
December 1, 2008 Time: 09:40am word023.tex

246 REVIEWS

Reference

Stockwell, Robert P. & Donka Minkova 2001. English words: history and structure. Cambridge:
Cambridge University Press.

Author’s address:
(Andrew Carstairs-McCarthy)
Department of Linguistics
University of Canterbury
Private Bag 4800
Christchurch 8140
New Zealand
E-mail: andrew.carstairs-mccarthy@canterbury.ac.nz

Kenneth R. Beesley & Lauri Karttunen, Finite State Morphology. Stanford, CA: CSLI
Publications (distributed by the University of Chicago Press), 2003. xviii + 505pp. and
CD-ROM. ISBN hardbound 1-57586-433-9, paperbound 1-57586-434-7.

Reviewed by ERWIN CHAN & CHARLES YANG
DOI: 10.3366/E1750124508000263

At hand is an unusual book, at least for most readers of the present journal. In
Finite State Morphology (henceforth FSM), Kenneth Beesley and Lauri Karttunen
provide a detailed introduction to the Finite State approach to morphology developed
at the Xerox Corporation, with the associated software on a CD-ROM.1 While these
tools are typically deployed for morphological analysis in natural language processing
applications, the authors are right to claim linguists as their core audience: this book
can be viewed as a work of linguistic theory in the guise of a programming language.
Linguists stand much to gain from this book and may even develop a fuller appreciation
of themselves, as we shall explain.

An itemized summary is neither the most exciting nor the most informative format
for a review of a book of this nature. In this review, we will provide a background
introduction to the Finite State approach to computational morphology, and then
turn to the specific offerings in FSM, while relegating some more technical points to
footnotes. We conclude with a general discussion on how FSM contributes to the theory
of morphology.

1 What is Finite State Morphology?

The descriptive devices of morphology traditionally include the system developed in
The sound pattern of English (Chomsky & Halle 1968):2 an ordered list of rewrite rules of
the form A→B/C_D, which maps the underlying representation of a lexical form to its
surface representation through a sequence of intermediate steps. To use an example
from FSM, consider two rules that are responsible for some nasal assimilation process:

(1) N → m / __ p(where N stands for an underspecified nasal)
(2) p → m / m __

December 1, 2008 Time: 09:40am word023.tex

REVIEWS 247

Since (1) applies before (2), the input string kaNpat turns, via kampat, into kammat, the
desired output string.

Ordered rules, however, are not particularly conducive to computational applications
as there is no appropriate formal framework in which rules can be readily formulated
and implemented. In a nutshell, FSM provides the tools for turning rules into practical
morphological analyzers. The theoretical groundwork was laid out by Johnson (1972)
and, independently in the early 1980s, by Kaplan & Kay (1994). They show that rewrite
rules are equivalent in power to Finite State transducers, which are a variant of Finite
State automata that linguists are more familiar with. Instead of accepting or rejecting a
single string, as in the case of Finite State automata, a Finite State transducer accepts
or rejects two strings whose letters are pair-matched, while still retaining the Markovian
property of Finite State transitions. As a result, Finite State transducers are simple,
well understood and easy to implement computationally. Moreover, it is also found that
an ordered cascade of rewrite rules can in principle be automatically COMPILED into a
single Finite State transducer, thus capturing the mapping from the underlying form to
the surface form in terms of paired strings. Figure 1 gives the Finite State transducer for
the rules in (1) and (2), where the letters above and below the arrows represent the input
and output strings, and the circles represent the states that the Finite State transducer
traverses in scanning the string pair.

k

a

N

p

a

t

k a m m a t

Figure 1. A Finite State transducer, which expresses the relationship between kaNpat and
kammat, can mimic the effect of the ordered rules in (1) and (2).

The automatic compilation of rules into Finite State transducers (unlike the one in
Figure 1, which we constructed manually) promises an advantage over testing rules
by hand, a tedious and error-prone process for large natural language processing
applications. A compiler would also allow a linguist to focus on the WHAT question,
the development of linguistic descriptions for languages, rather than the HOW question,
which concerns the implementation and execution details of the resulting system. But
this promise was not delivered until FSM and related technologies well into the 1990s.
Instead, computational morphology saw the development of Two-Level Morphology
(Koskenniemi 1983), where contextual constraints are expressed in parallel directly
between lexical and surface levels, rather than as rules applied in serial order.

Ever since gaining prominence in the 1980s, Two-Level Morphology has become a
staple in computational linguistics. But it is not the easiest tool to use (or to teach, in our
experience). The two-level commitment forces one to directly manipulate input-output
letter strings, and represent serial rules as parallel constraints. This can be a highly
unintuitive and labor-intensive process, even for experienced programmers. Moreover,
the insistence on only two levels raises questions about the validity, or efficiency, of
such an approach when issues of opacity and long distance dependencies are taken into
account (Barton et al. 1987, Anderson 1988).

December 1, 2008 Time: 09:40am word023.tex

248 REVIEWS

 k a N p

k a m m a t

Rule 2 Rule 1

Figure 2. Model of transduction process in Two-Level Morphology (Koskenniemi 1983).

2 The Xerox Toolkit

The main accomplishment of FSM is to make computational morphology far more
accessible to linguists; in doing so, it finally delivers the promise of automatic rule
compilation. The salvation comes in the form of XFST, a program for compiling and
executing rules.3 It is now possible to specify linearly ordered rules very much in the
style of SPE, and the system will compile the rules, behind the scenes, into a Finite
State transducer.

Mastering the syntax of XFST, like any other programming language, will no doubt
take time. Even though the authors made a real effort to make the materials accessible
to non-specialists, we doubt that a linguist without any computational background will
find this book an easy read. After a general introductory chapter, the reader is confronted
with an exhaustive but tedious treatment of the Finite State formalism of the type we
touched upon in section 1. Our advice is to skim this and jump directly to the chapter
that introduces XFST.4 The presentation is generally effective thanks to the large
number of real linguistic examples ranging from reduplication in Malay to agreement
in Monish (a fictional language invented for pedagogical purposes). Once you make the
effort, the transition from linguistic analysis to computational implementation can be
quite straightforward, as some actual code illustrates:

(3) define Rule1 [N -> m || _ p];
define Rule2 [p -> m || m _];
read regex Rule1 .o. Rule2

Behind the scenes, the XFST system first translates the rules into Finite State
transducers that are formally equivalent to those we constructed earlier. For instance,
the rule in (1), [N -> m || _ p], is converted to a set of string pairs (x, y) for which
y is the result of the application of rule (1) to x. The operation that follows is that of
COMPOSITION (.o.), which is discussed in depth throughout the book: it takes two sets
of string pairs (x, y) and (y, z) and converts them into a new pairing (x, z), thereby
achieving the effect of rule ordering.5

There is a diverse range of rule formats that one can conveniently evoke in XFST, and
it is clear that these are designed by linguists, for linguists, and to handle widely attested
linguistic phenomena. For example, deletion can be handled by the use of the null string
([]) on the right hand side of rules. Epenthesis gets its own treatment, with the necessary
restrictions so that the system does not keep on inserting symbols ad infinitum. One
of our favorites is a rule that allows one to specify separate restrictions on underlying

December 1, 2008 Time: 09:40am word023.tex

REVIEWS 249

and surface levels, which proves handy for modeling harmony processes. But having
so many options for specifying rules isn’t necessarily a good thing. Like grammatical
formalisms, programming languages ought to limit the degree of expressive freedom
availed to the user, which also makes for a smooth learning experience. We find several
forms of rule writing that may prove convenient in some conceivable cases. But these
are probably too rare to warrant independent treatments while alternative expressions
are possible. Invariably, these rule formats come with a disclaimer ‘have not been widely
used in practice’.

Later chapters describe ways to handle non-concatenative phenomena. One of the
most useful augmentations to the XFST system is flag diacritics. Flag diacritics encode
the usual set of morphological features (e.g., case, tense, gender, number, etc.): they
serve the purpose of representing morphosyntactic information but can also work as
constraints on morphological analysis. To use one of the examples in the book, consider
the cliticization of the French definite articles la and le (page 364). The requirement
here is that the noun or adjective be singular and vowel initial, and the cliticized form
is represented as l’ in orthography. A straight-up Finite State implementation would
essentially require the system to ‘remember’ the occurrence of l’ with the expectation
of finding a singular form later on in the word, so that l’arbre ‘the tree’ is acceptable
while l’arbres is not. This sort of restriction usually leads to more rule writing for the
user, and larger Finite State networks for the computer. With flag diacritics, by contrast,
one can specify SINGULAR as a feature for l’ in the lexicon: as soon as l’ is read from
the input, the system can switch to a network that accepts only singular adjectives
or nouns. The use of feature matching and unification is familiar from contemporary
grammatical formalisms, and the insights here are fundamentally the same: complex
dependencies on surface representations can be factored into simple relations on more
abstract representations.

Nothing good comes for free; the FSM toolkit certainly doesn’t. The only way to
obtain the software is to purchase the book, and the only way to use it, for non-
commercial purposes, is to first agree to a legalese-laden single user license. This may
have limited FSM’s pedagogical reach: one would have to think twice before passing
the cost, $40 retail, onto every student in an introductory computational linguistics
class, where morphology may only take up two weeks. Furthermore, the source code
is not available, so an advanced programmer will not be able to add new capabilities
to the software. While we cannot complain about Xerox’s interests in protecting their
intellectual property (after all, they footed the bill) the all too frequent (and boldface)
mentions of the Xerox Corporation leads to sensory overload. And there are non-Xerox
Finite State systems available for free, such as the FSA system (van Noord 1997) and the
AT&T Finite-State Tools (Mohri et al. 1998), even though these general purpose tools
may be less convenient to use for morphological analysis.

More technically, the convenience of XFST does not come for free either. Lost
in translation from an ordered sequence of rules to a composed transducer are the
operational details of the morphological system, which is highly useful during the testing
and debugging stage. In the Two-Level Morphology system, where each rule has its
own Finite State transducers (constructed by hand, admittedly), it is usually quite easy

December 1, 2008 Time: 09:40am word023.tex

250 REVIEWS

to locate the misbehaving rule when an error has been detected. We have not found a
way to do so under XFST; we suspect that the automatic compilation system cannot
retain the transparency of the rules once they are collapsed into a larger Finite State
transducer.6

An important issue that deserves more discussion is the computational complexity
of Finite State Morphology. It is well known that, theoretically, the two-level approach
to morphology is fundamentally intractable (Barton et al. 1987); this result applies to
the XFST system, which is two-level at its core. Having to simulate the long distance
relationships such as harmony and reduplication with Finite State implementations,
the resulting networks may grow exponentially in the worse case. Of course, whether
the worse case surfaces in practice is a separate issue, and some empirical results from
the 1980s suggest that the situation may not be quite as dire (Barton et al. 1987,
Koskenniemi & Church 1988). The authors do issue frequent warnings about the size
explosion in network compilation,7 though some quantitative discussion would have
been helpful.

Finally, it should be noted that FSM transducers are more properly called LEXICAL
TRANSDUCERS than MORPHOLOGICAL ANALYZERS, as they produce all possible
analyses of a word, rather than the one appropriate to a word’s usage in a sentence.
If one wishes to construct a morphologically annotated corpus, one will need to
perform disambiguation, a problem more appropriately addressed through statistical
methods.

3 Finite State Morphology and Morphology

There are plenty of useful lessons that linguists can take away from FSM.
First, who are the real winners of FSM? The REAL WORLD needs linguists,

who will be pleased to learn from this book that their analytical skills are essential
in the computational implementation of morphology. The authors are quite explicit
(page 283):

‘The lesson is this: study the language and do some old-fashioned pure
linguistics modeling before jumping into coding. Your programs will never be
better than the linguistic model behind them’.

There is no replacement for knowledge, not even powerful computers.
Second, which is the real winner among linguistic theories? For FSM the successful

LINGUISTIC MODEL would seem to be a particular kind, namely the SPE-style system
that assembles words out of pieces with ordered rules. Indeed, Karttunen (1998) has had
some very critical remarks about other formal systems such as Optimality Theory. It
has been shown (Frank & Satta 1998) that counting the number of constraint violations,
which can go arbitrarily high (McCarthy 2003), places OT beyond the descriptive power
of Finite State models, and thus deprives it of the simplicity and efficiency associated
with Finite State systems. In other words, OT is descriptively more powerful but

December 1, 2008 Time: 09:40am word023.tex

REVIEWS 251

computationally less attractive than classical generative phonology. While it is possible
to FINITIZE OT by placing a cap on the number of constraint violations (Karttunen
1998), the complexity of the resulting network (as measured by size) still compares
unfavorably to that of derivational systems (Idsardi, to appear). However, we get a feeling
that linguists will not take these complexity arguments seriously.

Third, it is interesting to note that for certain morphological phenomena, the
computational approach and the theoretical accounts dovetail fairly nicely. This is
particularly clear in the discussion of reduplication, Templatic Morphology, and other
cases that do not readily fall under the Finite State approach. The solution to these
problems presented in FSM, much like the use of flag diacritics, follows the general
principle of using abstract representations to simplify surface-level descriptions. For
instance, reduplication is handled by the postulation of reduplicative morphemes
(Marantz 1982), and the treatment of Arabic morphology follows quite directly the
insights of the tier-based approach (McCarthy 1981). These examples highlight the
unifying theme of computation between computational and theoretical linguistics, that
clean computational models are clean linguistic models.

Fourth, working with FSM may force the linguist to confront theoretical problems
more broadly than pencil and paper analysis. A broad coverage morphological system
should handle both the general patterns of the language as well as the more idiosyncratic
cases: how to strike a balance between these is a matter of considerable theoretical
interest. Unfortunately, FSM has no original insight to contribute. For instance, one of
the ways in which exceptions are handled here is simply by listing: swim-swam is coded
by directly lexical lookup. The authors do not provide guidelines on when productive
rules and morphological decomposition should be used and when to resort to holistic
storage. These decisions have direct implications on the economy of description and
efficiency of processing. Of course, theoretical and experimental research in morphology
faces the same range of issues, and it may be fruitful if these two lines of work can find a
point of convergence (Yang 2002, 2005).

Fifth, the sole focus of the book is the implementation of morphological systems,
but that is only one of the many areas in computational morphology. Current research
topics include other approaches to non-concatenative languages (Cohen-Sygal &
Wintner 2006), induction of morphological segmentation (Goldsmith 2006), and joint
morphological and syntactic disambiguation (Cohen & Smith 2007). And this is not to
mention the study of morphological acquisition and cognitive processing, where many
problems can, and have been, studied in a computational framework. It remains to be
seen whether the Finite State approach can make connections with these many sides of
morphological research.

Finally, a philosophical point: in what sense is morphology Finite State when one
is constantly confronted with the linguistic facts that are obviously not? Even in
English, hardly an exotic morphological specimen, we find pig latin, shm-reduplication
(fancy-schmancy), and other cases where long distance dependencies are at odds with
the doctrine of Finite State. On our view, the insistence on Finite-Stateness (or not)
stems from the commitment to the weak generative capacity of linguistic systems. At

December 1, 2008 Time: 09:40am word023.tex

252 REVIEWS

some level, this sentiment is understandable: for practical problems in computational
morphology, one needs to deal with letters and strings, and the emphasis is inevitably
placed on the algorithmic process that manipulates these units. A strong generative
capacity perspective shifts the attention to structural descriptions. Even in syntax,
where the adjacency relations at the word level gets you nowhere, meaningful syntactic
relations can be defined on adjacent structural units such as heads, specifiers, and
complements. The theoretically motivated treatment of non-Finite-State phenomena
in FSM shows that if the morphological representation is sufficiently abstract, the core
engine of a Finite State process may well be maintained.

Notes

1. The authors maintain a website, http://fsmbook.com, that supplies documentation, updates,
and other resources.

2. We will not be concerned with larger theoretical questions such as the place of morphology in
the architecture of the grammar. We use the term MORPHOLOGY to refer to the description
and analysis of lexical forms, and we take the goal of computational morphology to be to assign
the correct structural descriptions to these forms, including the rejection of illicit ones.

3. Chapter 4 describes LEXC, an alternative formalism for finite state networks that is useful
for the construction of the lexicon. Although classical generative phonology is concerned
primarily with rules, incorporation of a lexicon helps to prevent spurious overanalysis in a
finite state system. The final FSM networks are produced by composing a lexicon transducer
with a rule transducer, so that only the legitimate lexical roots and their inflections are
represented in the network. LEXC represents lexical items as sequences of underlying
morphemes, which is especially useful for agglutinative languages.

The main drawback to LEXC is that it uses a different set of conventions and syntactic
forms than XFST. It is also possible to write rules within LEXC. On page 386 there is an
example of code that produces equivalent grammars, one written in LEXC code, the other in
XFST. This amount of flexibility is not considered to be a good way to design a programming
language.

4. In order to obtain a deep level of understanding of Finite State Morphology, we recommend
study of automata theory beyond what FSM has space to present.

5. Composition is often performed on entire networks, and the clever use of it can considerably
ease system development. For example, one can construct a network that overgenerates
possible structures and subtract from it a network that filters invalid structures, instead of
writing intricate rules to exactly specify the final language.

6. There is a command (inspect net, page 189) that allows the user to traverse through the network
during execution. But the size of the compiled network would provide only limited feedback
from network operations to linguistic descriptions. Noting that this tool is only useful to
experts or Xerox developers, the authors do not provide further details.

7. The authors also offer several solutions to particular problems that may reduce the problem
of network size. For example, interpreted flag diacritics express constraints that could also
have been accomplished through composition of filtering expressions, and the lookup program
pipes input through a sequence of transducers at runtime, achieving the same effect as a
single composed transducer. These strategies demonstrate the trade-off between storage and

December 1, 2008 Time: 09:40am word023.tex

REVIEWS 253

computation: an increase in network size due to composition is avoided at the expense of
an increased amount of processing time. In this regard, we can see how a computational
implementation of linguistic theory introduces new and extremely important problems in
addition to descriptive adequacy.

Reference

Anderson, Stephen R. 1988. Morphology as a parsing problem. Linguistics 26: 521–544.
Barton Jr., G. Edward, Robert C. Berwick & Eric Sven Ristad 1987. Computational complexity and

natural language. Cambridge, MA: MIT Press.
Chomsky, Noam, & Morris Halle 1968. The sound pattern of English. New York: Harper and Row.
Cohen, Shay B. & Noah A. Smith 2007. Joint morphological and syntactic disambiguation. In

Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning. Prague. 208–217. (Available on-line.)

Cohen-Sygal, Yael & Shuly Wintner 2006. Finite-state registered automata for non-concatenative
morphology. Computational Linguistics 32(1): 49–82.

Frank, Robert & Giorgio Satta 1998. Optimality theory and the generative complexity of
constraint violability. Computational Linguistics 24(2): 307–316.

Goldsmith, John 2006. An algorithm for the unsupervised learning of morphology. Natural
Language Engineering 12(3): 1–19.

Idsardi, W. To appear. Calculating metrical structure. In C. Cairnes & E. Raimy (eds.) To be
announced. Cambridge, MA: MIT Press.

Johnson, C. Douglas 1972. Formal aspects of phonological description. The Hague: Mouton.
Kaplan, Ronald M. & Martin Kay 1994. Regular models of phonological rule systems.

Computational Linguistics 20(3): 331–378.
Karttunen, Lauri 1998. The proper treatment of optimality in computational phonology.

In Proceedings of the International Workshop on Finite-State Methods in Natural Language
Processing. Ankara. 1–12.

Koskenniemi, Kimmo 1983. Two-level morphology: a general computational model for word-
form recognition and production. Helsinki: Department of General Linguistics, University of
Helsinki.

Koskenniemi, Kimmo & Kenneth Ward Church 1988. Complexity, two-level morphology and
Finnish. In COLING-88: Proceedings of the 12th International Conference on Computational
Linguistics, volume 1 (Budapest, 1988). 335–339.

Marantz, Alec 1982. Re reduplication. Linguistic Inquiry 13: 435–448.
McCarthy, John 1981. A prosodic theory of nonconcatenative morphology. Linguistic Inquiry 12:

373–418.
McCarthy, John 2003. OT constraints are categorical. Phonology 20: 75–138.
Mohri, Mehryar, Fernando C. N. Pereira & Michael Riley 1998. A rational design for a weighted

finite-state transducer library. In Automata Implementation. Second International Workshop on
Implementing Automata, WIA ’97. (= Lecture Notes in Computer Science 1436). Dordrecht:
Springer.

Noord, Gertjan van 1997. FSA utilities: a toolbox to manipulate finite-state automata. In Darrell
Raymond, Derick Wood & Sheng Yu (eds.), Automata implementation. (= Lecture Notes in
Computer Science 1260). Dordrecht: Springer.

December 1, 2008 Time: 09:40am word023.tex

254 REVIEWS

Yang, Charles 2002. Knowledge and learning in natural language. New York: Oxford University
Press.

Yang, Charles 2005. On productivity. Yearbook of Language Variation 5: 333–370.

Author’s addresses:
(Erwin Chan)
University of Arizona
Department of Linguistics
Douglass Hall 200E
1100 E. University Blvd
Tucson, AZ 85721
E-mail: echan3@seas.upenn.edu

(Charles Yang)
Department of Linguistics
University of Pennsylvania
608 Williams Hall
Philadelphia, PA 19104-6305
E-mail: charles.yang@ling.upenn.edu

Author’s address:
(Bogdan Szymanek)
Department of Modern English
John Paul II Catholic University of Lublin
Al. Raclawickie 14
20–950 Lublin, Poland
Email: szymanek@kul.lublin.pl

