
Estimation of Software Reliability by
Stratified Sampling

ANDY PODGURSKI, WASSIM MASRI, YOLANDA MCCLEESE, and
FRANCIS G. WOLFF
Case Western Reserve University
and
CHARLES YANG
Massachusetts Institute of Technology

A new approach to software reliability estimation is presented that combines operational
testing with stratified sampling in order to reduce the number of program executions that
must be checked manually for conformance to requirements. Automatic cluster analysis is
applied to execution profiles in order to stratify captured operational executions. Experimen-
tal results are reported that suggest this approach can significantly reduce the cost of
estimating reliability.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.5 [Software Engineering]: Testing and Debugging; D.4.5 [Operating Systems]:
Reliability

General Terms: Reliability

Additional Key Words and Phrases: Beta testing, cluster analysis, operational testing,
software reliability, software testing, statistical testing, stratified sampling

1. INTRODUCTION
In software testing there is an important dichotomy between synthetic and
operational techniques. Synthetic testing involves selecting test data sys-
tematically, based on an analysis of a program or its specification. Opera-
tional testing or beta testing involves having the intended users of software
employ it in the field as they see fit. Synthetic testing and operational
testing are complementary: synthetic testing is not a good predictor of
operational reliability, but it may help to make software reliable enough for

Authors’ addresses: A. Podgurski, W. Masri, Y. McCleese, and F. G. Wolff, Electrical Engineer-
ing and Computer Science Department, Case Western Reserve University, 10900 Euclid
Avenue, Cleveland, OH 44106; email: andy@alpha.cs.ces.cwru.edu; C. Yang, Electrical Engi-
neering and Computer Science Department, Massachusetts Institute of Technology, 77 Mas-
sachusetts Avenue, Cambridge, MA 02139-4307.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1049-331X/99/0700–0263 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999, Pages 263–283.

beta testing. The preponderance of software testing research has addressed
synthetic testing techniques, of which many have been proposed. However,
conventional beta testing suffers from a number of problems that merit
investigation.

One of the problems with conventional beta testing is that it does not
provide objective estimates of software reliability. Such estimates are
necessary for making informed decisions about a software product’s fitness
for general release. Another problem with conventional beta testing is its
reliance on ordinary users to detect and report failures in the software
being tested. Although such users provide valuable feedback, they are
unlikely to have detailed knowledge of the software’s requirements specifi-
cation, and testing is not their primary occupation. Consequently, they may
fail to observe or accurately report some software failures. This problem
can be addressed by employing capture/replay tools to capture operational
executions so that they can be replayed off-line and reviewed carefully by
trained personnel. However, the manual effort needed to review many
captured executions may be infeasible.

We describe a new technique for operational testing that does not rely
solely on ordinary beta users and which is intended to provide accurate and
economical estimates of the reliability software has exhibited in the field.
(It is assumed that past reliability is often a good predictor of future
reliability.) The technique involves collecting execution profiles of captured
beta-test executions and applying automatic cluster analysis to the profiles
in order to partition the executions based on the dissimilarity of their
profiles. A stratified random sample of executions is then selected, re-
viewed for conformance to requirements, and used to estimate the propor-
tion of failures in the entire population of captured executions. These steps
ensure that executions with unusual profiles are considered when reliabil-
ity is estimated. We report an experiment in which executions of several
programs were clustered based on branch traversal counts. Stratified
random sampling produced significantly more accurate estimates of failure
frequency than did simple random sampling, without requiring larger
samples.

We now outline the remainder of the article. A brief introduction to
stratified sampling is presented in Section 2. The use of cluster analysis for
stratifying program executions is motivated in Section 3. Our procedure for
estimating reliability is described in Section 4. Experimental results are
presented in Section 5. The principal assumptions and the costs of our
approach are discussed in Sections 6 and 7, respectively. Related work is
surveyed in Section 8. Conclusions are presented in Section 9. Finally,
possible future research is discussed in Section 10.

2. STRATIFIED SAMPLING

Stratified sampling is a classical survey sampling technique, which is used
to estimate population parameters efficiently when there is substantial
variability between subpopulations [Cochran 1977; Neyman 1934]. It in-

264 • A. Podgurski et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

volves partitioning a population into disjoint strata, by grouping elements
having similar values of one or more stratification variables. The values of
the stratification variables are known for the entire population and are
assumed to be correlated with the study variable. A stratified sample is
constructed by selecting a probability sample from each stratum indepen-
dently. The sample from a stratum is used to estimate a parameter of the
stratum, such as the stratum mean. The population parameter of interest
(e.g., the population mean) is estimated by a weighted average of the
stratum estimates. Stratified random sampling [Cochran 1977] is a com-
monly used form of stratified sampling. It involves selecting a simple
random sample from each stratum (without replacement). Consider a
population having N elements and H strata. Let y be a study variable; let
yi be its value for the ith element of the population, i 5 1, . . . , N, and let
Nh be the size of stratum h, for h 5 1, . . . , H. Suppose that a stratified
random sample is selected from the population, with nh elements drawn
from stratum h. To estimate the population mean m 5 O

i51
N yi/N, the

estimator

m̂st 5
1

N
O

h51

H

Nh yh 5 O
h51

H

Wh yh

is often used, where yh 5 O
i51
nh yhi/nh is the sample mean for stratum h and

where Wh 5 Nh/N is the relative size of stratum h. When the study
variable is binary with yi 5 1 if and only if the ith population element has
a given property, then m is the proportion of elements having the property.
In this case, we denote the population proportion by P and the aforemen-
tioned estimator by pst.

Basic stratified estimators are unbiased, regardless of the stratification
criteria used.1 The variance of a stratified estimator will be small if the
study variable’s variance within strata is much less than its variance
between different strata.2 In practice, stratified sampling is often much
more efficient than simple random sampling and is rarely less efficient
[Cochran 1977]. An important aspect of stratified sampling is how the total
sample size n is allocated among the H strata. Various allocation methods
exist [Sarndal et al. 1992]. A particularly simple one is proportional
allocation, in which the sample size allocated to a stratum is approximately
proportional to the stratum’s size, i.e., nh ' nWh.3

1An estimator is unbiased if its expected value is equal to the population parameter to be
estimated.
2An estimator’s variance for a particular population can be estimated using the same sample
data used to estimate a population parameter.
3The allocated stratum sample size is not always exactly proportional to the stratum size,
because of rounding.

Estimation of Software Reliability by Stratified Sampling • 265

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

3. CLUSTER ANALYSIS OF EXECUTION PROFILES

In order for stratified sampling to be useful for estimating software
reliability, program executions must be stratified so that some failures are
concentrated in one or more strata or are isolated by themselves. (See
Appendix A.) This must be done without knowledge of which executions
actually fail. Although survey populations are often stratified based on a
single variable, detailed execution profiles are a more suitable basis for
stratifying program executions during reliability estimation, because the
occurrence of a software failure may involve only a small part of a complex
execution. Since it may be necessary to stratify thousands of executions,
each of whose profile may contain thousands of elements, an automated
procedure for analyzing profiles and forming strata is essential. Cluster
analysis provides such a procedure.

Cluster analysis is a well-known multivariate data analysis technique
which partitions a population into clusters, each of whose elements are
more similar to one another than to objects of other clusters [Anderberg
1973; Kaufman and Rousseeuw 1990]. Typically each object is character-
ized by a vector of feature or attribute values, which may be binary,
nominal, ordinal, interval, or ratio variables. The dissimilarity between two
objects is measured by applying a metric, such as Euclidean or Manhattan
distance, to their feature vectors. There are two basic approaches toward
cluster analysis: partitioning methods construct a single partition of a set
of objects, given a desired partition size or cluster diameter, whereas
hierarchical methods construct hierarchies of partitions by merging or
splitting clusters. Cluster analysis provides control over the number, size,
and homogeneity of strata, as required for efficient stratified sampling.
Further information about clustering algorithms is presented in Appendix
B.

In most applications of cluster analysis, the goal is to identify meaningful
groups within a population. For estimating software reliability by stratified
sampling, it would be ideal if cluster analysis could separate successful
executions from failures. However, this is not likely, because failures are
often caused by small defects in a large program. Two executions may differ
only in regard to reaching a particular defect, with the result that one
execution fails, while the other does not. Conversely, two otherwise dissim-
ilar executions may fail because they each encounter a certain defect.
Hence, failures may not cluster together even if they have the same cause.
Nevertheless, if a failed execution has an unusual profile, say because it
reaches seldom-executed code, the failure may be isolated in a small
cluster. This is often sufficient to make stratified sampling effective.

4. ESTIMATION PROCEDURE

Our approach to estimating software reliability involves the following
procedure:

266 • A. Podgurski et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

(1) The software is instrumented so that its inputs and other information
necessary to replay executions are captured (logged to permanent
storage).

(2) The software is subjected to extended operational use in one or more
environments.

(3) The captured data are retrieved.

(4) A “laboratory” version of the software is instrumented to produce
execution profiles and is then reexecuted using the captured data.

(5) Cluster analysis is applied to the execution profiles to stratify the
captured executions.

(6) A stratifed random sample of captured executions is selected and
rigorously checked by testing personnel for conformance to require-
ments.4

(7) The software’s reliability is estimated from the sample, using a strati-
fied estimator.

5. EXPERIMENTAL RESULTS

Podgurski, Yang, and Masri describe experiments in which the efficiency of
stratified random sampling was compared to that of simple random sam-
pling, with respect to estimating the failure frequency of eight subject
programs [Podgurski et al. 1993]. Stratified random sampling was substan-
tially more efficient than simple random sampling for six of the eight
programs, and the two sampling designs were about equally efficient for
the other two programs. The subject programs were rather small, however.
In this section we describe additional experiments in which larger subject
programs were used.

5.1 Subject Programs

Six subject programs were used in the experiments reported here. All were
written in the C programming language. Five were recursive-descent
parsers for ANSI C [Kernighan and Ritchie 1988], hand-written by stu-
dents in a graduate-level course on compiler design. The other subject
program was a version of a project-scheduling system that was used
internally by a large company. The parsers ranged in size from 1624 to
6578 source lines; their average length was 3446 source lines. An execution
population was generated for each parser by executing it on 1000 C source
files obtained from system directories. Executions that terminated abnor-
mally were classified as failures.5 Every other execution was classified as a
success or failure by comparing its output to that of both the GCC compiler

4Note that because operational inputs are captured directly there is no need to construct an
operational profile [Musa 1993] (a model of operational usage) in order to generate them.
5Executions that took excessively long were timed-out automatically.

Estimation of Software Reliability by Stratified Sampling • 267

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

and a parser we constructed with the YACC parser-generator. The project-
scheduling system comprised approximately 17,000 lines of source code,
much of it involving the user interface. It was not possible for us to monitor
the operational use of this system, so a program was developed to randomly
generate valid inputs for it. Six defects were identified from a list of known
problems. Each defect involved one element of the scheduling system’s
complex input. For i 5 1,2, . . . 6, the class Ci of inputs that revealed the
ith defect was determined. For k 5 1,2, . . . , 5 and for k 5 10, an input
population of size 1000 was created by randomly generating k inputs from
each class Ci, i 5 1,2, . . . , 6, and 1000 2 6k inputs that did not cause
failures. No input induced more than one type of failure. Execution popula-
tions were obtained by executing the project-scheduling system on each
input population. Thus, six execution populations were created having 6,
12, 18, 24, 30, and 60 failures, respectively. Note that the mechanism used
to generate failure-causing inputs differed from that used to generate other
inputs with regard to only one element of the input.

5.2 Method

For each population of executions, the parameter to be estimated was the
proportion P of executions that failed.5 Hence, the study variable y was
binary with yi 5 1 if and only if the ith execution failed. We compared the
efficiency of the stratified estimator pst (see Section 2), used with stratified
random sampling, to the efficiency of the sample proportion p 5 O

i51
n yi/n,

used with simple random sampling. As is customary in sampling theory,
the relative efficiency of the estimators was characterized by a ratio of their
variances. Since all executions were checked, not just a sample, it was
possible to use standard formulas to compute true estimator variances
instead of variance estimates. The variance of p is

V~p! 5
N 2 n

N 2 1

P~1 2 P!

n

where N is the population size, and n is sample size. The variance of pst is

V~pst! 5 O
h51

H

Wh
2
1 2 fh

nh

Nh

Nh 2 1
Ph~1 2 Ph!

where H is the number of strata; Nh is the size of stratum h; Wh 5 Nh/N is
the relative size of stratum h; nh is the sample size for stratum h; fh 5
nh/Nh is the sampling fraction for stratum h; and Ph is the failure
proportion for stratum h. For each population of executions, the relative
efficiency V~pst!/V~p! of p compared to pst was computed, using the same

6In each case, P was greater than zero. Note that if P 5 0, both estimators have zero
variance.

268 • A. Podgurski et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

total sample size for both estimators. A modified form of proportional
allocation was used with stratified random sampling to ensure that the
sample size for each stratum was at least one.7 First, one sample element
was allocated to each stratum; then remaining sample elements were
allocated to strata proportionally. The actual size of the complete sample
often differed slightly from the desired size, due to rounding.

Strata were formed using the two-stage cluster analysis algorithm de-
scribed in Appendix B, which forms a set of initial clusters and then
partitions them independently. Twenty clusters were created in the initial
stage; the final number of clusters was varied systematically. The actual
number of clusters often differed somewhat from the desired number, due
to rounding and to the way first-stage clusters were subdivided. Program
executions were clustered based on dynamic control flow. To profile this,
the source code of each subject program was instrumented, using a tool we
developed, to associate a counter with each conditional branch and to
increment it whenever the branch was traversed during execution. (The
average number of branches for the parsers was 622; the project-scheduling
system had 2364 branches.) Checksums were used to help ensure that
profiles were not corrupted by erroneous program behavior. In computing
dissimilarities, each branch-traversal count was augmented with a binary
variable that took on the value 1 if the count was nonzero. This was done so
that the distinction between traversing a branch at least once and not
traversing it at all would be weighted as heavily as the difference between
the maximum and minimum number of traversals of the branch. The
dissimilarity between the ith and jth executions was measured with the
formula

d~i, j! 5
O

f51

2B dij
~f!

2B

where B is the number of branches, and dij
~f! is the contribution of the fth

variable to the dissimilarity between executions i and j [Kaufman and
Rousseeuw 1990]. Let xif and xjf denote the values of the fth variable for
object i and object j, respectively. If the fth variable is binary then dij

~f! is
the exclusive-OR of xif and xjf; if this variable is a count then

dij
~f! 5

?xif 2 xjf?

max
h
xhf 2 min

h
xhf

provided the range in the denominator is nonzero; otherwise, dij
~f! is zero.

Note that the longest clustering took about 7.5 hours on a DECstation
TM model 5000/200 computer with 32MB of RAM. This computation

7With ordinary proportional allocation, the computed sample size for a very small stratum
may round to zero.

Estimation of Software Reliability by Stratified Sampling • 269

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

involved extensive paging, which could have been avoided with additional
memory.

5.3 Results

The execution population for each parser was clustered into approximately
100, 150, 200, and 250 strata. The execution populations for the project-
scheduling system were clustered into approximately 100, 150, and 200
strata. Visual inspection of the clusters indicated that a significant number
of failures were isolated in very small clusters of one to several elements.
(Figure 1 shows some of the 201 clusters identified in the 60-failure
execution population of the project-scheduling system.) In all cases, the
actual sample size was approximately one-third of the population size. The
results obtained with the parsers are summarized in Table I. The results
for the project-scheduling system are summarized in Table II.

5.4 Analysis

In 37 of the 38 cases summarized in Tables I and II, the stratified estimator
pst was substantially more accurate than the sample proportion p. The
average relative-efficiency V~pst!/V~p! over all cases was 0.38. Table II
suggests that the gain from stratification increases with the number of

Table I. Experimental Results for ANSI C Parsers (#Strata is the actual number of strata,
and Sample Size is the actual sample size)

Program P #Strata Sample Size V~pst! V~pst!/V~p!

Parse1 0.406 100 328 0.00018 0.363
151 333 0.000166 0.343
200 324 0.000182 0.361
249 314 0.000172 0.325

Parse2 0.305 102 313 0.000123 0.264
145 311 0.000133 0.283
176 313 0.000136 0.293
210 307 0.000162 0.339

Parse3 0.041 102 331 0.000045 0.563
151 330 0.000042 0.531
200 328 0.000044 0.547
250 295 0.000051 0.538

Parse4 0.001 99 332 0.000003 1.408
154 337 0 0
202 324 0 0
253 294 0 0

Parse5 0.43 101 330 0.000094 0.189
150 334 0.000091 0.186
200 331 0.000103 0.207
249 305 0.000111 0.198

270 • A. Podgurski et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

strata employed. Such a tendency is not evident in Table I, however.8 The

8Note that with the method of allocation we used there is a tendency for the computed total
sample size to be lower for a large number of strata than for fewer strata. This makes it more
difficult to see the true effect of the number of strata on V~pst!/V~p!, because in our experience
the performance of pst relative to p tends to improve as the total sample size increases (the
same sample size being used with both estimators).

4 576 4 904 54

3 606 146 920

16 405 122 133 177 510 563 575 608 52 651 682 689 772 808 995 28

7 143 *190 218 641 549 848 407

1 767

3 723 853 531

9 84 241 274 414 491 645 702 340 318

1 *222

1 *854

1 14

8 111 114 157 580 664 528 821 754

4 104 267 658 960

8 26 191 468 568 738 228 978 401

2 107 353

1 *351

2 545 622

1 *266

4 234 *358 524 685

12 113 225 232 269 474 493 592 712 778 815 *994 673

9 105 847 556 600 757 929 959 967 53

2 *402 *22

1 *728

1 *309

3 *633 *117 *759

2 343 *242

1 *643

1 979

2 *603 *733

3 20 880 932

4 8 278 362 243

4 290 892 931 326

12 57 64 717 515 555 560 588 619 708 812 862 25

Fig. 1. Some of 201 clusters identified in the 60-failure execution population of the project-
scheduling system. The first number of each cluster is the cluster size; other numbers are
execution labels. The label of each failed execution is preceded by an asterisk.

Estimation of Software Reliability by Stratified Sampling • 271

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

average, over all programs and execution populations, of the relative
efficiency achieved with the maximum number of strata was 0.32. The case
of Parse4 is noteworthy. For 99 strata the relative efficiency was 1.4, by
far the worst performance by stratified sampling that we have observed
with any program. For 154, 202, and 253 strata, however, the variance of
the stratified estimator dropped to zero! Note that there was only one
failure in Parse4 ’s execution population. When 99 strata were formed, it
was clustered with 23 other executions. In the other three clusterings, it
was isolated in a cluster by itself.

To illustrate the effect of stratified sampling, Figure 2 shows histograms
of empirical sampling distributions of p and pst. Each distribution was
obtained with 1000 samples of size 328 from the six-failure execution
population of the project-scheduling system; pst was used with 151 strata.
It is evident that the distribution of pst is much more tightly concentrated
around the true failure-proportion 0.006 than is the distribution of p. The
gaps in the histograms are due to the fact that only a small number of
distinct estimates are possible with just six failures in the population.

5.5 Summary of Experimental Results

The results of our experiments suggest the following conclusions:

—Clustering of executions based on dissimilarity of branch traversal pro-
files can isolate certain failures in programs of at least several thousand
lines.

Table II. Experimental Results for Project-Scheduling System (#Strata is the actual
number of strata, and Sample Size is the actual sample size)

Failures/Defect P #Strata Sample Size V~pst! V~pst!/V~p!

1 0.006 100 329 0.000004 0.345
151 328 0.000003 0.204
201 318 0.000003 0.26

2 0.012 98 333 0.000017 0.699
151 331 0.000011 0.454
202 328 0.000013 0.53

3 0.018 99 325 0.000023 0.634
152 331 0.000015 0.424
200 318 0.000014 0.369

4 0.024 100 327 0.000023 0.47
150 329 0.00002 0.424
201 321 0.000013 0.262

5 0.03 99 330 0.000034 0.576
151 333 0.000022 0.37
200 322 0.000022 0.351

10 0.06 98 329 0.000047 0.408
151 331 0.000042 0.368
201 320 0.000039 0.323

272 • A. Podgurski et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

30
0

20
0

10
0

0

0.0 0.005 0.015 0.0200.010

Estimates

60
0

40
0

20
0

0

0.0 0.005 0.010 0.015 0.020

Estimates

Fig. 2. Histograms of empirical distributions of p (top) and pst (bottom). Each distribution
was obtained with 1000 samples of size 328 from the six-failure execution population of the
project-scheduling system; pst was used with 151 strata.

Estimation of Software Reliability by Stratified Sampling • 273

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

—The computational cost of such clustering is acceptable for programs of at
least this size.

—For estimating failure frequency, stratified random sampling of the
clusters can be significantly more accurate than simple random sam-
pling.

Substantial further experimentation is required before general conclusions
can be drawn about the efficacy of our approach and the criteria for its
applicability.

6. DISCUSSION OF ASSUMPTIONS

The principal assumptions underlying our approach to estimating software
reliability are as follows:

(1) The future reliability of software can be predicted based upon its
reliability during operational testing.

(2) It is possible to identify ways of profiling program executions such that
the occurrence of program failures will often be reflected by unusual
profile features.

(3) The cost saved by reducing the number of executions that must be
checked for conformance to specifications is greater than the cost of the
additional data collection and analysis entailed by our approach.

For assumption (1) to hold, there must be regularity in how the software is
used, which persists after operational testing. Such long-term regularity is
often evident in summary statistics of survey populations, if not in individ-
uals. Statistical regularity is also likely to be evident in the usage patterns
of a population of software users. Nevertheless, usage of a software system
can change over time due to changes in the user population, new applica-
tions of the system, or other factors, and such changes call for reassessing
its reliability. Feature usage can be monitored automatically to detect
changes. To guard against unobserved changes in usage, it is prudent to
reestimate reliability periodically. Note that it is possible for usage to
change substantially without this affecting reliability, e.g., because most
features were implemented correctly.

Assumption (2) is related to the assumptions underlying synthetic test-
ing research. All synthetic testing techniques are based on an assumption
that certain features of program executions (or of program inputs) are
relevant to the occurrence of failures. The results of Section 5 lend some
support to assumption (2), but further experiments are needed before broad
conclusions can be drawn.

We believe assumption (3) is likely to hold when conformance to specifi-
cations must be checked manually, because of the painstaking attention to
detail that is required.

274 • A. Podgurski et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

7. COSTS OF THE APPROACH

The cost of checking executions for conformance to requirements is usually
a large part of the overall cost of software testing. We have provided
evidence that stratified sampling can reduce the number of executions that
must be checked to estimate software reliability accurately. However, our
approach entails costs that other testing techniques do not, such as the
costs of

(1) arranging and conducting beta testing,

(2) capturing, re-creating, and profiling operational executions,

(3) analyzing execution profiles, and

(4) sampling and computing estimates.

Activities (2)–(4) can be largely automated, so the personnel time they
require is negligible compared to that required to check executions. Manual
evaluation of executions may take days or weeks. Although cluster analysis
of profiles is computer intensive, we believe it will generally require much
less time, even for large programs. Capture/replay of executions entails
run-time overhead and either implementation costs or, if commercial tools
are used, licensing fees. Auxiliary hardware may be necessary in some
cases, e.g., for monitoring a real-time system.

The largest costs entailed by our approach to reliability estimation are
likely to be those associated with operational testing in general. Consider-
able effort may be needed to arrange for a beta version of software to be
used in the field. A developer may have to offer incentives to obtain the
cooperation of users. Most importantly, operational testing delays the
release of a product significantly. To expedite the delivery of software,
many developers choose to omit operational testing. This is risky, however,
because the short-term benefit may be negated by the long-term conse-
quences of delivering an unreliable product. To make well-informed deci-
sions about whether software is ready for general release, reliability
measurements are necessary. The only valid basis for making such mea-
surements is operational testing, because reliability depends upon usage.

Once software has been released and is in regular use, it may be
relatively easy to capture operational inputs. Consequently, the cost of
reestimating its reliability by stratified sampling may be significantly lower
than the cost of estimating it the first time.

8. RELATED WORK

Our use of stratified sampling for estimating software reliability is related
to the idea of partition testing or subdomain testing of software. Partition
testing is a framework for selecting a test set of manageable size that
exercises a program thoroughly. It involves dividing a program’s input
domain into a number of subdomains and then selecting a few test cases
(often one) from each of them. The subdomains are chosen so that the

Estimation of Software Reliability by Stratified Sampling • 275

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

inputs within each one are treated similarly by the program. (The subdo-
mains may or may not actually form a true partition of the input do-
main—a collection of disjoint, nonempty sets whose union is the entire
domain.) Many testing strategies can be viewed as forms of partition
testing, including functional testing [Howden 1980], control flow coverage
[Adrion et al. 1982], data flow coverage [Rapps and Weyuker 1985],
mutation testing [DeMillo et al. 1978], and partition analysis [Richardson
and Clarke 1981].

The software testing and reliability research most closely related to ours
concerns probabilistic or statistical approaches toward partition testing.
Some of this work focuses on defect detection, the rest on reliability
estimation.

In Duran and Ntafos [1984], Hamlet and Taylor [1990], and Weyuker and
Jeng [1991], partition testing is compared to random testing (simple
random sampling from a program’s entire input domain) with respect to the
probability that at least one failure occurs during testing.9 A form of
partition testing is evaluated in which inputs are selected randomly from
each subdomain of a partition. Different combinations of partition size,
subdomain failure probabilities, overall failure probability, subdomain
execution probabilities, and subdomain sample sizes are considered. Duran
and Ntafos conclude that random testing is often more cost effective than
partition testing [Duran and Ntafos 1984]. Hamlet and Taylor [1990] and
Weyuker and Jeng [1991] conclude that partition testing is significantly
more effective than random testing only when one or more subdomains
have a relatively high failure probability. Hamlet and Taylor also stipulate
that these subdomains must have low execution probability. Note that
similar conditions also tend to make a stratified estimator of a program’s
failure frequency efficient. Although none of these papers consider the
variance of reliability estimators, Weyuker and Jeng do question whether
the probability that at least one failure occurs during testing is an
adequate measure of partition testing’s effectiveness.

Frankl and Weyuker explore the defect-revealing ability of partition-
testing criteria under random selection from subdomains. In Frankl and
Weyuker [1993a], they define the properly covers relation between criteria
and prove that if criterion C1 properly covers criterion C2 and if one test is
selected randomly and uniformly from each subdomain then the probability
that C1 will reveal at least one defect is no less than the probability that C2

will do so. Frankl and Weyuker [1993b] prove that if C1 properly covers C2

then the expected number of failures discovered with C1 is no less than
that discovered with C2. They also relate a number of partition-testing
criteria in terms of the properly covers relation.

Thévenod-Fosse and Waeselynck [1993] examine the use of probabilistic
test generation to satisfy behavioral and structural criteria for fault
detection. They emphasize automatically generating enough tests so that

9Duran and Ntafos [1984] also consider the expected number of failures during testing.

276 • A. Podgurski et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

each element of a testing criterion is addressed by several test cases.
Although they call their approach “statistical testing,” it does not involve
estimating reliability. They describe it as follows:

The second direction [which the authors pursue] involves larger test sets that
should be tedious to determine manually; hence the need for an automatic
generation of test sets. And this is the motivation of statistical testing designed
according to a criterion, which aims to combine the information provided by
imperfect (but not irrelevant) criteria with a practical way of producing large
test sets, that is, a random generation.

Thévenod-Fosse and Waeselynck apparently view the evaluation of tests
as relatively inexpensive. They describe applications of their approach in
which behavioral and structural testing criteria were successfully employed
to reveal known defects.

Techniques for using partition testing to estimate software reliability are
proposed in Brown and Lipow [1975], Duran and Wiorkowski [1980], Miller
et al. [1992], Nelson [1978], Schick and Wolverton [1978], Thayer et al.
[1976], and Tsoukalas et al. [1993]. In a survey of reliability models, Schick
and Wolverton suggest the possibility of using stratified sampling to
estimate reliability:

There are clearly numerous methods possible for sampling. For example, one
might want to use a stratified sampling approach. Even cost can enter here
....One might attach a cost to the length of the running time and use stratified
sampling with cost [Schick and Wolverton 1978].

Schick and Wolverton do not pursue this idea. Other papers describe
techniques for estimating reliability that resemble conventional stratified
sampling. None of the papers is explicitly concerned with estimator effi-
ciency, employs cluster analysis for forming partitions, or applies a strati-
fied reliability estimator to real programs.

To account for operational usage, Brown and Lipow present a reliability
estimator

R̂ 5 1 2 O
i

fi

ni

pi

where i indexes a partition of the input domain; fi is the number of failed
tests from subdomain i; ni is the total number of tests from subdomain i;
and p i is the operational probability of an input from subdomain i [Brown
and Lipow 1975]. This is essentially a stratified estimator, although Brown
and Lipow do not fully specify a corresponding sampling design. The

variance of R̂ is not considered in Brown and Lipow [1975]. Thayer et al.

[1976] consider R̂ in more detail. They assume it will be used with simple
random sampling within subdomains and claim the estimator is unbiased—
provided that all subdomains are sampled. This claim is incorrect, however:

Estimation of Software Reliability by Stratified Sampling • 277

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

R̂ is generally biased even when all subdomains are sampled.10 This is
because all elements of a subdomain are treated as equally likely to arise in
operational usage, whether or not they actually are.11 For example, sup-

pose that R̂ is employed with a single subdomain, equal to the entire input

domain. Then p1 5 1, and R̂ actually estimates the proportion of all
possible inputs that do not cause failure. This proportion is different from
the operational frequency of success unless all possible inputs are equally
likely to arise in operational use, a condition that seldom holds. It is

conceivable that subdomains could be delimited so as to make the bias of R̂

small, but R̂ is not certain to be unbiased unless each subdomain has size
one. Thayer et al. present a variance formula, variance estimator, and

sample-allocation formula for R̂.12 They do not experimentally evaluate the

efficiency of R̂.
Duran and Wiorkowski [1980] derive upper confidence bounds on a

program’s failure probability for the special case where no failures occur
during testing. They derive bounds for random testing and (randomized)
partition testing; these are approximately equal when subdomain sample
sizes are proportional to subdomain execution probabilities. Tsoukalas et
al. [1993] derive confidence bounds on the mean failure cost of a run, for
random testing and (randomized) partition testing In the case of partition
testing, they assume that an input partition is given and that the cost of a
failure is uniform within a subdomain. Based on simulations with ran-
domly generated partitions, they conclude that their methods generally
yield tighter confidence bounds for partition testing than for random

testing. Tsoukalas et al. also present a stratified estimator, based on R̂, for
the mean failure cost of a run:

Ĉp 5 O
i51

k

ci

fi

ni

pi

Here i indexes a partition of the input domain; ci is the failure cost for

domain i; and fi, ni, and p i are defined as for R̂. The variance of Ĉp is not
investigated in Tsoukalas et al. [1993].

Miller et al. [1992] present a stratified estimator of a program’s failure
probability, for the special case that no failures occur during testing. The

10These remarks correct ones in Podgurski et al. [1993], which repeated the claim from Thayer

et al. [1976] that R̂ is unbiased (assuming all subdomains are sampled).
11Note that this is not the case with the stratified sampling designs we employ. These designs
are intended for sampling from a concrete population of operational executions, not for
sampling from a program’s entire input domain. Typically, many possible inputs will not occur
during a period of operational use, and others may occur multiple times.
12Their allocation method closely resembles Neyman’s method of optimal allocation in strati-
fied sampling [Neyman 1934].

278 • A. Podgurski et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

authors use partitioning of a program’s input domain to account for
operational usage, as in Brown and Lipow [1975]; they do not consider their

estimator’s variance. As with R̂, the elements of a subdomain are treated as
equally likely to occur in operational use. The estimator incorporates prior
assumptions about the probability of failure.

9. CONCLUSIONS

We have presented a new approach to estimating software reliability,
which is based on operational testing and which uses stratified sampling to
reduce the number of program executions that must be checked manually
for conformance to requirements. Captured executions are stratified auto-
matically, by cluster analysis of detailed execution profiles. Experimental
results were reported that suggest this approach is computationally feasi-
ble, can isolate failures, and can significantly reduce the cost of estimating
software reliability. Automatic clustering of captured executions provides a
concrete way to apply the intuition underlying proposed methods of parti-
tion testing, for which it is often difficult to generate test data syntheti-
cally. Stratified sampling of the resulting clusters provides a means of
integrating synthetic testing concepts with those of software reliability
estimation.

10. FUTURE WORK

To ascertain the utility of our approach, it is necessary to replicate the
experiments described in Section 5 with other programs. Applying the
approach to different types of programs will help to clarify the conditions
for its applicability. The experiments described here may also be extended
in several directions. It is natural to consider profiling other aspects of
program execution besides control flow, including function execution [How-
den 1980], data flow [Rapps and Weyuker 1985], boundary values [Adrion
et al. 1982], message passing and dynamic binding in object-oriented
programs [Harrold et al. 1992], event sequencing in concurrent programs
[Taylor et al. 1992], and mutation coverage [DeMillo et al. 1978]. Likewise,
other dissimilarity metrics, clustering algorithms, and stratified sampling
techniques merit investigation.

Stratified sampling is only one example of how auxiliary information
about a population can be used to improve the efficiency of sampling. A
large body of other sampling designs and estimators has been developed to
exploit such information [Sarndal et al. 1992; Thompson 1992]. Some of
these, such as regression estimators, may be applicable to software reliabil-
ity estimation. Similarly, other multivariate data analysis techniques be-
sides cluster analysis, such as multidimensional scaling and logistic regres-
sion, might be useful for analyzing and reducing program profile data. In
this article, we have focused on improving the efficiency of software
reliability estimation. However, automated analysis of execution profiles
might also be useful for revealing software defects. In this context, it could

Estimation of Software Reliability by Stratified Sampling • 279

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

be used to filter out executions with unusual profiles on the assumption
that they are most likely to reveal failures.

APPENDIX

A. WHEN STRATIFICATION IS EFFECTIVE

In this appendix, we mathematically characterize conditions under which
stratified random sampling is more efficient than simple random sampling
for estimating the proportion of a program’s executions that fail. Modifying
formula 3.7.26 of Sarndal et al. [1992], which applies to estimated totals,
yields the following relationship between the variance of the sample
proportion p 5 O

i51
n yi/n under simple random sampling and the variance of

the estimator pst under stratified random sampling with proportional
allocation (see Section 2):

V~p! 5 Vpr~pst! 1
N 2 n

n~N 2 1!
SSD

where N is the population size; n is the total sample size for each
estimator; and

SSD 5 O
h51

H

Wh~Ph 2 P!2 2
1

N
O

h51

H

~1 2 Wh!sh
2

Here H is the number of strata; Wh 5 Nh/N is the relative size of stratum
h; Ph is the proportion of failures in stratum h; P is the population failure
proportion; and sh

2 is the variance of stratum h. The “sums-of-squares
difference” SSD is a difference of two components: the first characterizes
variation between strata, and the second characterizes variation within
strata. We see that V~p! 2 Vpr~pst! is proportional to SSD and that pst is
more efficient than p provided that SSD is positive and 1 # n , N. By
letting F be the set of labels of failure strata (strata containing failures)
and by partitioning sums, we obtain

SSD 5 O
h[F

Wh~Ph 2 P!2 1 O
h[/ F

Wh~Ph 2 P!2

2
1

N
O

h[F

~1 2 Wh!sh
2 2

1

N
O

h[/ F

~1 2 Wh!sh
2.

Since Ph 5 sh
2 5 0 for any h [/ F, we have

SSD 5 O
h[F

Wh~Ph 2 P!2 1 O
h[/ F

WhP2 2
1

N
O

h[F

~1 2 Wh!sh
2.

280 • A. Podgurski et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

By expanding the squared factor in the leftmost sum and then simplifying,
we find

SSD 5 O
h[F

WhPh
2 2

1

N
O

h[F

~1 2 Wh!sh
2 2 P2.

This may be rewritten symbolically as

SSD 5 SSF 2 SSW 2 P2

where SSF is a weighted sum of squared stratum failure proportions, and
SSW is an oppositely weighted sum of variances within strata. Whether pst

is more efficient than p and by how much depends on whether and by how
much SSF exceeds SSW 1 P2. Note that the variance sh

2 in stratum h is

sh
2 5

Nh

Nh 2 1
Ph~1 2 Ph!

if Nh $ 2. (We have sh
2 5 0 for Nh 5 1.) Differentiation shows that the

maximum value of sh
2 is attained when Ph 5 1/ 2. Hence, sh

2 # 1/ 2, which
implies that

SSW 5
1

N
O

h[F

~1 2 Wh!sh
2 #

1

2N
O

h[F

~1 2 Wh!

,
?F?

2N
.

The conditions under which stratified sampling is beneficial for estimat-
ing P are difficult to characterize intuitively, because of dependencies
between factors like Ph and sh

2. Results we have obtained from simulations
and from experiments with actual programs (see Section 5) suggest the
following rough guidelines:

Stratified sampling is beneficial for estimating a program’s failure fre-
quency when a moderate-to-high proportion of all failures are distributed
among strata whose individual failure proportions are themselves mod-
erate to high. Hence, when few failures are expected, it is desirable to use
many small strata.

B. CLUSTERING ALGORITHMS

The initial choices made by a hierarchical clustering algorithm may pre-
vent it from finding a good clustering into a given number of clusters.
Hence, we first judged partitioning methods to be more appropriate for
stratified sampling, where the number of strata is chosen to maximize
estimator efficiency. In the experiments reported in Podgurski et al. [1993],

Estimation of Software Reliability by Stratified Sampling • 281

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

program executions were stratified using the partitioning program PAM
(for Partitioning Around Medoids) developed by Kaufman and Rousseeuw
[1990]. The inputs to PAM were dissimilarities computed with the program
DAISY developed by the same authors. PAM takes the desired number k of
clusters as input. It searches for k representative objects called medoids
using an iterative relocation algorithm called the k-medoid algorithm. PAM
first selects a set of initial representatives and then tries to improve this
set. For each selected object a and unselected object b, it determines the
effect of swapping a and b on the average dissimilarity d between objects
and their closest representative. If any reduction in d is possible, PAM
makes the swap causing the greatest reduction and then tries to improve
the new set of representatives. Otherwise, it stops. Clusters are formed by
associating each data object with the nearest medoid.

The running time of iterative-relocation algorithms like the k-medoid
algorithm grows quickly with the population size and the desired number of
clusters [Kaufman and Rousseeuw 1990]. This is problematic for stratifica-
tion of program executions, which may entail clustering thousands of
executions into hundreds of clusters. In some cases, we were unable to
cluster a population of executions with PAM in over 30 hours of computa-
tion time. In the experiments reported here, a two-stage clustering algo-
rithm was used that combines aspects of hierarchical clustering and
partitioning. In the first stage, the k-medoid algorithm is used to cluster a
population into a relatively small number of clusters, say 20. In the second
stage, the k-medoid algorithm is applied to each of the first-stage clusters.
The number of subclusters created from each first-stage cluster is chosen to
be proportional to the internal dissimilarity of that cluster. Our experi-
ments indicate that two-stage partitioning is several times faster than
ordinary partitioning.

Our experiments suggest that much of the benefit of clustering execution
profiles derives from isolating unusual executions in singleton clusters,
rather than from grouping failures together. If this is generally true, then
it may be preferable to use relatively inexpensive heirarchical clustering
algorithms instead of partitioning algorithms. We are currently investigat-
ing this issue.

REFERENCES

ADRION, W. R., BRANSTAD, M. A., AND CHERNIAVSKY, J. C. 1982. Verification, validation, and
testing of computer software. ACM Comput. Surv. 14, 2 (June), 159–192.

ANDERBERG, M. R. 1973. Cluster Analysis for Applications. Academic Press, Inc., New York,
NY.

BROWN, J. R. AND LIPOW, M. 1975. Testing for software reliability. In Proceedings of the
International Conference on Reliable Software (Los Angeles, CA, Apr.). 518–527.

COCHRAN, W. G. 1977. Sampling Techniques. John Wiley & Sons, Inc., New York, NY.
DEMILLO, R. A., LIPTON, R. J., AND SAYWARD, F. G. 1978. Hints on test data selection: Help for

the practising programmer. Computer 11, 4, 34–41.
DURAN, J. W. AND WIORKOWSKI, J. J. 1980. Quantifying software validity by sampling. IEEE

Trans. Reliab. R-29, 2 (June), 141–144.

282 • A. Podgurski et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

DURAN, J. W. AND NTAFOS, S. C. 1984. An evaluation of random testing. IEEE Trans. Softw.
Eng. SE-10, 4 (July), 438–444.

FRANKL, P. G. AND WEYUKER, E. J. 1993a. A formal analysis of the fault detecting ability of
testing methods. IEEE Trans. Softw. Eng. 19, 3, 202–213.

FRANKL, P. G. AND WEYUKER, E. J. 1993b. Provable improvements on branch testing. IEEE
Trans. Softw. Eng. 19, 10 (Oct.), 962–975.

HAMLET, D. AND TAYLOR, R. 1990. Partition testing does not inspire confidence. IEEE Trans.
Softw. Eng. 16, 12 (Dec. 1990), 1402–1411.

HARROLD, M. J., MCGREGOR, J. D., AND FITZPATRICK, K. J. 1992. Incremental testing of
object-oriented class structures. In Proceedings of the 14th International Conference on
Software Engineering (ICSE ’92, Melbourne, Australia, May 11–15), T. Montgomery,
Ed. ACM Press, New York, NY, 68–80.

HOWDEN, W. E. 1980. Functional program testing. IEEE Trans. Softw. Eng. SE-6, 2 (Mar.),
162–169.

KAUFMAN, L. AND ROUSSEEUW, P. J. 1990. Finding Groups in Data. John Wiley & Sons, Inc.,
New York, NY.

KERNIGHAN, B. W. AND RITCHIE, D. M. 1988. The C Programming Language. Prentice Hall
Press, Upper Saddle River, NJ.

MILLER, K. W., MORELL, L. J., NOONAN, R. E., PARK, S. K., NICOL, D. M., MURRILL, B. W., AND

VOAS, J. M. 1992. Estimating the probability of failure when testing reveals no
failures. IEEE Trans. Softw. Eng. 18, 1 (Jan. 1992), 33–43.

MUSA, J. D. 1993. Operational profiles in software-reliability engineering. IEEE Softw.
(Mar.), 14–32.

NELSON, E. N. 1978. Estimating software reliability from test data. Mircroelectron. Reliab.
17, 67–74.

NEYMAN, J. 1934. On two different aspects of the representative method: The method of
stratified sampling and the method of purposive selection. J. Royal Stat. Soc. B. 97,
558–606.

PODGURSKI, A. AND YANG, C. 1993. Partition testing, stratified sampling, and cluster
analysis. SIGSOFT Softw. Eng. Notes 18, 5 (Dec. 1993), 169–181.

RAPPS, S. AND WEYUKER, E. J. 1985. Selecting software test data using data flow
information. IEEE Trans. Softw. Eng. SE-11, 4 (Apr.), 367–375.

RICHARDSON, D. J. AND CLARKE, L. A. 1981. A partition analysis method to increase program
reliability. In Proceedings of the 5th International Conference on Software Engineering (Los
Alamitos, CA). 244–253.

SARNDAL, C.-E., SWENSSON, B., AND WRETMAN, J. 1992. Model Assisted Survey
Sampling. Springer-Verlag, New York, NY.

SCHICK, G. J. AND WOLVERTON, R. W. 1978. An analysis of competing software reliability
models. IEEE Trans. Softw. Eng. SE-4, 2 (Mar.), 104–120.

TAYLOR, R. N., LEVINE, D. L., AND KELLY, C. D. 1992. Structural testing of concurrent
programs. IEEE Trans. Softw. Eng. 18, 3 (Mar. 1992), 206–215.

THAYER, T. A., LIPOW, M., AND NELSON, E. C. 1976. Software reliability. Tech. Rep.
TRW-SS-76-03. TRW.

THÉVENOD-FOSSE, P. AND WAESELYNCK, H. 1993. STATEMATE applied to statistical software
testing. In Proceedings of the 1993 International Symposium on Software Testing and
Analysis (ISSTA, Cambridge, MA, June 28–30, 1993), T. Ostrand and E. Weyuker,
Eds. ACM Press, New York, NY, 99–109.

THOMPSON, S. K. 1992. Sampling. John Wiley & Sons, Inc., New York, NY.
TSOUKALAS, M. Z., DURAN, J. W., AND NTAFOS, S. 1993. On some reliability estimation

problems in random and partition testing. IEEE Trans. Softw. Eng. 19, 7 (July), 687–697.
WEYUKER, E. J. AND JENG, B. 1991. Analyzing partition testing strategies. IEEE Trans.

Softw. Eng. 17, 7 (July 1991), 703–711.

Received: March 1994; revised: December 1994, October 1996, and July 1998; accepted:
September 1998

Estimation of Software Reliability by Stratified Sampling • 283

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

