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1 Why Acoustics?

Acoustics is a branch of physics, and can be given only a quick overview in this
course. Anyone serious about a career in phonetics should study acoustics in
a more rigorous way than we can manage here. Our treatment of the subject
will be spread out in time { we'll return to it throughout the course { but the
course will begin with a lecture and a lab session devoted to acoustics.

This course is intended to serve the needs of someone who wants to use phonetic
evidence in research on language and its use. As such a person, you need to
learn enough acoustics for three purposes.

First, you should be able to engage in plausible, intuitive, semi-quantitative
reasoning about the acoustic consequences of speech articulations, room acous-
tics, recording and transmission characteristics, etc.. Likewise, you will need to
speculate intelligently about the physical cause of an observed acoustic e�ect.
For instance, what e�ect is smiling likely to have on vowel formant frequencies?
What are the likely acoustic correlates of pharyngeal constriction? What causes
the lowered �rst formant in the vowels that follow Javanese \heavy" consonants?
It is possible to discuss these questions in an informed way without being able
to manipulate the equations for even a simple model of the human vocal tract.

Second, you need to be able to make an intelligent choice of options for acoustic
analysis and display, and you need to be able to make a sensible interpretation
of the results of such an analysis. For instance, how should you look for voice
pitch in a time waveform? How should you make a spectrogram in order to
see pitch-related phenomena for a very low-pitched voice? What does it mean
if the vertical pitch striations in the wide-band spectrogram of a high-pitched
voice seem to blur together, and simultaneously some regular horizontal bands
appear? Could a certain white patch on the spectrogram be due to room acous-
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tics? These questions also require at least a \cookbook" level of understanding
of acoustic signal processing, which in turn cannot be understood without some
elementary understanding of the acoustic physics that lies behind the signals
being processed.

Third, you need to understand how acoustic signals are processed in the pe-
ripheral auditory system, in order to have an informed opinion about the likely
perceptual signi�cance of articulatory and acoustic variation.

1.1 Use of Mathematics

Our treatment of acoustics will use simple mathematical formulae where they
are the best way to express the ideas in question. Certain other parts of the
course, especially the discussions of signal processing and of statistical analysis,
will similarly involve some mathematical formalism. If you have any trouble
with the mathematics used in these lecture notes, tutoring help is available on
request.

2 Sound and other waves

Most of this should be simple review for those who have had at least a high
school physics course, and can remember its contents. For others, I would
suggest some supplementary reading in a physics textbook.

Sound in air consists of longitudinal (or compressional) waves.

A wave is an inuence or disturbance that starts at some point and travels to
another point in a way that depends on the physical properties of the medium
through which it is transmitted, leaving the medium essentially unchanged.
Thus ocean waves do not transport water onto the shore, and sound waves do
not build up air in your ear.

In a longitudinal wave, the particles of the transmitting medium move in the
direction of the wave motion. Note that since the medium itself remains in
place, the particles must move back and forth.

There are many other kinds of waves. Solids carry not only longitudinal waves,
but also several kinds of transverse waves, in which particles move at right an-
gles to the direction of wave motion; these di�erent kinds of waves typically
travel independently at di�erent speeds. Shaking a stretched rope produces a
exural transverse wave; torsional transverse waves, in which a twisting dis-
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tubance propagates through a solid body, also exist. Electromagnetic waves act
like transverse waves propagating in a non-existent ether. Surface waves in deep
water have both longitudinal and transverse components, so that each particle
follows a circular path; breaking waves in shallow water are considerably more
complex.

Air is made up of molecules and atoms of various gases constantly ying around
in all directions, and a sound wave in air is a disturbance propagated by these
particles bumping into one another. Since very large numbers of particles are
involved (a cubic millimeter of air contains a million times more molecules than
there are people on earth), it's reasonable to treat air for acoustical purposes
as homogeneous, ignoring the details of the actual particles involved. The same
is true for other materials { when an acoustical explanation refers to a particle,
what is meant is just a small piece of such a homogeneous medium.

In fact, for sound as we know it to exist in a gas, we must be dealing with a
spatial scale that is large compared to the distance that individual molecules
typically travel before bumping into each other (the mean free path). This is
because to have the propagation of a disturbance in pressure that we know as
sound, we want an object to move against the air rapidly enough to compress
it, and we want this pressurized air to push on the air next to it, which is in
turn compressed, and so on. But if we have an area with a higher density of
molecules next to an area with a lower density of molecules, the molecules will
move out of the region of higher density so as to equalize the di�erence. If this
is able to happen, the densities and pressures will equalize, and there will be
no pattern left to propagate. In order to get sound, the molecules rushing out
of the area of higher density must bump into the molecules in the area of lower
density and transfer momentum to them.

2.1 Units of Pressure

There are two di�erent sets of units in use in scienti�c measurement: the SI

system and the CGS system. Since you may encounter both in your reading,
you have to learn both. The most important thing, though, is to learn the basic
de�nitional nature of the quantities involved, which is to say, the way that they
are de�ned in terms of other quantities. Thus pressure is a measure of force per
unit area.

Since (in the SI system) force is measured in newtons, and area in square me-
ters, pressure is measured in newtons per square meter, N=m2. A newton is
one kg m=s2 (remember, by Newton's Second Law, force equals mass times ac-
celeration. Since the acceleration of the earth's gravity at its surface is about
9.81 m=s2, a one kilogram mass sitting on a table presses down with a force of
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about 9.81 newtons (confusingly enough).

The unit of force in the CGS system, the dyne, is 10�5 newtons.

One pascal (abbreviated Pa) is one N=m2. One bar (or 1000 millibars) is
105 N=m2.

Normal atmospheric pressure (\one atmosphere") is almost the same: 1 atm is
1.0133 bars. This is a static pressure | at time scales involved in analyzing
sound, it doesn't change.

The pressure variations in air caused by sound wave at comfortable listening
levels range from about .01 to 1 N=m2, or 10�7 to 10�5 atmospheres (atm.).
The instantaneous sound pressure is the total instantaneous pressure minus the
static pressure. The e�ective sound pressure is the root mean square of the
instantaneous pressure over an appropriate time.

2.2 The Speed of Sound

Sound propagates at a speed that depends on an inertial property of its medium
(how hard you have to push to get a bit of the medium to move) and also on an
elastic property of its medium (to what extent a bit of the medium passes a push
onto the next bit, instead of compressing in on itself). The inertial property
is just the volume density �, that is, the mass per unit volume. The elastic
property is known as the bulk modulus B, de�ned as the ratio of a change in
pressure �p to the corresponding fractional change in volume �V=V , with a
minus sign to make B a positive quantity:

B = �
�p
�V
V

For conditions in which the disturbance passes rapidly enough that no heat
transfer takes place from one part of the medium to another (adiabatic condi-
tions), the speed of sound v is then given by the equation

v =

s
B

�

The speed of sound in a number of media is given in the following table:
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Material Temperature (C) Speed (m=s)

Air 0 331
Air 20 343
Helium 0 965
Hydrogen 0 1284
Carbon Dioxide 0 258
Water 0 1402
Water 20 1482
Seawater (3.5% salinity) 20 1522
Methyl Alcohol 0 1130
Aluminum | 6420
Steel | 5941
Granite | 6000
Brass | 3480
Lead | 1210
Glass | 3700-5000

The speed of sound in a gas is unchanged by a change in pressure, since B and
� are increased in the same proportion by an increase in pressure.

However, an increase in temperature causes an increase in the speed of sound
in a gas, since the gas expands and its density is decreased; over the range of
temperatures humans live in, the speed of sound in air increases by about .6m=s
for each degree centigrade, so that if t is the temperature in degrees centigrade,
the speed of sound in dry air is approximately given by the equation

v = 331+ :6t m=s

2.3 Derivation of the speed of sound from Newton's sec-
ond law

In 1687, Newton tried to derive the speed of sound in air from three sets of
elementary philosophical principles, namely the principle of the conservation of
mass, the law that force equals mass times acceleration, and the law relating
pressure, temperature and volume for an ideal gas. Even today, we should be
able to sense the breathtaking audacity of this e�ort, and our admiration is, in
a sense, only increased by the fact that Newton got it wrong.

Consider the assumptions that he started with: matter is neither created nor
destroyed; force is the product of mass and acceleration; the volume of a gas is
inversely related to its pressure, if temperature is held constant. From only these
assumptions and no others, he derived the equations governing the propagation
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of sound, and predicted the speed of sound.

The form of his argument was essentially valid, but he assumed that the prop-
agation of sound was isothermal, i.e. that the temperature of the conducting
medium remained constant. In the large, this is true; if we ignore the dissipation
of energy through frictional losses, as Newton did, the passage of an idealized
sound wave through an idealized compressible medium leaves the same temper-
ature behind that prevailed before. However, the compressions and rarefactions
that represent (even lossless) passage of sound through air occur too rapidly
for any signi�cant amount of equalization of temperature to take place between
the regions of temporarily higher pressure and the regions of temporarily lower
pressure. This state of a�airs, which is called adiabatic, was not recognized until
1807, when Laplace �gured it out.

With Newton's (incorrect) assumption of isothermal conduction, the speed of
sound in a compressible medium turns out to be simply (if incorrectly)

v =

s
P

�

where P is the static pressure of the medium and � is its static density. For
air at standard temperature and pressure, P is 1:0135� 1 �5 N=m2, and � is
1:2933kg=m3, so this gives a value of 279.95 m=sec for the speed of sound. This
is about 16% less than the true value of 331 m=sec.

Can you think of an experiment that Newton might have conducted, in 1687,
that would have determined the speed of sound in air with greater accuracy
than this?

The extraordinary thing is that Laplace's correction of Newton's argument|
which remains a breathtakingly simple argument from the most fundamental
principles, applied to a ruthlessly simple model of what sound is and how it
propagates|does produce values quite close to experimental observation.

2.4 Linearity I

Sound waves in air have the property that they travel at the same speed regard-
less of the shape or time course of the disturbance involved; especially, sounds
of di�erent pitches travel at the same speed. Another way of saying this is that
air is a nondispersive medium.

As a result, the propagation of sound waves in air is quite simple. In the
simplest case, that of a plane wave, if we consider the pattern of pressure in
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time along a single dimension x, then if some feature of the pattern is at point
x1 at time t1, at a later time t2 = t1 +�t the same feature will be at the point
x2 = x1 + v (�t), and the pattern of pressure around the point x2 at t2 will
be identical to the pattern around x1 at t1. In such a case, the wave equation
is linear, which means that the principle of superposition holds, with various
nice results. Linearly-propagating sound waves from multiple sources simply
add, so that if one sound can be described as p = f(x; t) and a second sound
can be described as p = g(x; t), then the two sounds together make the pattern
p = f(x; t)+ g(x; t). By the same token, sounds traveling in di�erent directions
pass through one another without being changed; and more. Actual sound waves
are generally spherical waves, which decay in amplitude according to an inverse
square law as they radiate out from their source; but their propagation remains
linear. If we consider a small piece of a spherical sound wave some distance
from its source, we can approximate it pretty well over a short distance as a
plane wave. In a tube-like structure such as the human vocal tract, for sound
patterns whose spatial extent is large compared to the diameter of the tube, a
model based on plane waves also gives a pretty good approximation.

2.5 Periodic waves: frequency, period and wavelength

Some sound waves are (at least approximately) periodic { that is, their time-
varying pattern of variation in pressure repeats itself after a certain time, over
and over again. The repetition time of a periodic sound wave is called its period.
A one-dimensional periodic wave p = f(x; t) with a period � , examined over the
spatial dimension x at times t1, t1+� , t1+2� , t1+3� etc. will thus show exactly
the same spatial pattern. In fact, for any integer n, the pattern f(x; t1 + n� )
will always be the same. Another way to say the same thing is that a certain
point in the spatial pattern of the wave (say a pressure maximum) will pass a
given point in space every � seconds.

Instead of the period � , which is the time between repetitions, we can equiva-
lently talk about the frequency f , which is the number of repetitions per second.
Obviously

f =
1

�
by de�nition.

Due to the previously-mentioned linearity of propagation, the pattern of a pe-
riodic wave p = f(x; t) also repeats itself exactly in space. At a �xed time, if
we start at point x1 and look along the x dimension a distance v� , where v is
the speed of sound and � is the period of the wave, we will �nd the point that
used to be at x1 at a time � seconds earlier, which by de�nition has an identi-
cal value. Thus for any integer n, the time-varying pattern f(x1 + nv�; t) will
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always be the same. The wave's interval of repetition in the spatial dimension,
v� , is called its wavelength, and is usually represented as �. Thus de�nitionally

� = v�

and
� =

v

f

for wavelength �, speed of sound v, period � , and frequency f .

2.6 Pressure and particle velocity

2.7 Sound intensity and power

If p is sound pressure, � is air density, particle velocity is u, particle displacement
is d, and c is the speed of sound, then

p = �cu

and (incidentally)

d =
u

2�f
:

For a plane wave, the intensity or sound power I is

I = pu =
p2

�c
= �cu2:

As a measure of power per unit area, sound intensity can be denominated in
watts per square meter. This brings up the fact that to create and propagate
sound, a disturbance in a physical medium, involves the expenditure and trans-
mission of energy. The process by which energy is carried away from a sound
source through a medium is called radiation. A large orchestra playing at maxi-
mum volume radiates about 60 or 70 watts of sound power; a piano can produce
about half a watt.

Under conditions in which sound waves radiate from their source in an expanding
spherical shell, the power per unit area at a distance R of a source radiating P
watts of acoustic power is

I =
P

4�R2
:

Therefore the sound intensity measured at a distance of 5 meters from a source
radiating one acoustic watt of power is

I =
1

4�52
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or about .003 watts per square meter. Note however that inverse-square-law
conditions are rarely found, due to directional radiation, reections from obsta-
cles, etc.

Because sound intensities (as well as sound pressures and other such measures)
vary so widely, it is normallymore useful to treat them on a logarithmic scale as
intensity levels. Thus we measure sound intensity level (SL) in decibels or dB,
de�ned as 10 log10 of the ratio of the sound intensity to some reference level.
Note that a bel is a dimensionless unit that is simply the log to the base 10 of
an arbitrary intensity ratio, with the factor of 10 coming along with the metric
pre�x deci-. Thus we can use dB to measure levels of voltage or luminance or
pressure or any other quantity, as long as we de�ne a suitable reference level,
and modify the equation as needed to be sure that we dealing with a ratio of
intensities (where intensity is power per unit area).

The usual reference level for sound intensity is 10�12 watts per meter squared.
Thus .003 watts per meter squared would be a sound intensity level IL of

IL = 10 log10(
:003

10�10
) = 94:77 dB

If we are dealing with ratios of currents, voltages, pressures, volume currents,
forces, particle velocities etc., which are square roots of power, then intensity
level in dB becomes 20 log10 of the ratio of these quantities, the additional factor
of 2 outside the log serving to square the quantity whose log is being taken.

The reference level for sound pressure is 2(10)�5 N=m2.

Recall that the e�ective sound pressure is the RMS of the instantaneous sound

pressure over an appropriate time.

2.8 Mathematical description of a plane wave

We consider a plane sound wave, for instance a wave traveling through a long
tube �lled with air. The variable x will represent position along the length of
this tube, and the variable t will represent time. Because it is a plane wave, we
are assuming that the state of compression or rarefaction of the air in the tube at
a given value of x is the same regardless of whether it is measured in the middle
of the tube or close to the walls; in other words, the wave is one dimensional,
in the sense that the pressure varies only as a function of the single spatial
variable x, with no variation occuring in the other two dimensions of space. In
fact, we call it a plane wave because the wavefront | the traveling region of air
compressed to an equal degree { is modeled as a plane moving down the tube.
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(A geometric at surface, not an aircraft!) This idealization is not in fact likely
to be true in the real world, but it simpli�es the mathematics considerably; in
addition, as long as we are dealing with wavelengths that are large compared
with the width of the tube, a one-dimensional model will match experimental
observation quite well.

As another simplifying idealization, we imagine that the wave propagates to
in�nity without any change | needless to say, real waves die out gradually due
to losses of various sorts, even if they are not changed more abruptly by running
into something (like the end of the tube!).

Let a \particle" of air at position x have a time-varying longitudinal displace-
ment

d = dmax cos(kx� !t) (1)

Since the cosine function 1 varies between 1 and �1, the maximumdisplacement
value dmax will scale the displacement to the speci�ed value. The variable k is
a way of de�ning the scale of the x dimension. We can see its e�ect clearly by
setting t = 0, in which case equation 1 becomes d = dmax cos(kx), and k speci�es
how many complete periods of the wave will occur in each 2� of distance along
the dimension x. Thus k times the wavelength � equals 2�, and

� =
2�

k

The constant k is known as the angular wave number, and its units are radians

per meter. It is sometimes convenient to refer to the wave number of a wave,
symbolized �, and giving the number of wave periods per unit length:

� =
1

�
=

k

2�

In order to understand the meaning of the constant ! in equation 1, set the
spatial variable x to 0, which turns the equation into d = dmax cos(�!t). Since
the cosine function is symmetrical around zero, we can eliminate the minus sign,
giving us d = dmax cos(!t). This equation shows us the variation of displacement
over time of the \particle" of air at position x = 0. We can see that ! is scaling
the wave pattern in time just as k scaled it in space | ! speci�es how many
complete periods of the wave will occur per 2� seconds of time, and is therefore
known as angular frequency, denominated in units of radians per second. Again,
! multiplied by the period � equals 2�, and so

� =
2�

!
1Later in the course, we will see why it is a good idea to use represent waves using sine

and cosine functions as primitive \building blocks." Meanwhile, you need an intuitive under-

standing of the basic nature of these functions.
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and the frequency f is given by

f =
!

2�

Note that the information provided by k and omega about the wave's scale in
space and time is equivalent to (in the sense of being interde�nable with) the
information provided by knowledge of frequency and wavelength, or frequency
and the speed of wave propagation, or whatever. Thus the speed of wave prop-
agation can be expressed as

c =
!

k
=

�

�
= �f

We can derive this from simple consideration of the de�nitions of the quantities
involved; but there is another important way to look at the derivation of a
velocity from equation 1. The value de�ned by equation 1 is determined by the
value inside the cosine function, so that we can de�ne the values of x and t for
which the wave displacement has a particular characteristic, say a maximum or
a minimum, in terms of some constant value of the expression kx�!t. To look
at how the wave evolves in time, we can track the motion of our chosen feature
as we change t by a small amount, just by adjusting x so as to keep kx � !t
constant. The amount of change in x per unit change in t that we have to make
in order to maintain kx� !t at some constant value (call it M ) is clearly just
a de�nition of the velocity at which the wave moves in the x dimension. The
limit of �x=�t for kx � !t = M , as �t gets smaller and smaller, is just the
derivative of kx� !t = M , which is

k
dx

dt
� ! = 0;

so that
dx

dt
=

!

k

Even without this simple application of calculus, we can see that if we increase t
(thus increasing time) in the expression kx� !t, we will have to also increase x
in order to keep the expression constant, so that the wave is seen to be moving
in the direction of increasing x.

What should we do to equation 1 to get the wave to move in the other direction,
so that if we follow a certain feature of the wave shape through time, the value of
spatial variable xwill be decreasing? Simple: we just replace kx�!twith kx+!t
| all the discussion of the meaning of k and ! remains basically unchanged,
but now if we increase t by a little bit, we will need to decrease x in order to
keep kx+ !t at a constant value. The time derivative now becomes

dx

dt
= �

!

k
;
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with the negative velocity representing motion at the same speed as before, but
in the direction of decreasing x.

2.8.1 Sound pressure and displacement

All of the previous discussion of the equation for a one-dimensional sound wave
was expressed in terms of the displacement of a \particle" or small packet of
air. The expression for the corresponding sound pressure, that is the change in
pressure above and below the pressure prevailing in the absence of sound, is

�p = �pmax sin(kx� !t) (2)

Here �p is the sound pressure, �p
max

scales the maximum sound pressure, and
the meaning of k and ! is the essentially same as before. Likewise, the discussion
of velocity and direction of propagation is essentially the same.

Note that displacement and pressure variation are �
2
out of phase; that is, the

pressure variation is 1=4 wavelength ahead of the displacement variation, so that
sound pressure is zero when the displacement is at a maximum or minimum,
and vice versa. Intuitively, you can think of an air particle in a maximum
compression as standing still in the middle of its neighbors rushing in on it from
the two sides, and an air particle in a maximum rarefaction as standing still
while its neighbors rush away from it.

2.9 Standing waves

We have been discussing \traveling waves," the normal kind of sound waves
that propagate through a medium. Another common kind of sound wave is
a \standing wave," a periodic disturbance of a medium that remains �xed in
space even though it varies in time.

We learned that traveling sound waves arise because things|particles of the
medium|bump into each other, transmitting a disturbance through space at
a rate that depends on the density and elasticity of the medium. What about
standing waves? In general, they arise through the interaction|or \interference"|
of two or more traveling waves.

Here is a simple algebraic demonstration that two sine waves of equal frequency
and amplitude traveling in opposite directions produce a standing wave, that is,
a pattern which repeats periodically over time but does not propagate in space.

From the previous discussion, we know that a sine wave moving in the positive
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direction has an equation of the form

ypos = a sin(kx� !t);

while a sine wave moving in a negative direction has the form

yneg = a sin(kx+ !t):

In each case, the equation de�nes the value of instantaneous sound pressure as
a function of position x and time t. By the principle of superposition, the two
waves together simply add:

y = a sin(kx� !t) + a sin(kx+ !t) (3)

Since for all �, �

sin�+ sin � = 2 sin
1

2
(�+ �) cos

1

2
(�� �)

equation 3 can be rewritten as

y = 2a sin kx cos!t (4)

When x has the values 0, �, 2�, and so on, equation 4 will be zero no matter what
the value of t is. These x values de�ne points in space that are the (pressure)
nodes of the standing wave, the places where there is never any variation. When
x has the values �

2
, 3�

2
, and so on, equation 4 can have a value between �1 and

1, depending on the value of the cosine term, which oscillates in a way that
varies with time but does not depend on spatial position. These x values de�ne
the (pressure) antinodes of the standing wave, where the sound wave's pressure
varies with time between a maximum and a minimum value. Points near the
antinodes vary in the same way, but between smaller maximum and minimum
values, with the extremal values getting smaller and smaller as we move away
from a antinode and towards an node.

Note that sound pressure and (air-particle) displacement are \opposite" here.
Thus a node of the pressure standing wave, where there is no pressure variation
at all, will be an antinode of the displacement standing wave, where the air
particles are moving freely back and forth to the maxium extent. Similarly, an
antinode of the pressure standing wave, where the pressure is varying to the
maximum extent, will be a node of the displacement standing wave, with an air
particle at that point remaining �xed in space as its neighboring particles push
back and forth against it from both sides.
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2.10 Physical interpretation of standing waves

How could this situation|two sine waves of equal frequency and amplitude
tranveling in opposite directions|actually arise?

Well, we could try to set it up by installing two loudspeakers facing each other,
etc. This would work just �ne, but it is not a circumstance that often arises in
nature. For a commoner cause of standing waves (in fact one that is ubiquitous),
consider the reection of a sound wave from a hard surface like a wall.

If the reection were perfect, then an exact copy of the incident wave would be
reected back in the opposite direction, and we would have the basic standing
wave situation exactly. Real reections are not by any means perfect|some
of the wave's energy is always absorbed rather than being reected back|but
actually this does not change the situation very much. Suppose that the incident
wave is reected back with half of its original amplitude. Conceptually, we can
subdivide the incident wave in two equal parts, one of which will interact exactly
with the reection to produce a standing wave, while the other one is absorbed.
Thus we can describe the resulting situation as a standing wave with half the
amplitude of the incident wave, superimposed on a traveling wave, also with
half the amplitude.

In the physical world, reections of sounds waves in air occur everywhere, all the
time. Reections occur from \hard" surfaces|and human esh is hard enough
to generate pretty good relections of sound waves, a fact that is crucial to the
existence of speech as we know it. In most situations that we �nd ourselves in,
an acoustic disturbance will reect multiple times before it dies away completely.
If we have two reective surfaces facing each other, a sound may bounce back
and force between them quite a number of times.

All surfaces absorb at least a little bit of the energy of an incident sound waves,
and some energy is also lost through heating the medium of transmission, so we
must reject Chaucer's idea that sounds bounce around inde�nitely until they
�nd their way to a sort of acoustic valhalla. Still, appropriate con�gurations
of reective surfaces tend to set up standing waves that persist long enough to
have a noticeable e�ect. This is especially true if there is a persistent source
of acoustic energy to interact with the patterns of reection that produce a
standing wave.

As an aside, we should note that sound waves reect not only in circumstances
that create increased local pressure (such as collision with a hard surface) but
also in circumstance that create decreased local pressure (such an opening from
a smaller chamber into a larger one). You can see this most clearly if you
imagine holding onto a piston that can slide in a cylinder full of air: if you push
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in on the piston, you create an positive pressure that will propagate through
the air in the cylinder, while if you pull out on the piston, you create a negative
pressure that will also propagate through the air in the cylinder in the same
way.

2.11 Models of resonance

Standing waves set up by sound waves bouncing around in enclosed areas (like
the mouth!) are one kind of \resonance" phenomenon.

As an illustration of the concept of resonance, think about pushing someone
on a swing. The swing naturally wants to swing back and forth (\oscillate"
in more technical language) at a certain frequency, depending on how long the
rope is. If you push the swing, it starts to oscillate at this natural frequency.
If you push repeatedly and regularly, what happens depends on whether you
make your pushes in synchrony with the swing or not. If you push at the right
times, your pushes add energy to the swing, and it swings higher; if you push
at the wrong times, the swing loses energy to you, and it swings lower.

The swing is a particularly simple example of a resonating system. All physi-
cally oscillating systems have such natural patterns of oscillation, or resonances.
In most cases, a system has multiple resonances|multiple natural modes of os-
cillation, multiple ways that the system \wants" to oscillate. Usually (in fact
always for spatially-localized systems) these natural modes are quantized. Just
as in the case of the swing, input energy at one of the resonance frequencies
will be transferred e�ciently into oscillation of the system, while input energy
at other frequencies will not.

In some simple systems, we may be able to �gure out what the quantized reso-
nances will be, by considering properties of the corresponding standing waves.
For instance, consider the patterns of oscillation that can arise when we pluck
a stretched string. A local disturbance will propagate along the string, just like
a local disturbance propagates in air; that is, the string serves as the medium
for a wave. If the ends of the string are �xed, then the waves will reect back
from the ends|think about wiggling a rope that is tied to the wall at one end.

The result will be a set of standing waves on the string, patterns of motion that
vary in time but are �xed in space (with respect to position along the string, at
least). Where are the nodes and antinodes of these standing waves? We know
that the ends of the string are �xed in space, by hypothesis, and so these points
must be (displacement) nodes of the standing waves. In fact, this \boundary
condition" is all that we need to know: the possible modes of resonance of the
string are all and only the standing waves whose (displacement) nodes are at
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the ends.

The lowest (spatial) frequency (sinusoidal) standing wave meeting these bound-
ary conditions will be one in which the length of the string l is half of the
wavelength �, so that � = 2l. The next one will have l equal to one full
wavelength, so that � = l, and then l equal to one and one half wavelengths,
so that � = 2l

3
, and so on. The set of possible standing waves will thus have

wavelengths � = 2l
N
, for N = 1; 2; 3; 4; : : :. The corresponding frequencies will

be

f =
Nc

2l
; N = 1; 2; 3; 4; : : : (5)

Thus if the frequency of the standing wave with the largest wavelength (and
thus the lowest frequency) is f1, then the other standing waves will be at all
integer multiples of f1.

Note that these standing waves represent possible resonances or natural oscillation-
patterns of the string|which if any of them will actually be set in motion, and
to what extent, depends on how the string is plucked or otherwise excited.

2.11.1 Resonance in simple acoustic tubes

Consider the case of sound waves propagating inside a tube that is closed at
both ends. We assume that the ends reect sound waves, and so we know that
these patterns will be able to set up a standing wave pattern inside the tube.
What standing wave patterns are possible in this case?

We can make a very similar argument to the one made above for the string.
The closed ends of the tube are like the �xed ends of the string: the particles
of air at the ends cannot move, so these must be displacement nodes, and
therefore pressure antinodes. Thus the possible standing waves will be just like
those possible on the string: wavelengths � = 2l

N
, for N = 1; 2; 3; 4; : : :, or

frequencies f = Nc
2l
; N = 1; 2; 3; 4; : : :

A tube with both ends open ends up showing just the same pattern: here we
are relying on the \negative reection" caused by the opening of the ends of
the tube, and the ends must now be displacement antinodes. The wavelengths
of the possible standing waves will be just the same as the case in which both
ends are closed.

What if one end of the tube is open, and one is closed?
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In this case, the boundary conditions tell us that the possible standing waves
are those in which there is a displacement node at one end, and a displacement
antinode at the other end. Inspection of a sinewave plot shows us that the
longest-wavelength standing wave consistent with this condition will be one
whose wavelength is four times the length of the tube. The next will one whose
wavelength is 4=3 the length of the tube, and then 4=5. In general, the standing
waves in this case will have wavelengths

� =
4l

N
; N = 1; 3; 5; : : : (6)

and corresponding frequencies

f =
Nc

4l
; N = = 1; 3; 5; : : : (7)

As we will see later on, the human vocal tract is reasonably well modeled for
some purposes as an acoustic tube closed at one end and open at the other, so
that this last case is of particular interest.

3 Other Reading

You may �nd it helpful to read some sections of a college physics textbook, for
instance chapters 14, 17 18 of \Fundamentals of Physics," Halliday and Resnick,
1988.
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