output of a previous search, it uses the ID nodes to keep

statistics for the header, footer and summary blocks. Here’s an example of an ID node:

(ID CMMALORY,5.120)

Here, the CMMALORY identifies the source file, 5 is the page number, and 120 is the sentence

number in that file. In general, an ID node should have this form:

(ID <source_name>, <free_space>. <sentence_number>)

The information between the source_name and the sentence_number is actually not referenced by

CorpusSearch. Tt could be used to store page numbers (as in the Middle English Corpus), or some

1 CORPUSSEARCH USER’S MANUAL 47

other information, or not used at all. The important thing is that the ID_string must begin with a
string followed by a comma (to be picked up as the source_name), and end with a “” followed by
a sentence number. The sentence_number is used to keep the statistic “#tsentences” in the output.
It ensures that several nodes that were printed separately can still be identified as belonging to the
same sentence.

“” in the information following the label “ID”. This is crucial,

Notice that there are no spaces
because it ensures all the information will be picked up as one string by the StreamTokenizer.

The current version of CorpusSearch will find the ID node anywhere in the sentence, but the
Middle English corpus puts the ID node just after the sentence ending but inside the sentence

wrapper (see above). This standard may be enforced in later versions of CorpusSearch, so it would

be wise to build your corpus according to it.

1.9.10 give corpus files a standard ending

CorpusSearch expects corpus files to have a standard ending. At the moment, CorpusSearch under-
stands “.psd” (for “parsed”) to indicate an original corpus file.

If an input file name does not end with “.psd” it is presumed to be an output file and treated
somewhat differently. For instance, when searching output, CorpusSearch uses the ID nodes to keep
statistics for the header, footer, and summary blocks. If you see “NO_FILE_ID” listed in the header,
footer and summary blocks, it may be because your corpus files don’t have names ending with “.psd”

and don’t contain ID nodes.

1.9.11 the corpus bug-hunter is label-dependent

The only part of CorpusSearch that is dependent on a particular set of labels is the corpus bug-
hunter. This is the part of CorpusSearch that responds to errors in the corpus itself (as opposed

to, for instance, errors in the query.) When CorpusSearch encounters a corpus error, it sends the

1 CORPUSSEARCH USER’S MANUAL 48

suspicious sentence to the corpus bug-hunter; which prints out an error message followed by the
suspicious sentence. If your corpus has a different set of labels than the Middle English corpus, the
error message might not be completely appropriate. However, the fact that an error message has
appeared means that CorpusSearch found some problem with that sentence.

If you have a private copy of CorpusSearch and you’re familiar with Java programming, you can
try your hand at customizing the list of labels that the corpus bug-hunter responds to. The list is

in a class called “Tags.java” and the code is quite straightforward.

1.9.12 an example of an incompatible corpus

In 1994, Beatrice Santorini of the University of Pennsylvania built a corpus of parsed and annotated
Yiddish texts. Like Phase 1 of the Middle English corpus, the Yiddish corpus was parsed only to
the first level of constituents. This “flat parsing” was searchable using Perl scripts that matched
regular expressions.

One passage from the corpus tells a joke that begins this way:

When you tell a story to a peasant, he laughs three times. He laughs the first time when someone
tells him the story. The second time, when it s explained to him. And the third time, when he
understands the story.

I’ll examine one sentence from that passage:

He laughs the first time when someone tells him the story.

Here it is as it appears in the corpus. (For this discussion, we don’t need the definitions of the

words and their labels, so T have put them in a separate file.)

(

[t dem ershtn mol] [vO lakht] [s er 1 ,

[B [c ven] [s men] [vO dertseylt] [i im] [d di mayse] , B]
)

(RO, 1)

The first problem here is the existence of square brackets (“[7, “]”), which CorpusSearch doesn’t

1 CORPUSSEARCH USER’S MANUAL 49

recognize. So the first task is to convert the square brackets to round parentheses:

(

(t dem ershtn mol) (vO lakht) (s er) ,

(B (c ven) (s men) (vO dertseylt) (i im) (d di mayse) , B)
)

(RO, 1)

This form of the sentence can be partly searched by CorpusSearch. For instance, this query:

node: *
query: (vO0 iPrecedes s)

will find the structure (vO lakht) (s er), as expected. Notice that the node boundary had to
be set to *; if you leave the node boundary at its default, IP* nothing will be found, because the
sentence does not contain IP*.

However, the sentence is still not fully compatible with CorpusSearch because 1t is not completely
parsed. For instance, the phrase “dem ershtn mol” (“the first time”) has been parsed as one object.

So if you run this query:

node: *
query: (ershtn precedes mol)

the structure will not be found. This is because CorpusSearch expects every leaf node to contain
exactly two objects: a label and a single-string piece of text. Any extra information will be stored as
part of the node but it will usually not be examined by the search functions. These extra pieces of
information (in this case, the strings “ershtn” and “mol”) behave as useless baggage that is carried
along by the sentence vector but never opened.

Similarly, the “ B” that marks the end of the B-labelled clause, and the “” that separates the
B-labelled clause from the rest of the sentence, are never actually referenced, so they may as well
be removed. The parentheses are enough to convey the information that the B-labelled clause ends,
and that the B-labelled clause is separate from the rest of the sentence.

Here is the sentence, fully parsed, and with extraneous labels removed:

1 CORPUSSEARCH USER’S MANUAL 50

(

(t (det dem) (adj ershtn) (n mol)) (vO lakht) (s er)

(B (c ven) (s men) (vO dertseylt) (i im) (d (det di) (n mayse)))
)

(RO, 1)

Now, the query

node: *
query: (ershtn precedes mol)

will find the structure as expected (see example command file and output.)
Finally, there is the node (RO,1). This identifies the sentence as being part of the first story told

by informant Royte Pomerantsen. This needs to be given the standard CorpusSearch ID node form

and stuck inside the wrapper. I'll make it sentence number 3:

(

(t (det dem) (adj ershtn) (n mol)) (vO lakht) (s er)

(B (c ven) (s men) (vO dertseylt) (i im) (d di) (n mayse))
(ID RO,1.3)

)

and our sentence is now fully compatible with CorpusSearch.

2 CORPUSSEARCH QUICK REFERENCE SHEET 51

2 CORPUSSEARCH QUICK REFERENCE SHEET

2.1 to run CorpusSearch

for automatic output file (command.out)
java CorpusSearch <command.q> <input-files>
for output file with your choice of name (mymame.out)
java CorpusSearch <command.q> <input-files> -out <my_name.out>

Query file names must end in .q. Output file names must end in .out

2.2 §query components:

search functions:

exists (exists anywhere in sentence)
precedes (sister precedes)
1Precedes (immediately sister precedes)
anyPrecedes (precedes anywhere)
dominates (dominates to any generation)
iDominates (immediately dominates)
iDomsOnly (immediately dominates only child)
1iDomsNumber (immediately dominates first, second, ete. child)
1iDomsLast (immediately dominates last, second-to-last, etc. child)
DomsWords# (dominates # of words)
1DomsTotal# (dominates # of daughters)
logical operators:
AND (and search-function calls)

| (or arguments)
! (not argument)
wild cards:

(matches any character)
(matches any digit)

2.3 §command-file components:

search commands:

command: default:
query: no default. must be last item in command file.
node: *
ignore_nodes: COMMENT |CODEIIDILB| "], ES
add_to_ignore: <empty string>

printing commands:

command: default:

print_indices: true

print_comments: true

nodes_only: true

remove nodes: true

print_ur_text: true

only_ur_text: false

print_complement: false

print_parsed: false

3 PPCME2 LABELS 52

3 PPCME2 Labels

3.1 Phrase Labels

ADJP
ADJP-LOC
ADJP-SPR
ADJX
ADVP
ADVP-DIR
ADVP-LOC

ADVP-LOC-LFD

ADVP-TMP
ADVX
CONJP
CP-ADV
CP-CAR
CP-CLF
CP-CMP
CP-DEG
CP-EOP
CP-EXL
CP-FRL
CP-QUE
CP-QUE-ADV
CP-QUE-LFD
CP-QUE-SBJ
CP-REL
CP-THT
CP-THT-LFD
CP-THT-SBJ
CP-TMC
FRAG
FRENCH
GREEK
HEBREW
INTJP
IP-ABS
IP-TMP
IP-INF
IP-INF-ABS
IP-INF-ADT
IP-INF-DEG
IP-INF-LFD
IP-INF-PRP
IP-INF-SBJ
IP-MAT
IP-PPL
IP-PPL-SBJ
IP-SMC
IP-SUB
LATIN

LS

adjective phrase

locative adjective phrase

adjective phrase secondary predicate
adjectival constituent, ambiguous level (ADJ, ADJ’, or ADJP)
adverb phrase

directional adverb phrase

locative adverb phrase
left-dislocated locative adverb phrase
temporal adverb phrase

adverbial constituent, ambiguous level (ADV, ADV’, or ADVP)
conjunction phrase

adverbial clause

clause-adjoined relative

it-cleft

comparative clause

degree complement

empty operator complementizer phrase
exclamation

free relative

question (direct or indirect)
adverbial WHETHER question
left-dislocated indirect question
indirect question subject

relative clause

that clause

left-dislocated that clause

that clause subject

tough-movement complement
sentence fragment

French text

Greek text

Hebrew text

interjection phrase

absolute clause

imperative

complement infinitive

infinite absolute

adjunct infinitive

degree infinitive

left-dislocated infinitive

purpose infinitive

infinitival subject

matrix clause

participial clause

participial clause subject

small clause

subordinate clause

Latin text

list item

3 PPCME2 LABELS

NP
NP-ADT
NP-ADV
NP-COM
NP-DIR
NP-DPS
NP-LOC
NP-LFD
NP-MSR
NP-OB1
NP-OB2
NP-POS
NP-PRN
NP-RFL
NP-SBJ
NP-SPR
NP-TMP
NP-VOC
NPX
NUMP
PP
PP-LFD
QP

QTP

QX

REF
RRC

VP
WADJP
WADVP
WNP
WPP
WQP

X

noun phrase

adjunct noun phrase

noun phrase adverb

noun phrase complement
directional noun phrase

dative of possession

locative noun phrase
left-dislocated noun phrase
measure noun phrase

first object

second object

possessive noun phrase
parenthetical or appositive noun phrase
reflexive noun phrase

noun phrase subject

noun phrase secondary predicate
temporal noun phrase

vocative noun phrase

nominal constituent, ambiguous level (N, N’| or NP)
number phrase

prepositional phrase

left-dislocated prepositional phrase
quantifier phrase

quotation phrase

quantifier phrase, ambiguous level (Q, Q’, or QP)
reference

reduced relative clause

verb phrase

wh- adjective phrase

wh- adverb phrase

wh- noun phrase

wh- prepositional phrase

wh- quantifier phrase

unknown

53

3 PPCME2 LABELS

3.2 Word Labels

bl

$

ADJ
ADJR
ADIJS
ADV
ADVR
ADVS
ALSO

CODE
CONJ

ELSE
E_S

EX
FOR
FP

FW

ID
INTJ
LB
MAN
N

N$

NEG
NPR
NPR$
NPRS
NPRS$
NS

NS$
NUM
NUMS$
ONE
ONE$
OTHER
OTHERS$
OTHERS
OTHERS$
P

PRO
PROS$

Q

Qs

QR

QS

RP
SUCH
TO
WADV

non-final sentence punctuation
possessive ending

adjective

adjective, comparative

adjective, superlative

adverb

adverb, comparitive

adverb, superlative

the words ALSO (except when = AS) and EKE
complementizer

non-text material

coordinating conjunction

determiner

the word ELSE (in the collocation OR ELSE)
end of sentence

existential THERE

infinitival FOR

focus particle

foreign word

sentence identification

interjection

line break

indefinite subject pronoun (ME, MAN)
noun

possessive noun

negation

proper noun, singular

possessive proper noun

proper noun, plural

possessive plural proper noun

common noun, plural

possessive plural noun

cardinal number

genitive number

the word ONE (except as focus particle)
possessive ONE

the word OTHER (except as conjunction)
possessive nominal use of OTHER
plural nominal use of OTHER
possessive OTHERS

preposition or subordinating conjunction
personal pronoun

possessive pronoun

quantifier

possessive quantifier

quantifier, comparative (MORE, LESS)
quantifier, superlative (MOST, LEAST)
adverbial particle

the word SUCH

infinitival TO and AT

wh-adverb

54

3 PPCME2 LABELS

WARD the morpheme WARD

WD

wh-determiner

WPRO wh-pronoun
WPROS$ possessive wh-pronoun

wQ

WHETHER introducing indirect questions

3.3 Word-orPhrase Labels

BAG
BE
BED
BEI
BEN
BEP
DAG
DAN
DO
DOD
DOI
DON
DOP
HAG
HAN
nv
HVD
HvIl
HVN
HVP
MD
MDO
NODE
VAG
VAN
VB
VBD
VBN
VBI
VBP
X

present participle BE

infinitive BE

past BE (including past subjunctive)
imperative BE

perfect participle BE

present BE (including present subjunctive)
present participle DO

passive participle DO (verbal or adjectival)
infinitive DO

past DO (including past subjunctive)
imperative DO

perfect participle DO

present DO (including present subjunctive)
present participle HAVE

passive participle HAVE (verbal or adjectival)
infinitive HAVE

past HAVE (including past subjunctive)
imperative HAVE

perfect participle HAVE

present HAVE (including present subjunctive)
modal verb

untensed modal verb

printed in output when nodes_only is true
present participle

passive participle (verbal or adjectival)
infinitive, all other verbs

past (including past subjunctive)

perfect participle

imperative

present (including present subjunctive)
unknown

99

3 PPCME2 LABELS 56

3.4 Trace Labels

0 empty operator
unspecified empty constituent
arb* arbitrary PRO subject in ECM infinitives

con* subject elided under conjunction
exp* empty expletive subject

pro* ”small pro” subject

ICH* non-wh trace

T* wh-trace

3.5 Suffix Labels

PRN parenthetical or appositive

RSP resumptive element

SPE direct speech

LFD left-dislocated
“4” joins any two labels when more than one applies, as in (N+N mankind).
“-4#” is used to coindex two constituents.
“=4£” 1s used to coindex a clause, part of which has been elided, to the related full clause.
Separated parts of words are indicated as follows:

(ADV (ADV21 to) (ADV22 gether))

where the first number indicates the number of parts and the second number is the index of each

part.

