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Abstract

Language learning from positive data in the
Gold model of inductive inference is investi-
gated in a setting where the data can be mod-
eled as a stochastic process. Specifically, the
input strings are assumed to form a sequence
of identically distributed, independent random
variables, where the distribution depends on
the language being presented. A scheme is
developed which can be tuned to learn, with
probability one, any family of recursive lan-
guages, given a recursive enumeration of total
indices for the languages in the family and a
procedure to compute a lower bound to the
probability of occurrence of a given string in a
given language. Variations of the scheme work
under other assumptions, e.g., if the prob-
abilities of the strings form a monotone se-
quence with respect to a given enumeration.
The learning algorithm is rather simple and
appears psychologically plausible. A more so-
phisticated version of the learner is also devel-
oped, based on a probabilistic version of the
notion of tell-tale subset. This version yields,
as a special case, Angluin’s learner for the fam-
ilies of languages that are learnable from all
texts (and not just from a set of texts of prob-
ability one).

1 Introduction

In the Gold paradigm for inductive inference [G0167],
the learner is presented with the ted of a language (all
strings in any order with possible repetitions) that be-
longs to a specified family of languages. This model is
motivated by the well-established hypothesis that the
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child learns her native language from positive evidence
alone. (For a discussion, see [Ber85].) The learner
is said to learn a language if, on any text for it, the
learner’s guess converges to the same language, i.e.,
from some point onwards, the guess coincides with the
language being presented. The learner is said to learn
the family if it learns each language in the family.

Angluin [Ang80] characterized the families learnable in
the Gold paradigm. The requirement of convergence
on evey text of each language turns out to be too
stringent. Gold [G0167] suggested that by imposing
probabilistic assumptions on texts for a language, and
requesting convergence only with probability one, the
class of identifiable families could be enriched. Stochas-
tic input could provide some form of indirect nega-
tive evidence of the type that has often been suggested
for natural language acquisition [Pin84, Cla90]. An-
gluin [Ang88] studied the case of a stochastic input
where the distribution of each language is essentially
known to the learner in the form of a procedure that al-
lows to compute it. It is shown that families not learn-
able from all texts become learnable with probability 1.
Furthermore, the distribution itself is learned, not just
the supporting language.1

In this work, we study the learning problem in the case
of stochastic input, under relatively mild assumptions
on the input distribution (e.g., a lower bound to the dis-
tribution is computable, or the distribution is monotone
with respect to a canonical enumeration of the strings).
The target is the identification in the limit, with prob-
ability one, of the language being presented, not of the
distribution according to which it is presented. Indeed,
the distribution need neither be computable nor even
be representable in any finite form.

We develop a learning algorithm computationally sim-
ple and psychologically plausible. (For some applica-
tions to natural language acquisition, see [Kap92].) No
complicated functions are computed or distributions es-
timated. Learning proceeds as if each language is in
isolation, and, at any stage, only the guessed language
and any parameters associated with it play any role.

‘ Angluin also showed that her work subsumes the previ-
ous work. (In particular, [Hor69] and [vdMW78].)
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In contrast, many learning algorithms proposed in the
literature continue evaluating various functions of lan-
guages different from the one being presented, even after
they have converged.

In Section 2, we define the basic framework of our
model. In Section 3, we define a recognition problem

which is the problem to recognize whether the language
being presented is the same as a given language of the
family. We show a systematic way to obtain a learner
from a recognize. Since the recognize is simpler to de-
fine and to analyze than the learner, this approach is of
independent interest.

In Section 4, we specify a particular recognize and an-
alyze its behavior. Our recognize can be tuned to work
correctly whenever a lower bound is computable for the
probability that a given string occur in the input when
a given language is being presented. We also discuss
variations of the scheme which work in other situations.

Our recognize makes no assumptions on—and takes no
advantage of—the structure of the family. Indeed, un-
der the proper probabilistic assumptions, it will work
for any family, but without such assumptions it could
fail even on a family that is learnable from all texts.
This is not surprising if one considers that, as shown
by Angluin [Ang80], learning a family from all texts is
equivalent to the ability of recursively enumerating a
so-called tell-tale subset for each language in the family.
At the same time, a tell-tale subset enumerator is not in
general computable from the description of the family
(even if there is one) [KB91, Kap91]. Motivated by the
preceding considerations, in Section 5, we show how the
recognition algorithm can be generalized so that learn-
ing from all texts arises aa a special case within this
setting. We conclude with the hope that our develop-
ment could provide useful hints for understanding the
role played by indirect negative evidence in the learning
process.

2 Model

Let E be a finite alphabet and Z* be the set of all fi-
nite strings formed by concatenating elements of Z. Let
there be a canonical enumeration of Z“. We will use
the notation x < y to indicate that the string x appears
before the string y in this enumeration. (The special
symbol ZO, which is not a string in E*, is considered to
be the least string and is output in front of the enumera-
tion.) Let L.fl, ik12, kf3, . . . be any standard enumeration
of all Turing machines over Z. For any indez I c Z+,

let WI denote the language (subset of Z“) accepted by
the machine MI. Thus, the WIS form an enumeration
of all recursively enumerable (r. e.) languages.

An index I is total if the corresponding machine MI

is total and accepts a non-empty language. A recur-
sive enumeration of total indices Z : ll,Iz,...,Ik,...
defines a family Y = {WI : 1 c Z}. Let
?:pl, pz,.. .,pk,. . . be a sequence of functions, where
for each k, pk : Z* = [0,1] is a probability distribution

on strings, i.e., ~rcx. p~(z) = 1. In addition, p~(z) >0

if and only if x E WI,. (The language WIk is said to be
the support of pk.) No assumption is made regarding
the computability of the pks or the enumerability of the
sequence P. We will refer to (Z, 7) as a stochastic
family. Based on pk, we can define a unique, complete
probability measure Prk on the infinite product of WI,

with itself [Neu73]. A text t for (~k, pk) is a stochas-
tic process consisting of a sequence tl, tz, . . . .tn,...of
independent random variables, all distributed accord-
ing to pk. In other words, Vnl, nz, ..., n~ G Z+, where
nl<nz . . . <n,, and Vzl, zz, . . ..z~E 2*.

An inductive inference machine (IIM) M is an algorith-
mic procedure (say, a Turing machine) whose input is a
text t and whose output is a sequence of non-negative
integers M(fl ), M(f2), . . . constrained to be either O or
total indices. (We use the notation in to denote the
sequence of values of the first n random variables in t.
We denote by content(t~) the set of these values.) The
procedure works in stages, but it may never complete
some stage. At the nth stage, the value of tn is input
and M(&) is output. The intended interpretation is aa
follows: if M(~n ) = O, then the IIM makes no guess;
otherwise, it guesses the language W~(i~).

An IIM M is said to converge to an index I if there is a k

such that kf(ik ) = 1 and, for all n > k, M(~n) = M(fk).

We let M(t) be 1 if, on the text t, M converges to
the index 1, and we let M(t) be J_ if, on the text t,
M does not converge to any index. It can be shown
that the set of infinite sequences of strings from WI~

on which an IIM M converges to an index for WJ~ is a
measurable set, and the Prk measure of the subset of
infinite sequences from WI~ which are not texts for it is
zero. (For details, see [Kap91].) Thus, the set of texts
from WIk on which an IIM M converges to an index for
WI, is measurable.

Definition 1 An IIM M learns (2,?) with probability
one (henceforth, w.p.o. ) if, for all ~k e Z,

Pr~ [W~(tJ = W1,] = 1.

It should be observed that, in a stochastic family (Z, P),
we allow a language to have more than one index in the
set Z. In case Wrh = WI~ , it is not required that ph
be identical to pk. Further, we only require that the
learner converges w .p .o. to an index for the language
being presented, and not that the distribution itself is
learned in any sense.

There is no IIM that would learn every possible pair
of indexed families and probability distributions. An-
gluin [Ang88] showed that in a ‘distribution-free’ setting
(where the input distribution can be arbitrary), the fam-
ilies that can be learned w .p.o. can also be learned from
all texts. However, new families could be learned from
inputs guaranteed to be generated from a restricted
class of distributions.
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3 Recognize ni.zer for WI~.

Consider first the standard setting where a text t for a
language L is any infinite sequence of all and only the
strings of L and a family F is said to be learned by an
IIM M if on every text t for any L c F, M(t) is an index
for L. In order to simplify the study of learning from
stochastic input, let us first define a recognition problem
in this setting that has intimate connections to learning.
Intuitively, in order to recognize a language in a family,
an IIM must converge to the language if and only if
the input is a text for that language. Let a recursive
enumeration of total indices Z : II, 12, ..., Ih, . . . define
a family 7= {WI :1 CZ}.

Definition 2 An IIM R is said to recognize a language

L E F if the following conditions are met:

1. On every text t for L, R(t) # -1 and W~(~J = L.

2. On every text t for any L’ c F such that L’ # L,

R(fn ) = O infinitely often.

The connection between the recognition problem and
learning is brought out by the proposition that follows
the definition below of a Uniform Recognize.

Definition 3 A Uniform Recognize for Y is a proce-
dure that, given a total index 1 such that WI c 3,
returns an IIM RI which recognizes the language WI.

Proposition 1 Given an IIM M that learns a family

F, we can effectively construct a Uniform Recognize for

F. Given an Z-enumerator and a Uniform Recognize

for 3, we can effectively construct an IIM M that learns

F.

Proof: Consider first that a Uniform Recognize is
given. Let RI,, RI,,. . . be a recursive enumeration of
the recognizes obtained by giving this Uniform Rec-
ognize as input the indices 11, 12, . . . enumerated by

the Z-enumerator. Consider a recursive enumeration
of these recognizes RII, RI1, R12, RII, RxZ, RI~, . . .) in
which each recognize appears infinitely often. Let
R4(n) be the nth machine in this enumeration. Then, it
is easy to learn the family by running these recognizes
in a systematic manner such that each recognize po-
tentially gets the control infinitely often. The control
from a particular recognize is taken away whenever it
outputs a O. The IIM M that we claim learns f is
described precisely below.

Initialization: j := 1
Stage n (n ~ 1): M(~~) :=-R@(j)(~~);

if Ro(j)(t~) = O then j := j+ 1.

For any k >0, consider any text t for WI,. The follow-
ing two claims establish that M must converge on t to
an index for WIb.

Claim 1 If the variable j in the execution of M on t

reaches a jinal value of j*, then R4(j. ) must be a recog-

Proof: If j never increases beyond j“, then the rec-
ognize R4(j *, must make a non-zero output at every
stage subsequent to the stage at which j got to j“. By
the definition of recognition, only the recognize for WIk

can behave in such a fashion on a text for WX~. 9

Claim 2 The variable j in the ezecution of M on t

must reach a jinal value.

Proof: Suppose j does not reach a final value. Let j*
be the least j such that R4(j) is a recognize for WI..

Then, at an infinite number of stages, the variable j
must be such that R4(j) = R4(j.). Since R4(j. j recog-
nizes every text for WI~, we have that WR4(j. ~(t) = WIk.

By definition, there is an n* such that, for all n ~ n*,

R4 j*)(&) # 0. suppose at some stage k* ~ n“, j is
\suc that R4(j) = R4(j. ) . Then, j would not increase

beyond the stage k*, which is a contradiction. u

For the converse, suppose an IIM M learns F. Let
p(i, j, n) be true if and only if Wi and Wj agree up to
the nth string in the enumeration of Z“. Consider the
procedure that, given as input a tot aI index I such that
WI c 7, returns an IIM RI which behaves as follows:

Stage n (n ~.1):
If P(1, &f_(fn), n) then R1(~n) := M(fn)

else R1(tn) := O.

We claim that the procedure described is a Uniform Rec-
ognize. Clearly, the construction of RI from 1 is uni-
form. In order to show that RI recognizes WI, we dis-
t inguish two cases. Suppose first that t is a text for WI.

Then M must converge to an index for WI and, since
for any n beyond the onset of convergence p(l, kf(~n), n)
will be true, RI will also converge to an index for WI.

On the other hand, if t is a text for some other language
in 7, then M will converge to an index for that other
language. Beyond the point of convergence, for all n be-
yond some n* (at which the guessed language and WI

first differ), p(l, M(fn), n) will be false. Thus, RI will

output O at all subsequent stages. I

There is a probabilistic analog of the recognition prob-
lem which has useful connections to probabilistic learn-
ing. Let (Z, 7) be a stochastic family.

Definition 4 An IIM R is said to recognize (1~, p~)
w.p.o. if the following conditions are met:

1. On t for (~~,p~), Prk[W~(t) = WIk] = 1.

2. On t for any (Ih, p~) such that WI, # W1,,

Prh[R(~n) = O infinitely often] = 1.

Notice that for recognition of (~h ,pl$) w.p.o., no condi-
tion is required on the behavior of the IIM on a text for
(Ih, ph) such that W,h = WI,.
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The connection between recognition and learning w.p.o.
is brought out by the proposition that follows the defi-
nition below. The proof of the proposition is similar to
that for Proposition 1.

Definition 5 A Uniform Recognize for (Z, 7) is a pro-
cedure that, given lk, returns an IIM R1~ which recog-
nizes (l~,p~) w.p.o..

Proposition 2 Given an IIM M that learns (Z, P)
w.p. o., we can effectively construct a Uniform Recog-

nize for (Z, T). Given an Z-enumerator and a Uni-

form Recognize for (Z, P), we can effectively construct

an IIM M that learns (Z, P) w. P.o..

In the next section, we consider one particular approach
to obtaining a Uniform Recognize for (Z, T). Due to
Proposition 2, this can be used to learn the family w.p.o.
from stochastic input.

4 Window-based Learners

One way to solve the recognition problem is based on
the idea of confirmation of strings. The IIM could wait
within some suitable window of the input for a partic-
ular string in the language. In case the string shows
up, the string is said to be confirmed and the machine
continues to ‘output the index for the language. The
machine next tries to confirm the next string in the lan-
guage. Otherwise, at the particular stage at which the
window got over, the machine outputs a O and tries to
confirm the same string again. In this way, the machine
makes progress through a sequence of windows of var-
ious lengths, during each of which it is selective for a
specific string from the language. We next specify the
recognize formally.

Let (Z, 7) be a stochastic family. Consider the IIM
RI, obtained from the total index Ik as shown in Fig-
ure 1. We assume that W’l~ is infinite. (The case that
WI, may be finite can easily be handled.) Rotation-
ally, content(~o) is the empty set; nezt(z, 1) denotes the
smallest string in WI greater than Z, and Ak(x) returns

a positive integer. Next, we investigate under which
conditions RIh is a recognize w .p.o. for (lk, pk ) in the
stochastic family (Z, 7).

We observe that, on a text t for a language L different
from WI,, RI, will output infinitely many 0’s. This is
clearly the case if L ~ WI~ . otherwise, let u be the
least string in W’l~ \ L. Then, RI, will fail infinitely
often to confirm some v < u. Therefore, Condition 2 of
Definition 4 is satisfied by RI,, for any (Z, P). A more
careful analysis is needed for Condition 1.

Let Z1, ZZ, . . . be an enumeration of the language Wr,

in increasing order. In the probability space defined by
the text for (~k, pk ), for each i, j c Z+, we define Ai,j. to

be the event that the jth attempt at the confirmation
of the string xi took place and failed. That means that
the machine for the jth time set up a window in which
it was selective for the string ~i and the string ~i did

n := o;
u := nezt(zo, l~j;

while content ~ WI~ do
begin {attempt at confirming u]

found := false;

for m := 1 to ~k(~) – 1 do
begin

n :=n+l;
if tn = u then found := true;

Rl, (;n) := 1~

end;
n :=n+l;
if in = u then found := true;
if~ound then

begin {attempt succeeded}
u := ned(~, ~k);
Rrk (in) := Ik

end

else {att~mpt failed}
RI, (tn) := O

end;
while true do

begin
n :=n+l;
RIk(in) := O

end.

Figure 1: The IIM RI, for recognizing (~k ,Pk) w.p.o.

not show up in that duration. Since RI, never seeks
to confirm a string that has already been confirmed,
there are only two kinds of divergent behaviors possi-
ble for RI,. RI, is said to undergo static divergence if,
for some string xi, all attempts at confirmation of z;
fail, that is, all the events Ai,l, Ai,2, Ai,3, . . . take place.
RI, is said to undergo dynamic divergence if RI, fails
to confirm an infinite number of different strings in the
first attempt. Thus RI, undergoes dynamic divergence
whenever an infinite subsequence of events from the se-
quence A1,l, A2,1, A3,1, . . . occur.

We first consider the event D, of static divergence and
show that Prk [D$] = O. To this end, we define, for
i ~ O, the event

Bi = there is no attempt to confirm ~i+l

and observe that D~ = U=. Bi. Our claim that
Prk [D$] = O then follows from the next proposition.

Proposition 3 For all i ~ 0, Prk [Bi] = O.

Proof: By induction on i. Trivially, the base case
Prk[Bo] = O is true. Assuming that Prk[13i_1] = O,
we easily have that

sigce, given that an attempt to confirm Zi is made
(Bi_l happens), the attempt fails if and only if tn # Zi
for ~k (xi) consecutive values of n. In general, the jth
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attempt at the confirmation of the string xi can fail if
the attempt took place (i.e., the event Ai,j _ I must have

taken place) and the string xi did not show up during
that attempt. Thus, for any j,

Prk [Ai,j] = Prk[Ai,j n A,j-1]

= Prh[Ai,j lA,j-l]pr~[Ai,j-1].

Clearly,

prk[Ai,j IAi,j-1] = (1 – p&(2i))~k(zSJ.

By easy induction, we establish that

We now observe that

B. -%- Bi_l u(~i-l (7 Ai,l flAi,2 n...).

Hence, since P?l [Bi - 1] = O, we have

Prk [Bi] = P?%[6 Ai,j].

j=l

Since Ai,l ~ Ai,2 I . . . and ~k(~i) ~ 1, we have that

Prk[fiAiJ] = lim P?% [Ai,j]
j+ca

j=l

= lim (1 – Pk(~i))~k(z$)j = O,
jboo

and therefore Prk [Bi] = O. M

As a by product of the above proof we have:

Corollary 1 For all i, j ~ 1,

Let us next consider the event of dynamic divergence,
Dd, Consider the events A?,l, A2,1, A3,1,. . . . Due to
Proposition 3, w.p.o., there w at least one attempt to
confirm each string xi. Since confirmation of different
~i’s happens at different stages, it can be seen that the
events A1,l, A2,1, A3~1, .,, are statistically independent.

Then, from a combination of First and Second Borel-
CanteHi Lemmas [Neu73], we conclude that, w.p.o.,
only finitely many of these events occur if and only if

~~1 ~rk[Ai,l] converges. Equivalently, %k[~d] = O
if and only if ~~1 %k [Ai,l] < co. Recalling that Rrk

recognizes (1~, pk ) if and only if there is no divergence
(static or dynamic), from the above considerations and
Corollary 1, we obtain the following characterization.

Theorem 1 The IIikl RIk recognizes (Ik, pk) W.P.O. if

and only if

~(1‘pk(zi))Ak(ci)<00.

i=l

For O ~ p ~ 1, it is easy to see that (1 – p) s e-p.

Using this upper bound, we can establish the following
corollary.

Corollary 2 The IIM RIk recognizes (Ik, pk) w.p.o. if

co

E e-pk(d~k(zo) <~.
i=l

Consider next one example of a possible relationship
between pk. and & that guarantees recognition. For
some e >0 and for all i ~ 1, suppose

Now

co w

2
1

e-pk(zt)~k(zt) <
-z

— < +00.

i= 1
.i(l+~)

i=l

Note that this requirement for recognition w.p.o. does
not depend on the computability of the input distribu-
tion pb. Further, it is independent of both the structure
of the family and the distributions according to which
the other languages in the family may be presented.

The relationship between pk and )!b in the example
above can be viewed in the following perspective. In
order for RI* to recognize w.p.o., clearly we cannot let
~k be a constant function. Since the probabilities of the
strings in the language must decrease arbitrarily, it is
natural to expect that ~b must increase in proportion
to the inverse of the probabilities. Making & exactly
the inverse of the probability function is not enough ei-
ther. If, for all i ~ 1, pk(~i)~~(~i) = 1, then it is easy
to see using Theorem 1 that RIk will fail to recognize.
The ~b function needs to be related to the inverse of the
input probability by a function that grows unbounded
as a function of i. The above example illustrates that a
slow-growing function such as in i is sufficient.

We next determine sets of probability distributions (the
pb ‘s) for which a single computable ~b function can
be constructed such that RI, recognizes (Ik, pk) w.p.o.,
where pb is one of those distributions. our task is sim-
plified because such sets can be obtained for a language
in the family independent of both the structure of the
family as well as the distributions according to which
the other languages may be presented. No ~b function
exists that would work for the set of all distributions; if
the set consists of a single computable distribution, we
can easily construct this function. We need a definition
to state the next proposition.

Definition 6 A distribution p is said to domi-
nate a distribution q with the same support, if

(%2 E S*)(p(z) ~ q(x)).

The next proposition is easily established due to the
window-based nature of Rrk.
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Proposition 4 Given a computable distribution qk

whose support is WI,, the funciion ~k can be constructed

so that R1k recognizes (Ik,pk) w.p. o. whenever p~ dom-
inate$ qk.

Instead of making the function ~k depend only on the
string u, it is shown next that, if the window sizes can
be adjusted during the execution of the algorithm, input
from a larger class of distributions can be recognized,

Proposition 5 Let there be a recursive enumeration
of computable distn”butions qk, ~, qk,~, . . .. each of whose

$uppod i$ W1b. Then we can construct an IIM RI,

that recognizes (Ik, pk) w.p. o., whenever pk dominates

at least one of those distn”butions.

Proof: We give an informal proof. Recall that the
function & in the construction of RI, above is used to
determine the size of the window to be used for vari-
ous strings. Now we set the window sizes as follows.
As long as convergence has not taken place, the size of
the windows is determined according to different dis-
tributions. For example, for a string xj, the size of
the window may be set according to the distribution

qk,i b makiw it z in j/qk,i(~j). ‘The different distri-
butions are chosen in a systematic fashion such that
each distribution potentially gets an infinite number of
chances to get window-sizes set according to it. For
example, this may be done by scanning them in the or-

der !7k+, !lk,l>!?k,2, qk,l, qk,2, qk,3, . . . . Itcan eS3i]y be seen
that, If pk dominates any distribution in the sequence
then RI, recognizes (Ik,pk) w.p.o.. d

In the construction above, the sizes of the windows
were set according to different distributions by switch-
ing between them only whenever a O was output because
some string was not confirmed. Following a different
approach, we show that recognition can take place with
different type of a priori information about the input
distribution. The information required is about the rel-
ative probabilities of the strings in the language.

Theorem 2 For each string x c WI,, we are given a

recursive enumeration of a set !I~k) ~ WI& which in-

cludes all except a jinite number of stn”ngs from WI~.

A distribution p with the support WI,, which has the

property that

is said to be good. We claim that we can construct

an IIM RI~ that recognizes (Ik, pk) w.p. o. if the input

distribution pk is good.

Proofi Consider a text for (~k, pk). Suppose at some
stage the recognize RI~ wants to decide on the window-
size to use for the next string, say u.

The machine RI, does not decide on the window-size
right at the start of the window. To determine the
window-size for the string u, it begins to enumerate

Q(k) It also reads the subsequent presentation till itu.

either finds a string in the text common with the enu-

meration of ~$k) or a string not in the guessed language.
(It is easy to see that one or the other must happen.)
If a string not in the guessed language is encountered
first, then an inconsistency has been found and hence
the window can be immediately terminated. Otherwise,
let the string found be v. Since pk(v) ~ pk(~), then
the probability that m occurrences of v will take place
and none of u is certainly less than 2-m. Recall that
oral(u) is the position of the string u in the standard enu-
meration of the language WI~. It is adequate to close
the window whenever v has appeared m times, where
m is such that 2-m < (1/oral(u)). The window-sizes
constructed for various strings when WIh is the current
guess can easily be shown to be sufficient to ensure that
RI, recognizes WIk w.p.o.. I

As a special case of the above theorem, we have

Corollary 3 A distribution p with the support WI, is

monotonic ifi for all i ~ 1, p(z~) ~ p(z~+l). We can

construct an IIM RIh that recognizes (Ik, pk) w.p. o. if

the input distribution pk is monotonic.

Proofi since pk is monotonic, for each string x 6 WIk,
we can recursively enumerate exactly the set of strings

y C WI, such that pk (z) z pk (y). Clearly, given this
enumeration for each string x E WI~, the input distribu-
tion is good as defined in the statement of Theorem 2.
Hence, by an application of Theorem 2, the result fol-
lows. 1

5 Weighted Tell-tale Sets

An analysis of our window-based Uniform Recognize
reveals that it would not recognize an infinite language
on all texts, even if the family where learnable from
all texts. As established in [Ang80], learnability from
all texts is equivalent to the existence of a uniform enu-
merator of tell-tale subsets for each language in the fam-
ily. We recall that a finite set Tk is a tell-tale subset of
language WI, in the family WI,, WI,, .,. if there is no
WI, C WI, such that Tk ~ WI,.

Tell-tale subsets give some information on the structure
of the family. In general, they are not computable from
a description of the family [KB9 1]. Below, we introduce
the notion of a weighted tell-tale set. For a stochastic
family (2, P), a weighted tell-tale set provides useful in-
formation on the structure of both the family and the
probability distributions. This information can be ex-
ploited to construct a window-based recognize w.p.o.
which, when a weighted tell-tale set is finite, actually
recognizes from all texts.

Definition 7 Consider a set

{(yk,:, Ak,l), (?h,2:jk,2),. ~ . }, where eac$pair%msi~o:
a string and a posltlve integer. Let Tk = {yk,l, yk,z, . . .}.
Vk is said to be a weighted tell-tale set of (~k ,pk) in the
stochastic family (Z, P) if the following conditions are
satisfied:
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(i)

(ii)

(iii) For every h> Osuch that Tk ~ WI, C WI,,

X(l - ph(!/k,i))Ak’: = CO.
i

If a weighted tell-tale set vk is such that Tk is finite, then
Tk isatell-tale subset. For if there were any WI, such
that Tk ~ WI, c WI,, the summation in Condition (iii)
could not diverge as it contains only a finite number of
terms. Conversely, if Tk is a finite tell-tale subset for
WI,, then any set V, obtained by pairing each string in
Tk with any positive integer whatsoever is a weighted
tell-tale set for (~k, pk). Notice also that the only dif-
ference between the summations in Condition (ii) and
Condition (iii) is that one involves the probability func-
tion pk and the other ph. As the summation represents
a quantity decreasing with the probabilities, it can be
viewed as an indicator of inverse likelihood of Tk. In this
view, Condition (iii) says that Tk is “infinitely unlikely”
for any language WI, such that Tk ~ WIh C WI,.

We will show that, to recognize (~k, pk), it is enough
that the IIM confirms all and only the strings that ap-
pear in the enumeration of the weighted tell-tale set for
(~k ,pk). For the first time, we use the fact that Condi-
tion 2 for recognition (Definition 4) needs to be satisfied
only w.p.o. and not always.

Theorem 3 Given a procedure to recursively enumer-

ate a weighted tell-tale set vk for (Ik, pk), an IIM RI~

can be constructed which recognizes (Ik, pk) w.p. o..

Proof: Consider the IIM RI, obtained from the total
index Ik as shown in Figure 2. RIk uses the recursive
enumeration of vk where it is assumed that, without
loss of generality, no string is repeated.z

Suppose first that t is a text for (~h, p~), with

Wr, # WI,. We claim that RIk will output an infinite
number of O’s. This is clearly the case if WI, Q WIk.
For WI, C WI,, suppose Tk ~ WI.. Let yk,s be the
least string in Tk \ Wrh. Then, RI, will fail infinitely of-
ten to confirm some yk,~l, where s’ < s. Suppose, on the
other hand, that Tk ~ WIk C WI~. As in Section 4, we

can define Ai,j to be the event that the jth attempt at
the confirmation of the string yk,~ took place and failed.
By a development parallel to that in Section 4, we can
establish that, w.p .o., RIk will not converge to lk if and
only if

D -Ph(yk,i))’” = co,
i

Thus, Condition (iii) in the definition of Vk ensures that
RIk satisfies the second condition for recognition.

2Given any recursive enumeration of vk, an enUIUeratiOn
without repetition of strings can be generated constructively.

Suppose that t is a text for (Ik, pk). As above, we can
define Ai,j to be the event that the jth attempt at the

confirmat Ion of the string yk ,i took place and failed. lily
a development parallel to that in Section 4, we can es-
tablish that the first condition for recognition is satisfied
if and only if

Z(l - ~k(yk,i))”” < CO.

Thus, Condition (ii) in the definition of k’k ensures that
RI, satisfies the first condition for recognition.

Since the two cases considered are exhaustive, we have
shown that the IIM Rrk recognizes (Ik, pk) w.p.o..

n := ();
u := xl);
to := 1;

s := 1;

u := nezt(zo, l~j;

while content(t~) G Wr~ do
begin {attempt at confirming v}

found := false;

for m := ltow–ldo
begin

n:=n+l;
if tn = u then found := true;

RI, (in ) := Ik

end;

n :=n+l;

if tn = u or u = X. then found := true;
if found then

begin {attempt succeeded}
Run the enumerator for vk
for n steps.
if pair (~k,s, ~~,$) iS output then

begin
u ~= Yk,s ;

w := ~k,,;

S:=S+l

end
else

begin
u := 20;
w :=

end

RI, (i,,) := Ik
end

else {attempt failed}
RIk (in) := O

end;
while true do

begin
n:=n+l;
l?~k(rn) != o

end.

1

Figure 2: The IIM RI, that recognizes (~k, pk) using vk

9
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Intuitively, Theorem 3 suggests that a window-based
IIM can succeed at learning a family w.p ,0. by exploit-
ing two different means for convergence to the right lan-
guage. on a teXt fOr (~~, pk ), Some SuperSet languages
of WIk are defeated because the strings in their weighted
tell-tale sets are not all contained in W~~. The remain-
ing ones are excluded in the following way. Suppose,
for some h >0, T’ ~ WI, C WI.. At least an infinite
number of strings in Tk have suitable weights ~h,s’s to
ensure that Rrh sets window sizes that, if the input dis-
tribution is Pk, will lead, W.P.O., to an infinite number
of failures in confirmation of Th.

In case the weighted tell-tale set Vk for (1~, pk) is such
that the set Tk is finite, then the IIM RI$ will not only
converge to lk w.p.o. but, in fact, it wdl converge to
lk on all texts (which of course includes stochastic in-
put according to any other distribution). If this is the
case for the entire family, the learner constructed from
the Uniform Recognize will learn each language in the
family on all texts.

6 Conclusion

In this paper, we defined a model of learning from
stochastic input and obtained a uniform learning algo-
rithm that works for every family of languages, under
appropriate probabilistic assumptions. The results in-
dicate that stochastic input provides a useful form of
‘indirect negative evidence’. Our development could be
particularly interesting in situations where it is more
plausible to assume some a priori knowledge of the in-
put distribution rather than that of the structure of the
family to be learned.

Our results in Section 5 have also opened a promising
territory for further investigation. One interesting ques-
tion is whether the learning capability of the window-
based IIMs can be characterized in terms of the ability
to enumerate weighted tell-tale sets.

Acknowledgements

The work of S. Kapur was supported in part by the
National Science Foundation grant IRI 90-16592, ARO
grant DAAL 03-89-C-0031, DARPA grant NOO014-90-J-
1863, and Ben Franklin grant 91 S.3078C-1. The work of
G. Bilardi was supported in part by the Italian Ministry
of University and Research and the National Research
Council of Italy.

References

[Ang80]

[Ang88]

[Ber85]

[Cla90]

[G0167]

[Hor69]

[Kap91]

[Kap92]

[KB91J

[Neu73]

[Pin84]

[vdMW78]

Dana Angluin. Inductive inference of formal
languages from positive data. Information

and Control, 45:1 17–135, 1980.

Dana Angluin. Identifying languages from
stochastic examples. Technical Report 614,
Yale University, March 1988.

Robert Berwick. The Acquisition of Syntac-

tic Knowledge. MIT press, Cambridge, MA,
1985.

Robin Clark. Papers on learnability and
natural selection. Technical Report 1, Uni-
versit~ de Gen&ve, D&partement de Linguis-
tique g~ndrale et de linguistique fran~aise,
Facult6 des Lettres, CH-1211, Gen&e 4,
1990. Technical Reports in Formal and
Computational Linguistics.

E. M. Gold. Language identification in the
limit. Information and Control, 10:447-474,

1967.

J. J. Horning. A Study of Grammatical In-

ference. PhD thesis, Stanford University,
1969.

Shyam Kapur. Computational Learning of

Languages. PhD thesis, Cornell University,
September 1991. Technical Report 91-1234.

Shyam Kapur. Some (potential) applica-
tions of formal learning theory results to
natural language acquisition. Presented at
a symposium at Cornell University on ‘Syn-
tactic Theory and First Language Acquisi-
tion: Cross Linguistic Perspectives’, April
1992.

Shyam Kapur and Gianfranco Bilardi. On
uniform learnability of language families.

Cornell University, 1991.

M. F. Neuts. Probability. Allyn and Bacon,
Boston, 1973.

Steve Pinker. Language Learnability and

Language Development. Harvard University
press, Cambridge, MA, 1984.

A. van der Mude and A. Walker. On the in-
ference of stochastic regular grammars. In-
formation and Control, 38:310-329, 1978.

310


