Truncation in Lardil: A Maximal Length Restriction
Hope McManus (hope.mcmmanus@rutgers.edu)
Rutgers, The State University of New Jersey

Many languages require words to be at least a certain length (see [8] and many others). But rather little work has been done on maximal length restrictions: perhaps only [1-3]. Some languages require words to be no more than a foot or a foot plus a syllable (as in Czech: [1]). Truncation may occur to avoid a form that exceeds a language's maximal size restriction. In a stress system that includes the prosodic Markedness constraint PARSE-SYLLABLE (6) and the Faithfulness constraint MAX-V (3), the typology includes languages that show vowel deletion to avoid unparsed syllables. Of those languages, some impose a further restriction of having at most one foot per word, and so the maximum length of any form is a binary foot (3σ → (σ σ σ)). I propose that in some languages, truncation may occur under this rubric even though it does not yield the maximum length, due to other principled restrictions: in particular, limitations on the amount and kind of deletion that takes place.

One of the most theoretically challenging cases of truncation is found in the nominal paradigm of Lardil [North Queensland, Australia] ([4]; see [5], [6], [7]). Unlike the more familiar type of truncation which yields a truncated form of a fixed size (e.g. Italian nickname formation [8] shows deletion down to a single binary trochee (2), regardless of the length of the base), truncation in Lardil nominals has been interpreted as the deletion of a fixed constituent: a single unlexicalized vowel. The nominative shows final vowel deletion in three-syllable forms and longer (1a-c) while two-syllable forms surface as is (1d), and augmentation occurs in forms less than two syllables (1e). Lardil has initial stress ([1] p. 29); here it is assumed that each word contains a trochee at the left edge followed by any number of unparsed syllables ((σ σ σ σ σ ...)).

(1) Schema Lardil Nominatives [4]
\[\text{a} \quad 5σ \rightarrow 4σ /\text{rel}vɪt\text{t}ɪt\text{a}/ [(\text{rel}.\text{v}ɪ.t).\text{t}ɪ.t_] \]
\[\text{b} \quad 4σ \rightarrow 3σ /\text{y}ɪ\text{li}yɪ\text{li}/ [(\text{y}ɪ.lɪ).\text{y}ɪ.l] \]
\[\text{c} \quad 3σ \rightarrow 2σ /\text{yalul}u/ [(\text{y}á.lu\.\.\text{l})] \]
\[\text{d} \quad 2σ \rightarrow 2σ /\text{w}ɪ\text{t}e/ [(\text{w}ɪ.t.e\.\.\text{n})] \]
\[\text{e} \quad 1σ \rightarrow 2σ /\text{wik}/ [(\text{w}i.k\.\.\text{a}\.\.\text{\.\.\text{n})}] \]

In the proposed analysis, Lardil shows a maximal word restriction: the targeted prosodic word shape is a single binary trochee with no unparsed syllables. I claim that truncation occurs to avoid a form that is longer than a binary trochee (with, independently, following [5], augmentation to avoid a subminimal unary foot). Crucially, in some forms, the target phonological shape is never reached: while final vowels may delete (3σ → 2σ: /\text{yalul}u/ [(\text{y}á.lu\.\.\text{l})]; non-final vowels may not (4σ → 2σ: /\text{y}ɪ\text{li}yɪ\text{li}/ *(\text{y}ɪ.lɪ\.\.\text{li}\.\.\text{n}).

In the analysis, the pattern of truncation and non-truncation in Lardil nominative forms results from an entirely standard special F » M » general F interaction. In forms that exceed the maximum length of a binary trochee—i.e. those that contain a string of unparsed syllables—unparsed syllables are avoided by deletion, since PS (6) dominates MX (3). Non-final vowels cannot delete, it is asserted, since PS (6) is dominated by a positional faithfulness constraint MX/NON-FINAL (4), proposed here, which penalizes the deletion of non-final vowels. In suffixed forms, MORPHREAL (7) above MX/NON-FIN predicts non-truncation in the stem. The result is that a familiar two-syllable restriction interacts with other ordinary constraints; this despite the fact that the language shows many words of 3, 4, or even 5 syllables.

The proposed Lardil analysis eliminates Prince and Smolensky’s (1993: 123) aberrant anti-faithfulness constraint FREE-V ‘assign a violation for each form where the final vowel is not deleted’, interpreting the phenomenon in terms of ordinary markedness-faithfulness interactions. This analysis resolves a long-standing theoretical anomaly: the intrusion of anti-faithfulness [14] into the lexical grammar.
Truncation in Lardil: A Maximal Length Restriction
Hope McManus (hope.mcmanus@rutgers.edu)
Rutgers, The State University of New Jersey

Appendix
1.1 Truncation in Lardil nominatives
1.1.1 Con
(3) **MAX-V (MX-V)**
Assign a violation for each input vowel that lacks an output vowel.

(4) **MAX-V/NON-FINAL (MX-V/NON-FINAL)**
Within a morphological word, assign a violation for each non-final vowel that lacks an output correspondent.

<table>
<thead>
<tr>
<th>Input: /kilau/</th>
<th>MAX-V/NON-FINAL</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) kil_u</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>☞ (b) kila_</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

(6) **PARSE-SYLLABLE (PS)**
Assign a violation for each syllable that does not belong to a foot.

(7) **MORPHREAL**
Assign a violation for each morpheme that does not have an overt exponent.

1.1.2 Ranking (calculation in OTWorkplace [14])

(8) *Portion of the ranking:* **MAX-V/NON-FINAL » PARSE-SYLL» MAX**
N.B. Not all constraints that are required for Lardil are in the tableau in (9). All candidates are equal on all constraints that dominate MAX-V/NON-FINAL.

(9) Ranking support:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1>3</td>
<td>yiliyili [(yi.li).yi] [yi.li]</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1>3</td>
<td>yalulu [(yá.lul.)] [(yá.lu.)lu]</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References