Notes on Signal Processing for Linguistics 520

Mark Liberman

October 11, 1998

1 Linearity and Convolution

The aim of this section is clarify the meaning of the phrase: “The effect of
any linear, shift-invariant system on an arbitrary input sequence is obtained
by convolving the input sequence with the response of the system to a unit
impulse.”

To get an idea of what this might be good for, consider some things in the
real world that can be successfully modeled as linear shift-invariant systems:

Input System Output

laryngeal buzz vocal tract resonances vowel sound

noisy recording noise-rejection filter less noisy recording
signal graphic equalizer modified signal
signal Dolby encoding Dolby-encoded signal
Dolby-encoded signal Dolby decoding original signal

sound source room acoustics reverberant sound

Most of the effort is simply definitional—you have to learn the meaning of
technical terms such as “linear,” “convolve,” and so forth. We will also introduce
some convenient mathematical notation. Beyond definitions and notation, only
some easy high-school-level algebra is required; however, the resulting concept
is a powerful one that will enable you to understand quite a bit about digital
filtering and speech synthesis.

For mathematical convenience, we treat a digital signal s as an infinitely-long
sequence of numbers. We can adapt the mathematical fiction of infinity to
everyday finite reality by assuming that all signal values are zero outside of
some finite-length sub-sequence. The positions in one of these infinitely-long
sequences of numbers are indexed by integers, so that we take s(n) to mean
“the nth number in sequence s,” usually called “s of n” for short. Sometimes

we will alternatively use s(n) to refer to the entire sequence s, by thinking of n
as a free variable.

We will let an index like n range over negative as well as positive integers, and
also zero. Thus
s={s(n)},—oco0 <n < o0,

where the curly braces are a notation meaning “set,” so that the whole expres-
sion means “the set of numbers s(n) where n takes on all values from minus
infinity to infinity.”

We will refer to the individual numbers in a sequence s as elements or samples.
The word sample comes from the fact that we usually think of these sequences
as discretely-sampled versions of continuous functions, such as the result of
sampling an acoustic waveform some finite number of times a second, but in fact
nothing that is presented in this section depends on a sequence being anything
other than an ordered set of numbers.

The unit impulse or unit sample sequence, written 0(n), is a sequence that is
one at sample point zero, and zero everywhere else:

6(n):{ 1 ifn=0

0 otherwise

The Greek capital sigma, Y, pronounced sum, is used as a notation for adding
up a set of numbers, typically by having some variable take on a specified set
of values. Thus

i=1
is shorthand for
1+24+3+4+5

and

is shorthand for

f(@o) + f(z1) + f(22) + f(3).

The Y notation is particularly helpful in dealing with sums over sequences, in
the sense of sequence used in this section, as in the following simple example.
The unit step sequence, written u(n), is a sequence that is zero at all sample
points less than zero, and 1 at all sample points greater than or equal to zero:

(n) = 0 ifn<O
Y11 ifn>0

The unit step sequence can also be obtained as a cumulative sum of the unit
impulse:

u(n) = Z o(k)

k=—o00

Up to n = —1 the sum will be 0, since all the values of d(n) for negative n are
0; at » = 0 the cumulative sum jumps to 1, since 6(0) = 1; and the cumulative
sumn stays at 1 for all values of n greater than 0, since all the rest of the values
of §(n) are 0 again.

This is not a particularly impressive use of the) notation, but it should help
you to understand that it can be perfectly sensible to talk about infinite sums.
Note that we can also express the relationship between u(n) and §(n) in the
other direction:

o(n) =u(n) —u(n —1).

In general, it is useful to talk about applying the ordinary operations of arith-
metic to sequences. Thus we can write the product of sequences = and y as xy,
meaning the sequence made up of the products of the corresponding elements:

{z(n)y(n)}.

Likewise the sum of sequences z and y can be written = + y, meaning

{z(n) +y(n)}.

A sequence z can be multiplied by a scalar «, with the meaning that each
element of z is individually so multiplied:

az = {azx(n)}.
Finally, a sequence may be shifted by any integer number of sample points:
y(n) = z(n — ng)for ny an integer.

We already used this notation when we expressed the unit impulse sequence in
terms of the unit step sequence, as the difference between a given sample and
the immediately previous sample.

Any sequence can be expressed as a sum of scaled and shifted unit samples.
Conceptually, this is trivial: we just make, for each sample of the original se-
quence, a new sequence whose sole non-zero member is that chosen sample, and
we add up all these single-sample sequences to make up the original sequence.
Each of these single-sample sequences (really, each sequence contains infinitely
many samples, but only one of them is non-zero) can in turn be represented as

a unit impulse (a sample of value 1 located at point 0) scaled by the appropriate
value and shifted to the appropriate place. In mathematical language, this is

oo

z(n) = > z(k)s(n —k) (1)

k=—o0

where k is a variable that picks out each of the original samples, uses its value to
scale the unit impulse, and then shifts the result to the position of the selected
sample.

This no doubt seems like a lot of trouble to go to, just to get back the same
sequence that we originally started with, but in fact, we will very shortly be
able to use equation 1 to perform a marvelous trick, so make sure that you
understand it.

A system or transform T maps an input sequence x(n) onto an output sequence
y(n):
y(n) =T[z(n)] (2)

Thus such a system or transform is a function from sequences to sequences.

Systems or transforms come in a wide variety of types. One important class
is known as linear systems. We already encountered the concept of linearity
in discussing the propagation of sound waves: the linear propagation of sound
in air means that the principle of superposition applies, so that the pressure
disturbance resulting from two sounds propagating through the same region
is just the sum of the pressure disturbances corresponding to the individual
sounds. Linearity means the same thing as applied to sequences. We can express
it mathematically like this:

Tlaxy + Bxs] = aT'[x1] + BT [2] (3)

Now we replace the expression z(n) in 2 with the re-expression of z(n) found

in 1 to obtain:
o0

y(n) =T[Y a(k)d(n— k)] (4)

k=—o00

That is, the sequence consisting of just sample k from z can be rewritten as
x(k)o(n — k), our old friend the unit impulse scaled to the value of x(k) and
shifted to position k. The response of system 7" to this sequence is just

Tla(k)o(n — k)],

and by linearity we can pull the constant (for this single sample) multiplier z(k)
outside of T, giving us

z(k)T[6(n — k)] (5)

as the response of T to a sequence whose only non-zero value is given by (k).

The original sequence z can be re-expressed as the sum of all of its individual
sample values; by linearity, this lets us express T'[z] as the sum over all samples
of the response of T to a sequence consisting of only the given sample; this
response is specified for a particular sample £ by equation 5, and so make up
the reponse to the original input, we just need to sum equation 5 over all k,

which is:
oo

yim) = S w(K)T[5(n — k) (6)
k=—00

Equation 6 has an extraordinary property—it represents the response of system
T to an arbitrary input sequence x without applying 7" to the input z at alll The
only thing T operates on is the set of shifted unit impulses, which is independent
of x. Having once applied T' to the shifted unit impulses, we can calculate
T[z] for arbitrary just by doing the multiplications and additions specified in
equation 6.

However, there is one annoyance — we still must calculate T'[6(n — k)] for every
shift k. This would be unnecessary if the response of T' to a shifted input was
just an output shifted by the same amount. This property, which is called shift
invariance, holds of many interesting systems. For example, if we put a certain
test signal into an acoustic resonator, and then put the same test signal into the
same resonator 20 seconds later, we would expect the output to be the same,
just shifted in time by the same twenty seconds as the input (as long as the
resonator hasn’t changed in the meantime).

In mathematical language, a system 7' is shift-invariant if and only if
y(n) =T[z(n)] implies y(n—k)=T[z(n —k)]. (7)

Thus if we write h(n) for the response of T' to the unshifted unit impulse 6(n),
then if T is shift-invariant, the response of T' to a unit impulse shifted by k is
just h(n — k):

h(n) =T[d(n)] implies h(n—k)=T[d(n —k)]. (8)

Thus if T is shift-invariant as well as linear, we can re-write equation 6 as
o]
y(n) = Y x(k)h(n - k). (9)
k=—o0

Notice what this means: for any linear shift-invariant system 7', once we have
calculated its impulse reponse h(n) (its response to a unit impulse at sample
point 0), we can forget about T entirely, and just add up scaled and shifted
copies of h(n) to calculate the response of T' to any input whatsoever. Thus any
linear shift-invariant system is completely characterized by its impulse response

h(n).

1.1 Convolution

The way of combining two sequences specified by equation 9 is known as con-
volution. For any two sequences x and y, there will be another sequence w
obtained by convolving x with y, following the equation

o0

w(n) = Y w(n)y(n - k) = z(n) xy(n).

k=—o00

The following things are true for convolution in general, as you should be able
to verify for yourself by some algebraic manipulation:

z(n) *y(n) = y(n) * z(n) commutative
(w(n) * z(n)) xy(n) = w(n) * (z(n) *y(n)) associative (10)
z(n) *y(n) + w(n) *y(n) = (z(n) + w(n)) *y(n) distributive

