Analyzing Ilokano Pseudoclefts

Jeremy Rafal

City University of New York–The Graduate Center

Two types of Ilokano pseudoclefts Several researchers have come to the conclusion that cleft constructions in many Austronesian languages are in fact pseudoclefts (Chung 1998, Paul 2001, Kroeger 1993, etc.). What this paper investigates is the structure of pseudoclefts in Ilokano, a VSO Austronesian language spoken in the Northern Philippines. I argue that there are two types of pseudoclefts employed by the language, both of which are biclausal. The first type involves a XP \(\langle \text{COPULA}=\emptyset < t_i + \text{wh-clause} \rangle \) construction, employing a null copula between the focused constituent and a headless relative introduced by the determiner \(t_i \). Despite the lack of an overt \(\text{wh} \)-phrase, the constituents after \(t_i \) in (1) and (2) contain an operator-variable chain signaled by the ‘trigger’ morphology creating a headless relative much like in English and other languages. Many Austronesian languages including Ilokano exhibit a ‘trigger-only’ restriction to A-bar movement, and the trigger morphology on the verb marks the ‘role’ (the actor in (1) and patient in (2)) of the variable. The second type (\(\text{ket-type pseudocleft} \)) utilizes a \(t_i + \text{wh-clause} < \text{ket} < \text{XP word order} \), where the headless relative sits in a topicalization position. The constituent after the topic particle \(\text{ket} \) introduces the focused constituent to its right as in (3) and (4). I argue that the \(\text{ket-type} \) of pseudocleft is in fact a TOPIC < FOCUS construction where the FOCUS is a full IP subject to optional ellipsis (cf. den Dikken et al 2000).

Null copula constructions Although the default word order in Ilokano is \(\text{PRED} < \text{SUBJ} \), there are exceptions to this generalization. The possibility of a \(\text{SUBJ} < \text{PRED} \) word order in Ilokano is shown by the grammaticality of (5) where the fronted constituent containing the universal quantifier must be interpreted as a subject, not as a predicate. This follows from a cross-linguistic ban of the universal quantifier in predicates including the English facts in (6) where ‘every man’ is ungrammatical as a predicate, but grammatical as a subject. Predicates in Ilokano also exhibit a ‘definiteness restriction’ where fronted predicates must be non-definites as shown in (7a). Once we introduce the definite article \(t_i \), the predicate must follow the subject resulting in a \(\text{SUBJ} < \text{PRED} \) word order as in (7b). The example in (7c) also shows that we cannot strand the determiner \(t_i \) while the bare NP-predicate fronts. Blocking predicate fronting may be explained whether we adopt a Head Movement Analysis or Phrasal Movement Analysis. In a Head Movement Analysis shown in (9), the D-head blocks predicate fronting following the Head Movement Constraint (Travis 1984). From the point of view of a Phrasal Movement Analysis shown in (10), we have either a locality violation or improper movement. If the constituent passes through the SpecDP before moving to an A-position outside the DP, we get improper movement; otherwise, one fell swoop movement out of the DP violates locality with the DP being a phase. In light of the null copula facts, we analyze the null copula-type pseudocleft as a \(\text{SUBJ} < \text{PRED} \) word order as outlined in (10), where the fronted constituent is the subject followed by a headless relative introduced by the overt D-head \(t_i \). This follows from den Dikken’s (2006) argument that empty headed predicates (non-definites) must front while headed predicates (with the D as the head of a \(t_i \)-headed predicate) have no motivation to front.

\(\text{ket-constructions} \) Topicalization utilizing the \(\text{ket} \)-construction in Ilokano does not involve movement. Instead, the topic is base-generated in a high position followed by the particle \(\text{ket} \) as shown in (11). The material following \(\text{ket} \) is a finite clause, resulting in a TOPIC < COMMENT structure. In the \(\text{ket} \)-type pseudocleft (12), a \(t_i \)-headed DP is base-generated in the topic position with the material following the \(\text{ket} \) being a COMMENT. The facts in (11) and (12) suggest that the COMMENT part of the \(\text{ket} \)-construction may or may not involve an ellipsis of a full finite IP in a \(\text{ket} \)-type pseudocleft. As we refer to the examples, the COMMENT in (11) is a full IP while (12) can but need not be an elliptical IP.

A typology of pseudoclefts The two types of Ilokano pseudoclefts are akin to the typology of specificational pseudoclefts (SPCs) in English as argued by den Dikken et al 2000. Type A SPCs come with the word order \(\text{wh-clause} < \text{be} < \text{XP} \) where the \(\text{wh-clause} \) is a concealed question followed by a full finite IP reduced by an ellipsis (14). This analysis provides support to the \(\text{ket} \)-type pseudoclefts in Ilokano, with a topicalized headless relative followed by a focused constituent. As shown in the previous section, the focused constituent may be derived from a full finite IP reduced by ellipsis. The example in (15) exhibits a Type B SPC in English with the word order \(\text{XP} < \text{be} < \text{wh-clause} \). Type B SPCs do not involve a reduced IP and they parallel the null copula-type pseudoclefts in Ilokano. While English allows Type B SPCs to have reversible word orders as in (16), the fact that the Ilokano null copula-type pseudoclefts have a fixed word order follows from the ‘definiteness restriction’ effect, banning predicate nominals to front in a null copula construction as discussed in Section 2.
(1) Siak, ti Op, gimmatang t, iti ayayam idiay Vigan
1sg.ABS DET PRF.AT=buy OBL toy DEM Vigan
‘it was me who bought the toy in Vigan’

(2) ayayam, ti Op, ginatang=ko t, idiay Vigan
toy DET PRF.PT=buy=1sg.ERG DEM Vigan
‘toy was what I bought in Vigan’

(3) ti Op, gimmatang t, iti ayayam idiay Vigan ket siak
DET PRF.AT=buy OBL toy DEM Vigan TOP 1sg.ABS
‘who bought the toy in Vigan was me’

(4) ti Op, ginatang=ko t, idiay Vigan ket ayayam
DET PRF.PT=buy=1sg.ERG DEM Vigan TOP toy
‘What I bought in Vigan was a toy’

(5) Amin amin nga tao ni Juan
all all LIG person PSN Juan
‘Every person is Juan.’

(6) a. Every man is Juan
b. *Juan is every man.

(7) a. (*ti) estudyante ni Juan
b. Ni Juan ti estudyante
DET student PSN Juan
‘Juan is a student’
c. *Estudante ni Juan

(8) Head Movement Analysis

(9) Phrasal Movement Analysis

(10) Analysis of the null copula type pseudocleft

(11) Siak ket gimmatang=ak iti ayayam idiay Vigan
1sg.ABS TOP PRF.AT=buy=1sg.ABS OBL toy DEM Vigan
‘(As for) me, I bought a toy in Vigan’

(12) ti ginatang=ko idiay Vigan ket ginatang=ko (ti) ayayam
DET PRF.PT=1sg.ERG DEM Vigan TOP PRF.PT=1sg.ERG DET toy
‘what I bought in Vigan was I bought a/the toy’

(13) Analysis of the ket-type pseudocleft

(14) [what John bought] was [he bought some wine]
(15) [home] is [where the heart is]
(16) [where the heart is] is [home]

1 ABS=absolutive case; AT=actor trigger; DET=detector; DEM=demonstrative; ERG=ergative case; LIG=ligature; OBL=oblique; PSN=person marker; PRF=perfective aspect; PT=patient trigger; sg=singular; TOP=topic particle