Linguistics 106, lecture notes
Finite State Languages, Regular Languages

18 July 2002

1 Finite State Automata

1.1 Basic definitions

Finite State Automaton A Finite State Automaton (FSA) is a group of five things: \((Q, \Sigma, \delta, q_0, \mathcal{F}) \), where:

1. \(Q \) is a finite set of objects called states.
2. \(\Sigma \) is a finite set of symbols, called the alphabet.
3. \(\delta \) is the transition function, a function which takes as input a pair \((q_i, \sigma) \) \((q_i \in Q, \sigma \in \Sigma)\), and outputs a state \(q_j \) \((q_j \in (Q))\)
4. \(q_0 \) is the unique start state, and \(q_0 \in Q \).
5. \(\mathcal{F} \) is the set of accept states, \(\mathcal{F} \subseteq Q \).

Reading a string An FSA \(M = \{Q_M, \Sigma_M, \delta_M, q_0, \mathcal{F}_M\} \) can read any string over \(\Sigma_M \). To read a string \(\omega = \omega_1 \ldots \omega_n \) is to do the following:

- Let \(r_0 = q_0 \).
- For each consecutive value of \(i, i = 0, 1, \ldots n \), calculate \(r_{i+1}, \) where:
 \[r_{i+1} = \delta_M(r_i, \omega_{i+1}) \]

Less formally: To read a string is to follow the path defined by the consecutive symbols of that string through the machine, starting with the first symbol and in the start state.

Accepting a string An FSA \(M \) accepts a string iff reading \(\omega \) leaves \(M \) in an accept state (i.e. if \(r_n \in \mathcal{F} \)).

\[1^\text{Thus to read a string is to calculate first } r_1 = \delta_M(q_0, \omega_1), \text{ then } r_2 = \delta_M(r_1, \omega_2), \text{ etc.} \]
Derivation An FSA M derives a string ω iff M accepts ω.

Language of the machine (L(M)) The set of all strings accepted (derived) by an FSA M is the **language** of M, $L(M)$.

Generation M generates the language $L(M)$.

Finite State Language (FSL) A language L is a **finite state language** iff there is an FSA which generates it.

The graphical representation of FSAs:

- FSAs are often represented as directed graphs, where:
 - Each states is a vertex of the graph,
 - The vertices are drawn as circles with their name (q_0, q_1, etc.) written in them.
 - Vertices that represent accept states are drawn as double circles, with their name written in them.
 - The edges of the graph are defined by δ. If $\delta(q_x, \sigma_i) = q_z$, then there is an edge (q_x, q_z).
 - The edges are labeled with symbols from Σ: If $\delta(q_x, \sigma_i) = q_z$, then the edge (q_x, q_y) is labeled σ_i.

- **Example:**

 Non-graphical definition of the machine:
 Let: $M_1 = \{Q_1 = \{q_0, q_1\}, \Sigma_1 = \{a, b\}, \delta_1, q_0, \mathcal{F} = \{q_1\}\}$

 $\begin{align*}
 \begin{array}{c|c}
 (q_x, \sigma_n) & \delta_1 (q_x, \sigma_n) \\
 \hline
 (q_0, a) & q_1 \\
 (q_0, b) & q_0 \\
 (q_1, a) & q_1 \\
 (q_1, b) & q_0 \\
 \end{array}
 \end{align*}$

 Graphical representation of M_1:

 ![Graphical representation of M_1](image)
1.2 Exercise in building FSAs

For each language L_n described in this section, present a deterministic FSA which generates that language.

1. $L_1 = \{ \omega \mid \omega = \epsilon, \text{or } \omega \text{ is just } a's, \text{or } \omega \text{ is just } b's \}$

2. $L_2 = \{ \text{the rednecks like frying squirrels, the hippies like flying squirrels } \}$
 (Assume: $\Sigma_2 = \{ \text{the, rednecks, hippies, like, flying, frying, squirrels } \}$. And in your labeling of the transitions in M_2, use “…” to mean ‘all other symbols’,)

3. $L_3 = \{ \text{the man is here, the men are here } \}$
 (Assume: $\Sigma_3 = \{ \text{the, man, men, is, are, here } \}$)

4. $L_4 = L_3$, plus man can be modified by old any number of times.

5. $L_5 = \{ \omega \in \{a,b\}^* \mid \omega = (bab)^* \}$

6. $L_7 = \{ \omega \in \{a,b\}^* \mid \omega = \ldots aba \ldots \}$

1.3 Exercises in interpreting FSAs

For each FSA M_n presented in this section, describe the language of $M_n(L(M_n))$.

1. M_5:

 ![Diagram](attachment:diagram.png)
2. M_9:

3. M_{10}:

4. M_{11}:

5. M_{12}:

2 Regular Grammars

2.1 Definition of grammar

- Grammars of rewrite rules provide another model for sets of strings (languages), besides automata.
• Formally, a grammar consists of:

 The terminal alphabet \((V_T) \): A set of symbols.
 The non-terminal alphabet \((V_N) \): A second, distinct set of symbols.
 The start symbol \((S) \): A distinguished element of the non-terminal alphabet.
 The rewrite rules \((R) \): A set of rules of the form: \(X \rightarrow Y \), where: \(X \) and \(Y \) are strings over the union of the terminal and non-terminal alphabets; and in at least one rule, the left-hand side of the rule \((X) \) is the start symbol.
 The meaning of a rewrite rule \(X \rightarrow Y \) is: “\(X \) can be rewritten as \(Y \).”

• A grammar \(G \) represents a language \(L \) by deriving the strings in \(L \), its sentences.

 Derivation Grammar \(G \) derives the string \(\omega \) iff the start symbol \(S \) can be rewritten as \(\omega \) through some application of rewrite rules of \(G \).

• The set of all strings derivable by grammar \(G \) is the language of \(G \), \(L(G) \). We will say that a grammar generates language.

Example: Let \(G_0 \) be specified as follows:

 terminal alphabet: \(V_T = \{a, b\} \)
 non-terminal alphabet: \(V_N = \{S, A, B\} \)
 start symbol: \(S = S \)

 set of rewrite rules = \[
 \{ S \rightarrow aB \\
 S \rightarrow bA \\
 A \rightarrow aB \\
 B \rightarrow bA \\
 A \rightarrow a \\
 B \rightarrow b \}
 \]
Sample derivations in G_0:

- $S \rightarrow bA$ (Rule: $S \rightarrow bA$)
- $abA \rightarrow baB$ (Rule: $B \rightarrow bA$)
- $aba \rightarrow baba$ (Rule: $A \rightarrow aB$)
- $babab \rightarrow (Rule: B \rightarrow b)$

The same derivations in tree form, a form we will often use:

- $S \rightarrow aB \rightarrow bA \rightarrow aB \rightarrow bA \rightarrow aB \rightarrow b$ (Rule: $S \rightarrow bA$)
- $S \rightarrow bA \rightarrow baB \rightarrow baba$ (Rule: $A \rightarrow aB$)
- $S \rightarrow bA \rightarrow baB \rightarrow baba$ (Rule: $A \rightarrow aB$)
- $S \rightarrow bA \rightarrow baB \rightarrow baba$ (Rule: $B \rightarrow b$)

Question: How would you characterize the language generated by G_0?

2.2 Definition of Regular Grammar

Regular Grammar Any grammar each of whose rules has the following three properties:

1. The lefthand side is a **single non-terminal symbol**.
2. The righthand side includes at most a **single non-terminal symbol**.
3. The righthand side includes a **single terminal symbol**.

- Thus any rule in a Regular Grammar (RG) will have one of the following shapes, where X and Y are single non-terminals, and σ is a single terminal:

 - $X \rightarrow \sigma$
 - $X \rightarrow \sigma Y$

Example: The grammar G_0 defined above is a Regular Grammar.

Regular Language (RL) Any language which can be generated by a Regular Grammar.
• Interesting equivalence: Any RL is an FSL, and any FSL is an RL.

• This equivalence can be proven by showing that: (i) for any FSA with language L, there is a Regular Grammar with language L; and (ii) for any RG with language L, there is an FSA with language L.

A suggestion of how such a proof would proceed is given below, in the two tables.

Given an FSA/RG as specified in the left column, define an RG/FSA as specified in the right column. The resulting RG/FSA will generate the same language as the input FSA/RG—though we will not prove that here,

<table>
<thead>
<tr>
<th>Given FSA</th>
<th>Constructed RG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabet = Σ</td>
<td>Terminals = Σ</td>
</tr>
<tr>
<td>States $\equiv \mathcal{Q}$</td>
<td>Non-terminals = \mathcal{Q}</td>
</tr>
<tr>
<td>Start state = q_0</td>
<td>Start symbol = q_0</td>
</tr>
</tbody>
</table>

| Transitions $\equiv \delta(q_i, \sigma) = q_k$ | Rewrite rules $\equiv q_i \rightarrow \sigma q_k$ |
| $\delta(q_i, \sigma) = q_k$, and $q_k \in \mathcal{F}$ | $q_i \rightarrow \sigma$ |

<table>
<thead>
<tr>
<th>Given RG</th>
<th>Constructed NFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminals = V_T</td>
<td>Alphabet = V_T</td>
</tr>
<tr>
<td>Start symbol = S</td>
<td>Start state = S</td>
</tr>
</tbody>
</table>

| Rewrite rules $\equiv X \rightarrow \sigma Y$ | Transitions $\equiv \delta(X, \sigma) = Y$ |
| $X \rightarrow \sigma$ | $\delta(X, \sigma) = Z$, and $Z \in \mathcal{F}$ |

| Accept states \equiv The set all Z's, Z defined as above. | |

Non-terminals = V_N Non-terminals = $V_N \cup \mathcal{F}$

2.3 Exercises in designing RGs

For each language L_n in this section, give a Regular Grammar G that generates L_n, $L(G) = L_n$.

1. $L_1 = \{ \omega \mid \omega = \epsilon, \text{ or } \omega \text{ is just a's, or } \omega \text{ is just b's } \}$

7
2. $L_3 = \{ \text{the man is here, the men are here} \}$

3. $L_6 = \{ \omega \in \{a, b\}^* | \omega \text{ starts and ends either with } bb \text{ or with } aa \}$

4. $L_7 = \{ \omega \in \{a, b\}^* | \omega = \ldots aba \ldots \}$

3 Regular Expressions

- We can concisely describe any regular language with a regular expression. A regular expression is a compact abstraction of every string in a regular language.
- A regular expression is built with some alphabet Σ, and three operations:
 - Concatenation (\circ): $a \circ b = ab$
 - Union (\cup): $a \cup b = \{a \cup b\}$
 - Kleene Star (\ast): $x^* = \{x^\ast | \text{x is any string, including } \epsilon, \epsilon x \}$
- We can also abbreviate a sequence of n X's as: X^n. For example: $aaaa = a^4$.
- Examples:
 - $L_1 = \{ \epsilon, 1, 11, 111, 1111, \ldots \}$
 - $L_2 = \{ 0, 1 \}$
 - $(ab)^n \circ (ba)^m$ $= (ab)^n(ba)^m = \{ab, ba, abba, abbbba, abbbba, \ldots \}$
 - $0^* \circ 1^* = 0^*1^* = \{\omega | \omega \text{ begins with any number of } 0\text{'s, followed by any number of } 1\text{'s} \}$
 - $(0 \cup 1)^* = \{ \epsilon \text{ all possible strings of } 1\text{'s and } 0\text{'s, in any order, including } \epsilon \}$
 - $\epsilon \cup (a \circ b) = \epsilon \cup ab^* = \{\epsilon, a, ab, abbb, \ldots \}$
 - $bab(10110)^*aba = \{ bababa, bab101aba, bab101101aba, bab1aba, bab110111aba, bab1111011011101aba, \ldots \}$