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q Identity (f: w → w). Ex: abc → abc
q Reversal (f: w → wR). Ex: abc → cba
q Total Reduplication (f: w → ww). Ex: abc → abcabc
q Input-specified Reduplication (f: w@n → wwn). Ex:

• abc@ → abcabc
• abc@@ → abcabcabc
• abc@@@ → abcabcabcabc
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Discussion and Conclusion
The paper studies the capabilities of Recurrent-Neural-Network
sequence to sequence (RNN seq2seq) models in learning four
deterministic transduction tasks of varying complexity and that can
be described as learning alignments. Two main questions are:

Ø Question 1: how well do RNN seq2seq models generalize to
unseen in-distribution and out-of-distribution examples?

Ø Question 2: What are the possible factors that impact trained
models' generalization abilities?

Ex: 2-way FST for modelling Total Reduplication

RNN Seq2seq Models

v Generalization abilities: models tend to only learn a mapping 
that fits the training or in-distribution data, but not the underlying 
data generation functions 

v Attention: helps significantly, but does not solve the out-of-
distribution generalization problem

v Task complexity: Total reduplication > Identity > Reversal, 
attested only for attention-less models, but not input specified 
reduplication & attentional models

Ø RNN general formula: ht = f(ht-1, xt)
Ø RNN seq2seq architecture  

Ø Difference between FSTs and RNN seq2seq models:
• FSTs: read and write for every input symbol
• RNN seq2seq: read everything before writing anything

Ø Learning input-target alignments

v Aggregate full-sequence accuracy (%) with best results in bold

v Test/gen set full-sequence accuracy per input length

Ø Data
o Identical input sequences from all datasets across all tasks
o Input lengths 6-15 for train/dev/test, 1-5 & 16-30 for gen set. Four are disjoint.
o Test set: in-distribution examples; gen set: out-of-distribution examples

Ø Models

Experimental Setups

Complexity Hypothesis
Language recognition viewpoint 
• Reversal → w#wR (Context Free)
• Identity → w#w (Context Sensitive)
• Total Red → w#ww (Context Sensitive)
• Input-spec Red → w#wwn (>= Context Sensitive)

Increasing complexity under Chomsky Hierarchy

The results are better understood 
from complexity hierarchy 
of formal languages,
instead of that of string transduction

Future Works
Ø Experiments at a larger scale
ü A wider range of training and evaluation input lengths for all tasks
ü Worth further testing whether the proposed task complexity 

hierarchies apply for input-specified reduplication and attentional 
models with more proper experimental setups

Ø Models with other configurations 
ü Bidirectional encoder
ü Multi-layered RNNs in the encoder and decoder
ü Different variants of attention
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