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Of the 58 papers published in volume 40 of Journal of Phonetics, 16 (28%) feature Voice Onset Time
(VOT) or related measurements, confirming that VOT remains a central concern in the field. However,
phoneticians’ VOT measurements generally continue to rely on human judgment, which requires significant
labor, makes even large laboratory experiments onerous, and prevents the field from taking full advantage
of the millions of hours of digital speech now becoming available. Consequently, we present an algorithm for
accurate automatic measurement of VOT and compare its measurements with those of humans for a series
of corpora.

At its core the VOT measurement process reduces to accurately locating two acoustic events in the stop
region: the initial burst of energy accompanying the stop release and the point at which voicing begins
for the following vowel. VOT, then, is just the duration of the interval spanning burst onset and voicing
onset. Underlying our algorithm is the intuition that both the stop burst and point of voicing onset should
be reflected as large positive peaks in the decision functions of classifiers trained to discriminate frames
immediately surrounding the relevant acoustic events from more distant frames. The measurement process,
then, becomes a simple exercise in signal processing and machine learning.

Specifically, the algorithm proceeds as follows. First, within the stop region (identified via forced-
alignment between the recording and its transcript) a series of acoustic features (log energy in the 0-8
kHz, 0-500 Hz, and 0-3 kHz bands, spectral entropy, and spectral centroid) is extracted every ms, yielding
a timeseries of feature vectors, which, along with its first and second differences, is then projected into scale
space (Witkin, 1984) via convolution with a series of gaussians. Following creation of this multiscale repre-
sentation, at each frame we evaluate the decision function of a support vector machine burst onset classifier
with radial basis function kernel1 trained on 1,774 stop bursts from the TIMIT training set and the time tb
of the largest positive peak in this decision function is recorded. We then evaluate the decision function of a
similarly trained voicing-onset classifier at each frame following the burst, recording the time of its highest
positive peak as tv. If either burst onset or voice onset detection fails, VOT measurement fails; otherwise,
the VOT is recorded as tv − tb.

In the left panel of Figure 1 we plot the cumulative distribution of the system errors for stops in the full
TIMIT test set, a corpus consisting of clean lab speech collected for another experiment (hereafter, LAB),
and the BU Radio Speech Corpus (hereafter, BU). System performance is excellent, with >85% of errors
under 10 ms for the TIMIT test set (mean: 4.67 ms), a number comparable to previous attempts on this data
by Stouten and Van hamme (2009) and Sonderegger and Keshet (2010). Promisingly, performance does not
degrade when evaluated on a novel domain; indeed, for BU 85% of errors fall within 10 ms (mean: 5.88 ms)
and for LAB nearly 100% of errors are within 10 ms (mean: 2.8 ms). Moreover, on a subpart of LAB (n=229
stops) independently annotated by two of the authors, the system agreed with the two human annotators
as well as they agreed with each other (see right panel of Figure 1). Given that the algorithm is designed
to not attempt VOT measurement in cases where the bottom up information is ambiguous, the question
naturally arised as to whether this introduces any bias. However, this does not appear to be the case, as
seen in Figure 2, where the the 5th, 25th, 50th, and 95th percentiles for human and system measurements
of the voiceless stops in TIMIT are essentially identical.

Our initial forays into automating VOT measurement have been promising, with a system trained on
TIMIT achieving human-like performance for that corpus and generalizing quite well to a previously unseen
selection of lab speech. This strongly suggests that in the near future human measurements could be replaced
by automated measurements, opening the door to extremely large scale work that was previously impossible.

1In point of fact following Rahimi and Recht (2007) we approximate the implicit feature mapping of the RBF kernel using
random Fourier features – cosines of random affine projections of the data. With sufficiently many such futures it is possible to
retain the ability of kernel machiens to fit nonlinear decision surfaces while avoiding the high computational costs incurred in
calculation of the kernel matrix.
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Figure 1: Left: Cumulative distributions of absolute differences between human and system VOT mea-
surements for all occurrences of /p, t, k/ in the full TIMIT test set (n=3158), word-initial /p, b/ in LAB
(n=2263), and /p, t, k/ in BU Radio Speech (n=931). Right: Cumulative distributions of human/system and
human/human differences for speaker 9 in LAB (mean differences: system-human, 1.77 ms; human-human,
1.79 ms).
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Figure 2: Boxplots displaying 5th, 25th, 50th, 75th, and 95th percentiles for human and system VOT
measurements of the stops /p, t, k/ in the full TIMIT test set. Mean (s.d.): human /p/ 43.5 ms (21.7 ms),
/t/ 50.8 ms (22.8 ms), /k/ 58.9 ms (22.2 ms); system /p/ 41.5 ms (22.0 ms), /t/ 49.9 ms (23.1 ms), /k/ 57.3
ms (22.8 ms).
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