Problems in Population Models of Language Change

Jordan Kodner University of Pennsylvania

FWAV 4, June 29, 2017 University of York

Outline

- Frameworks for Population-Level Change
- Description of our Framework
- Population Size and Assumptions about the Grammar
- Generating S-Curves in Realistic Networks the Cot-Caught Merger
- Capturing Complex Paths of Change NCS in the St. Louis Corridor

Important Points

Population models and learning models interact

- Assumptions must be carefully considered when modelling change
- Attested paths of change are governed by these interactions
 - Neither alone provides the full picture
 - Both should be studied to the extent possible

Existing Frameworks

- 1. Concrete Frameworks
- 2. Network Frameworks
- 3. Algebraic Frameworks

1. Concrete Frameworks

- Individual agents on a grid moving randomly and interacting
- e.g., Harrison et al. 2002, Satterfield 2001, Schulze et al. 2008, Stanford & Kenny 2013

1. Concrete Frameworks

- Individual agents on a grid moving randomly and interacting
- e.g., Harrison et al. 2002, Satterfield 2001, Schulze et al. 2008, Stanford & Kenny 2013
- + Gradient interaction probability for free
- + Diffusion is straightforward
- Not a lot of control over the network
- Thousands of degrees of freedom -> should run many many times -> slow
- Unclear how to include a learning model

- **1. Concrete Frameworks**
- 2. Network Frameworks
 - Speakers are nodes in a graph, edges are possibility of interaction
 - e.g., Baxter et al. 2006, Baxter et al. 2009, Blythe & Croft 2012, Fagyal et al. 2010, Minett & Wang 2008, Kauhanen 2016

- **1. Concrete Frameworks**
- 2. Network Frameworks
 - Speakers are nodes in a graph, edges are possibility of interaction
 - e.g., Baxter et al. 2006, Baxter et al. 2009, Blythe & Croft 2012, Fagyal et al. 2010, Minett & Wang 2008, Kauhanen 2016
 - + Much more control over network structure
 - + Easy to model concepts from the sociolinguistic lit. (e.g., Milroy & Milroy)
 - Nodes only interact with immediate neighbors -> slow and less realistic?
 - Practically implemented as random interactions between neighbors -> same problem as #1

- **1. Concrete Frameworks**
- 2. Network Frameworks
- 3. Algebraic Frameworks
 - Expected outcome of interactions in a perfectly mixed population is calculated analytically
 - Abrams & Stroganz 2003, Baxter et al. 2006, Minett & Wang 2008, Niyogi & Berwick 1997, Niyogi & Berwick 2009

- **1. Concrete Frameworks**
- 2. Network Frameworks
- 3. Algebraic Frameworks
 - Expected outcome of interactions in a perfectly mixed population is calculated analytically
 - Abrams & Stroganz 2003, Baxter et al. 2006, Minett & Wang 2008, Niyogi & Berwick 1997, Niyogi & Berwick 2009
 - + Less reliance on random processes -> faster and more direct
 - + Clear how to insert learning models into the framework
 - No network structure! Always implemented over perfectly mixed populations

Our Framework

Best of Both Worlds

• An algebraic model operating on network graphs

Best of Both Worlds

- An algebraic model operating on network graphs
 - No random process in the core algorithm
 - Fast and efficient

Best of Both Worlds

- An algebraic model operating on network graphs
 - No random process in the core algorithm
 - Fast and efficient
 - Models language change in social structures

Formal Description

Each iteration has two steps

- **1. Diffusion calculate how variants propagate**
- 2. Transmission calculate how variants are learned

Diffusion

$$\mathbf{P}_{t+1} = \mathbf{B}^{\top} \boldsymbol{\alpha} \left(\mathbf{I} - (1 - \boldsymbol{\alpha}) \mathbf{A} \right)^{-1} \mathbf{H} (\mathbf{H}^{\top} \mathbf{H})^{-1}$$

- A *n* x *n* adjacency matrix
- α jump parameter
- H *n* x c community-membership
- **B** c x g distr. of grammars in comms
- P c x g distr. of grammars in inputs

Diffusion

$$\mathbf{P}_{t+1} = \mathbf{B}^{\top} \alpha \left(\mathbf{I} - (1 - \alpha) \mathbf{A} \right)^{-1} \mathbf{H} (\mathbf{H}^{\top} \mathbf{H})^{-1}$$

- A *n* x *n* adjacency matrix
- α jump parameter
- H n x c community-membership
- **B** c x g distr. of grammars in comms
- P c x g distr. of grammars in inputs

Who speaks what in what proportion Who hears what in what proportion

The network graph

Transmission

- Dependent on the learning model
- Our implementation is modular, so many learning models can be slotted in
 - e.g., trigger-based learner (Gibson & Wexler 1994)
 - Variational learner (Yang 2000)

Transmission

- Dependent on the learning model
- Our implementation is modular, so many learning models can be slotted in
 - e.g., trigger-based learner (Gibson & Wexler 1994)
 - Variational learner (Yang 2000)
- Let L be the distribution of grammars internalized by a learner who heard P
 - L is a matrix consisting of g vectors $l_1, l_2, ... l_g$
- Define *g* transition matrices $T_1, T_2, ..., T_g$, one for each potential target grammar

$$\mathbf{l}_i = \text{dominant eigenvector of } \sum_{j=1}^g \mathbf{P}_{t+1;j,i} \mathbf{T}_j$$

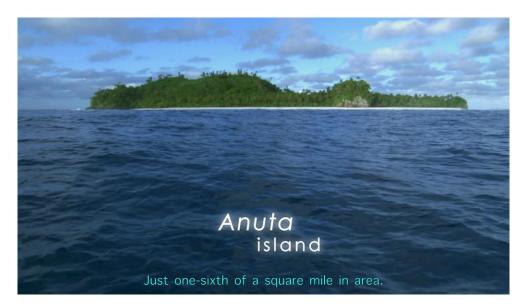
Transmission and Grammatical Advantage

- If L = P, learners internalize variants at the rate they hear them
 - This yields neutral change
- Otherwise, learners choose variants in a way that biases some over others
 - Some variants have an advantage over others
 - This yields S-curve change in perfectly mixed populations

Population Size and Grammars

- Simulations typically run with a few hundred agents
 - Kauhanen 2016, Stanford & Kenny 2013, Blythe & Croft 2012, etc.
- Is this true of actual speech communities?

- Simulations typically run with a few hundred agents
 - Kauhanen 2016, Stanford & Kenny 2013, Blythe & Croft 2012, etc.
- Is this true of actual speech communities?
 - Maybe sometimes!



- Simulations typically run with a few hundred agents
 - Kauhanen 2016, Stanford & Kenny 2013, Blythe & Croft 2012, etc.
- Is this true of actual speech communities?
 - Maybe sometimes!
 - But not typically true of the communities under study
- Martha's Vineyard (Labov 1963)
 - o ~5,500 in winter → ~42,000 in summer c. 1960
 - Summer population largely from New England (cf Massachusetts 5.1mil in 1960)

- Simulations typically run with a few hundred agents
 - Kauhanen 2016, Stanford & Kenny 2013, Blythe & Croft 2012, etc.
- Is this true of actual speech communities?
 - Maybe sometimes!
 - But not typically true of the communities under study
- Martha's Vineyard (Labov 1963)
 - ~5,500 in winter → ~42,000 in summer c. 1960
 - Summer population largely from New England (cf Massachusetts 5.1mil in 1960)
- Do-Support (Ellegård 1953)
 - Rise of do-support constructions in English 1400-1700
 - Involved millions of individuals

When is this a Problem?

- If learners internalize a distribution of grammars (i.e. competing grammars) and the population is (approximately) uniformly mixed, it is *not* a problem
 - Change closely approximates the path followed in infinite populations
 - So small-population models are a useful convenience

When is this a Problem?

- If learners internalize a distribution of grammars (i.e. competing grammars) and the population is (approximately) uniformly mixed, it is *not* a problem
 - Change closely approximates the path followed in infinite populations
 - So small-population models are a useful convenience
- But, if either of the above does not hold, it is a problem (maybe)
 - It becomes impossible to untangle population and learning effects

- C1 begins with 100% variant 1
- C2 begins with 100% variant 2

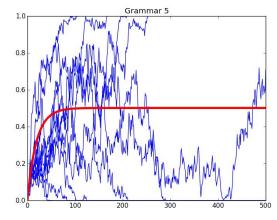
- \circ C1 begins with 100% variant 1
- C2 begins with 100% variant 2
- Neutral change

- \circ C1 begins with 100% variant 1
- C2 begins with 100% variant 2
- Neutral change
- Over time, each community should approach 50/50 mix

- C1 begins with 100% variant 1
- C2 begins with 100% variant 2
- Neutral change
- Over time, each community should approach 50/50 mix
- Assume speakers internalize a single grammar
 - Chosen probabilistically
 - weighted by rate in their input

- Assume two connected communities
 - C1 begins with 100% variant 1
 - C2 begins with 100% variant 2
- Neutral change
- Over time, each community should approach 50/50 mix
- Assume speakers internalize a single grammar
 - Chosen probabilistically
 - weighted by rate in their input
 - cf Kauhanen 2016

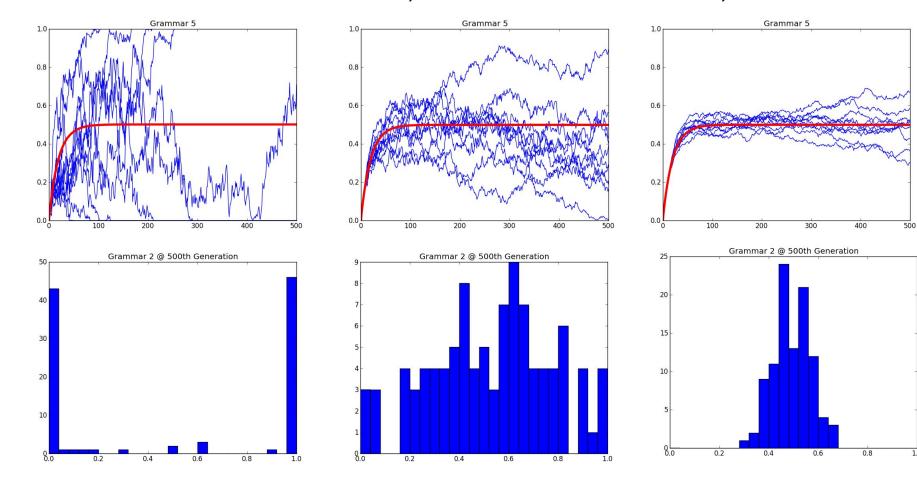
Rise of Variant 2 in C1 *n* = 200



Red curve	
Blue curves	

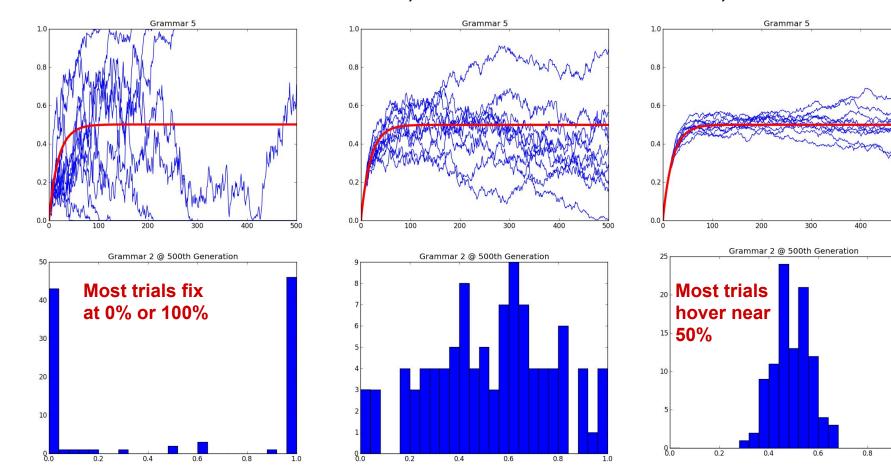
predicted first 10 trials

1.0



500

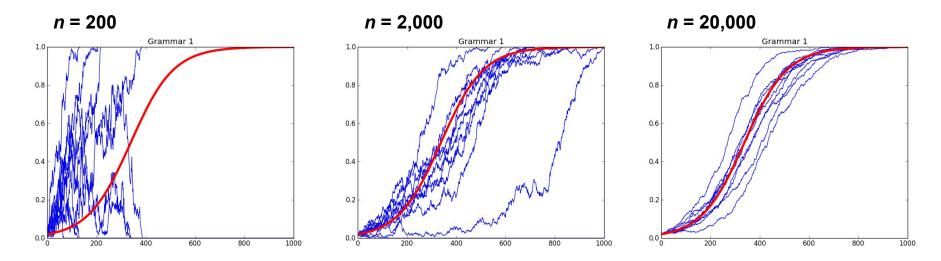
1.0



Demonstration: Advantage

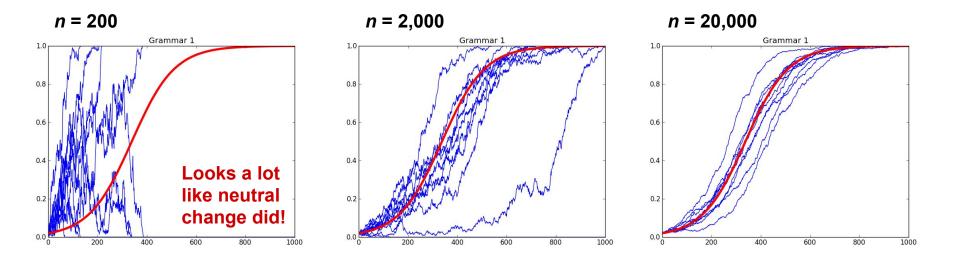
• Repeating the previous test but with an advantage

- Single community beginning at 1% innovative grammar
- Learners choose a single grammar probabilistically, weighted toward innovative
- Logistic curve predicted



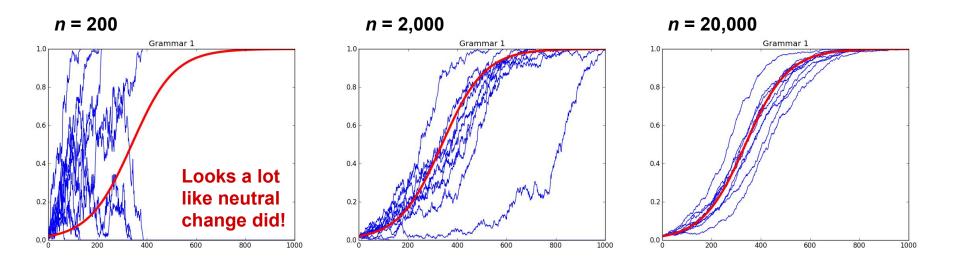
Demonstration: Advantage

• At small *n*, S-curve change cannot arise



Demonstration: Advantage

- At small *n*, S-curve change cannot arise
- At large n, S-curves become smooth



- "Innocuous" assumptions may dominate behavior
 - Here, choice of population size and single-grammar assumptions
 - Conclusions drawable for *n*=200 do not scale to *n*=20,000 or visa-versa

- "Innocuous" assumptions may dominate behavior
 - Here, choice of population size and single-grammar assumptions
 - Conclusions drawable for *n*=200 do not scale to *n*=20,000 or visa-versa
- Slightly different assumptions yield drastically different conclusions
 - Is neutral change well-behaved?
 - \circ Do we expect to see S-curve change?

Complex Networks and S-Curves: The Cot-Caught Merger in New England

Single-Grammar Learners

- The previous section pointed out a problem with single-grammar learners
- But it is not an indictment

Single-Grammar Learners

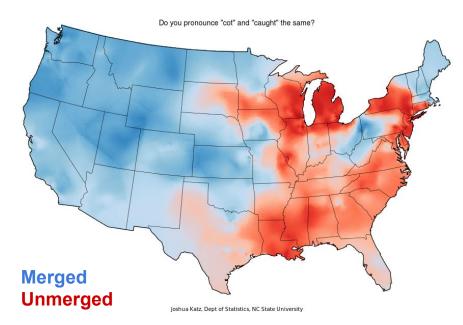
- The previous section pointed out a problem with single-grammar learners
- But it is not an indictment
- Some changes are neatly modeled as single-grammar processes
 - E.g., the spread of mergers, e.g., cot-caught on the RI/MA border (Johnson 2007, Yang 2009)

The Cot-Caught Merger

- /p/ "cot" merges with /ɔ/ "caught"
- Usually unconditioned

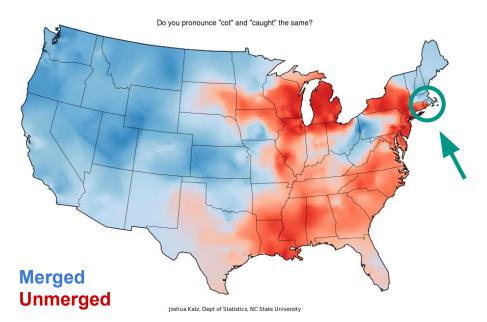
The Cot-Caught Merger

- /p/ "cot" merges with /ɔ/ "caught"
- Usually unconditioned
- Present in some dialects of North American English
 - Eastern New England
 - Western PA
 - Lower Midwest
 - \circ The West
 - Canada (even NL!)



The Cot-Caught Merger

- /p/ "cot" merges with /ɔ/ "caught"
- Usually unconditioned
- Present in some dialects of North American English
 - Eastern New England
 - Western PA
 - Lower Midwest
 - The West
 - Canada (even NL!)
- It is spreading into Rhode Island (Johnson 2007)

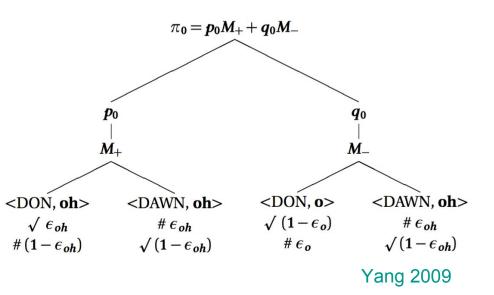


Modeling Merger Acquisition

• Claim: Mergers tend to spread because the merged grammar has a processing advantage

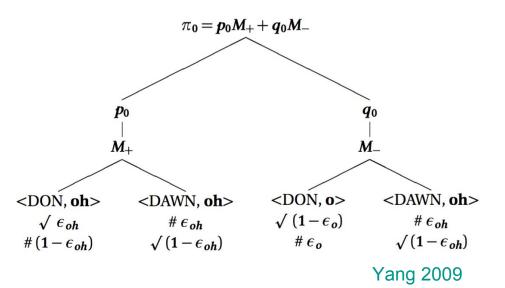
Modeling Merger Acquisition

- Claim: Mergers tend to spread because the merged grammar has a processing advantage
- Asymmetric
 - If a listener is unmerged, merged speakers create misunderstandings
 - If a listener is merged, unmerged speakers do not create misunderstandings



Modeling Merger Acquisition

- Claim: Mergers tend to spread because the merged grammar has a processing advantage
- Asymmetric
 - If a listener is unmerged, merged speakers create misunderstandings
 - If a listener is merged, unmerged speakers do not create misunderstandings
- Calculated for cot-caught, if at least ~17% of input is merged, the learner acquires the merged grammar

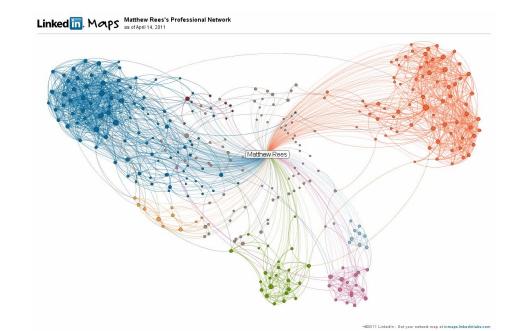


The Problem

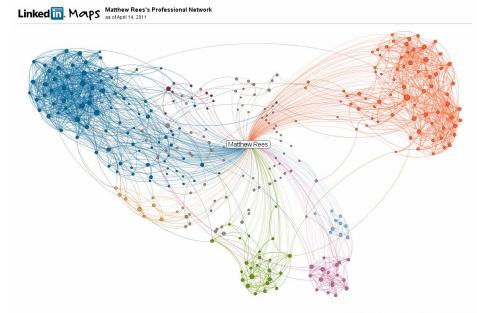
- Except under incredibly specific network settings, a near-uniform population fixes at 0% or 100% in a couple iterations
 - \circ In our model, alpha must be within a 0.005 window to avoid this
 - alpha is never so finicky otherwise
- Not what has happened empirically

• A more realistic network!

- A more realistic network!
- Large populations are not homogeneous
 - Tend to consist of many tight clusters loosely connected together
 - Echos of Milroy & Milroy's "strong and weak connections"

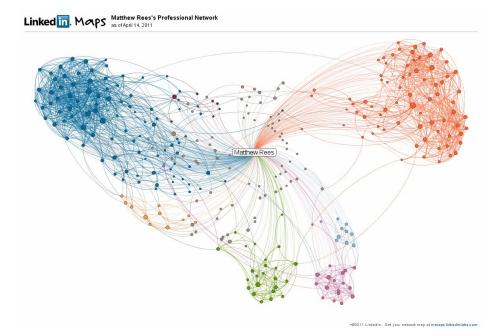


- A more realistic network!
- Large populations are not homogeneous
 - Tend to consist of many tight clusters loosely connected together
 - Echos of Milroy & Milroy's "strong and weak connections"
 - Homophily
 - Physical geography
 - **etc.**



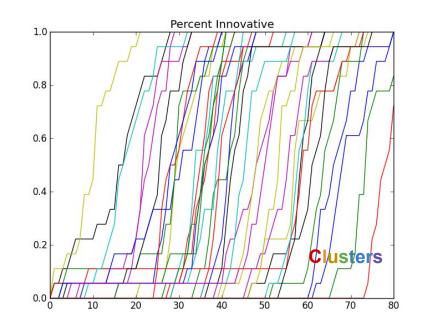
r@2011 LinkedIn - Get your network map at inmaps.linkedinlabs.com

- A more realistic network!
- Large populations are not homogeneous
 - Tend to consist of many tight clusters loosely connected together
 - Echos of Milroy & Milroy's "strong and weak connections"
 - Homophily
 - Physical geography
 - etc.
- So we consider a loosely connected network of centralized clusters

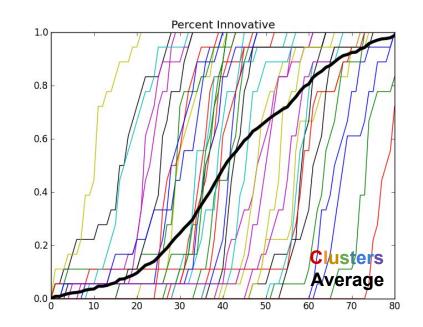


- A network of 39 loosely connected centralized clusters all unmerged
- Plus one merged cluster

- A network of 39 loosely connected centralized clusters all unmerged
- Plus one merged cluster
- Clusters merges rapidly in succession

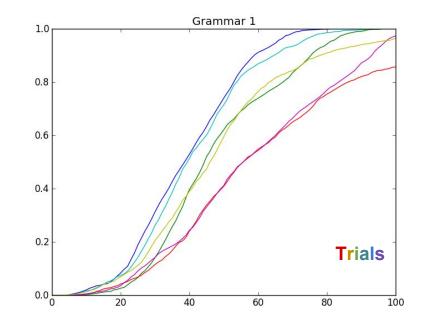


- A network of 39 loosely connected centralized clusters all unmerged
- Plus one merged cluster
- Clusters merges rapidly in succession
- But the community average is an S-curve



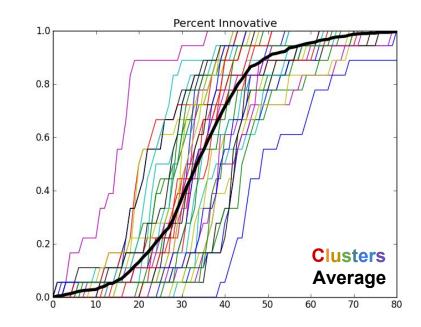
The averaged S-curve slope:

• depends on the grammatical advantage *and* the network



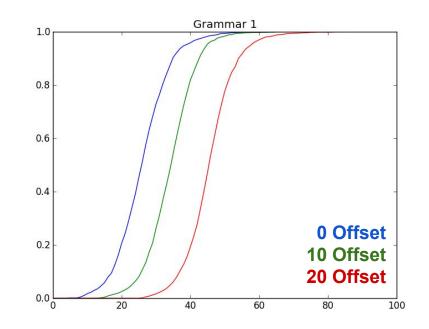
The averaged S-curve slope

- depends on the grammatical advantage *and* the network
- is improved by evolving the network



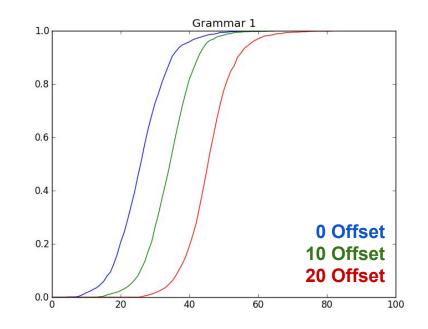
The averaged S-curve slope

- depends on the grammatical advantage *and* the network
- is improved by evolving the network
- is preserved when introduced with a time offset



The averaged S-curve slope

- depends on the grammatical advantage *and* the network
- is improved by evolving the network
- is preserved when introduced with a time offset
 - Is compatible with the Constant Rate Effect



Population models and learning models interact!

• They conspire to yield empirically attested rates of change

- They conspire to yield empirically attested rates of change
- S-curve change is possible outside competing-grammars scenarios

- They conspire to yield empirically attested rates of change
- S-curve change is possible outside competing-grammars scenarios
- But competing- and single-grammars behave differently on small scales

- They conspire to yield empirically attested rates of change
- S-curve change is possible outside competing-grammars scenarios
- But competing- and single-grammars behave differently on small scales
- Population effects preserve CRE across simultaneous changes with the same advantage

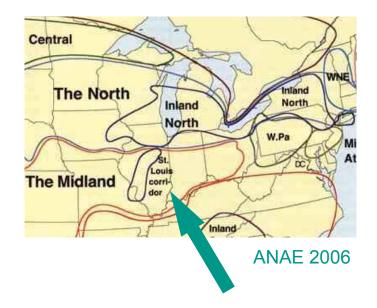
Complex Paths of Change: NCS in the St. Louis Corridor

Not all Change is Ideal

- An empirical fact
- Some change does not reach completion
- So it is obviously not S-shaped

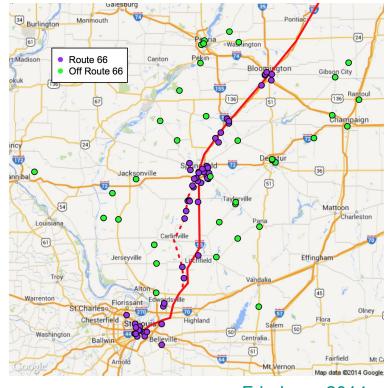
The St. Louis Corridor

- Dialect region within US Midlands between Chicago and St. Louis
- But has features from the Inland North
 - Northern Cities Shift (NCS)
 - \circ Has advanced and retreated



The St. Louis Corridor

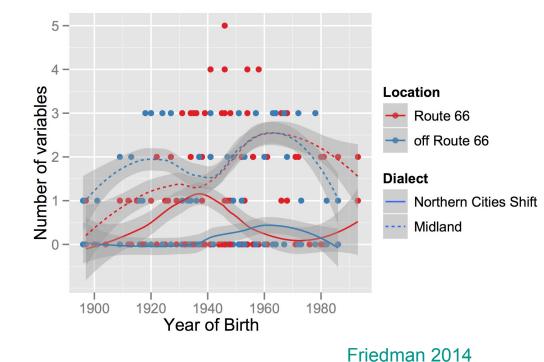
• NCS entered the Corridor via Route 66 during the Great Depression



Friedman 2014

The St. Louis Corridor

- NCS entered the Corridor via Route 66 during the Great Depression
- Path of change is different On-Route and Off-Route
 - NCS peaks first On-Route
 - NCS peaks higher On-Route

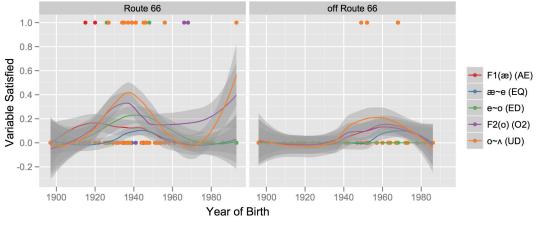


The St. Louis Corridor

- NCS entered the Corridor via Route 66 during the Great Depression
- Path of change is different On-Route and Off-Route
 - NCS peaks first On-Route
 - NCS peaks higher On-Route

On-Route

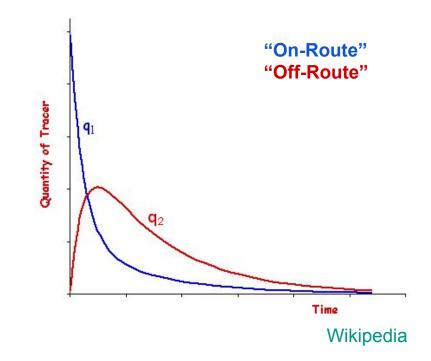
Off-Route



Friedman 2014

The St. Louis Corridor

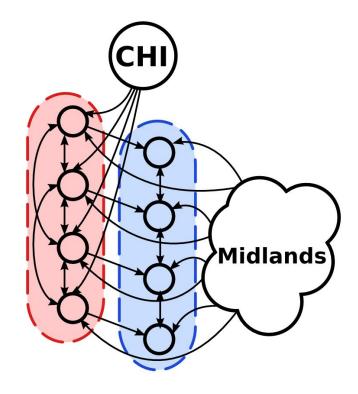
- NCS entered the Corridor via Route 66 during the Great Depression
- Path of change is different On-Route and Off-Route
 - NCS peaks first On-Route
 - NCS peaks higher On-Route
- Typical of two-compartment systems



Modelling the Corridor: Network Structure

Community Types:

- Midlands (1; "background")
- Chicago (1)
- **On-Route** (19)
- Off-Route (19)



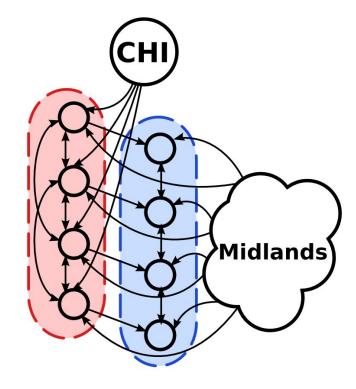
Modelling the Corridor: Network Structure

Community Types:

- Midlands (1; "background")
- Chicago (1)
- **On-Route** (19)
- Off-Route (19)

Connections:

- Midlands to all On-Route and Off-Route
- Chicago to all On-Route
- On-Route to two adjacent On-Route
- On-Route to one adjacent Off-Route
- Off-Route to one adjacent Off-Route



• Vary a single parameter: Direction of movement to On-Route communities

- Vary a single parameter: Direction of movement to On-Route communities
- Tests Great Depression hypothesis

- Vary a single parameter: Direction of movement to On-Route communities
- Tests Great Depression hypothesis
- It would be too "easy" if we could vary multiple parameters
 - Movement Off-Route
 - Strength of connections between On-Route and Off-Route
 - Strength of connections between On/Off-Route and Chicago/Midlands
 - Advantage of NCS
 - Etc.

- Vary a single parameter: Direction of movement to On-Route communities
- Tests Great Depression hypothesis
- It would be too "easy" if we could vary multiple parameters
 - Movement Off-Route
 - Strength of connections between On-Route and Off-Route
 - Strength of connections between On/Off-Route and Chicago/Midlands
 - Advantage of NCS
 - **Etc.**
- And the results would be less meaningful

- Vary a single parameter: Direction of movement to On-Route communities
- Tests Great Depression hypothesis

Stage 1 - 5 iterations

No movement (speaker interaction only)

Stage 2 - 20 iterations

2% movement from Chicago to On-Route "Great Depression"

Stage 3 - 75 iterations

2% movement from Midlands to On-Route "Post-Depression"

Modelling the Corridor: The Variable

• Treating the NCS as a single binary variable subject to competing grammars

Modelling the Corridor: The Variable

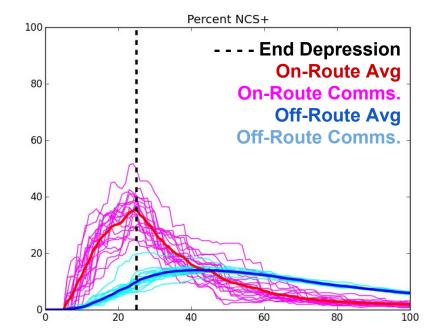
- Treating the NCS as a single binary variable subject to competing grammars
- Community Variable Distributions:
 - Chicago fixed at 100% NCS+
 - Midlands fixed at 100% NCS-
 - On/Off-Route begins 100% NCS- but is allowed to vary

Modelling the Corridor: The Variable

- Treating the NCS as a single binary variable subject to competing grammars
- Community Variable Distributions:
 - Chicago fixed at 100% NCS+
 - Midlands fixed at 100% NCS-
 - On/Off-Route begins 100% NCS- but is allowed to vary
- Tested as neutral, slightly advantaged, and heavily advantaged change

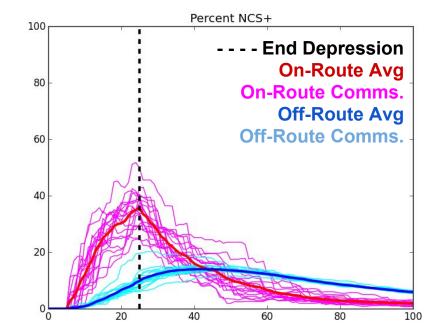
Results: Neutral Change

• A classic two-compartment pattern arises



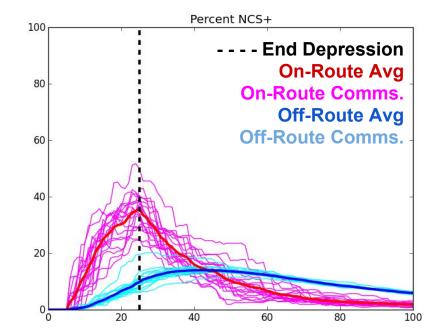
Results: Neutral Change

- A classic two-compartment pattern arises
- NCS peaks higher and earlier On-Route than Off-Route



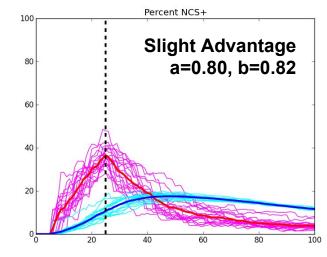
Results: Neutral Change

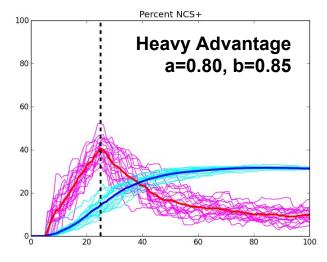
- A classic two-compartment pattern arises
- NCS peaks higher and earlier On-Route than Off-Route
- NCS continues to increase
 Off-Route even after On-Route
 population movements are
 reversed



Results: Advantaged Change

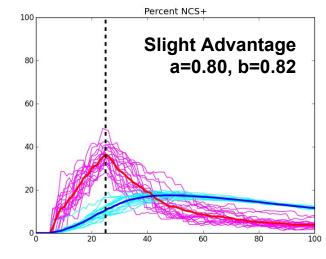
- Advantaged change resists being "tamped down" Off-Route
 - NCS recedes given a slight advantage
 - NCS advances given a heavy advantage

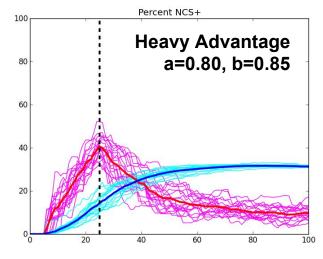




Results: Advantaged Change

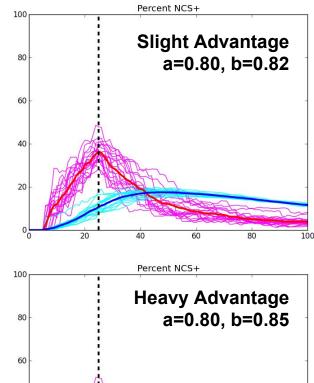
- Advantaged change resists being "tamped down" Off-Route
 - NCS recedes given a slight advantage
 - NCS advances given a heavy advantage
- Exists some threshold above which indirect action On-Route is insufficient

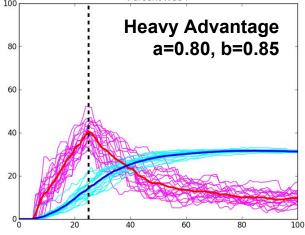




Results: Advantaged Change

- Advantaged change resists being "tamped down" Off-Route
 - NCS recedes given a slight advantage
 - NCS advances given a heavy advantage
- Exists some threshold above which indirect action On-Route is insufficient
- Can be solved with additional model parameters
 - Rate of movement Off-Route
 - The advantage itself
 - etc.





Final Takeaways

Population models and learning models interact!

Final Takeaways

Population models and learning models interact!

- Assumptions must be carefully considered when modelling change
 - Under what assumptions are results generalizable?

Final Takeaways

Population models and learning models interact!

- Assumptions must be carefully considered when modelling change
 - Under what assumptions are results generalizable?
- Attested paths of change are governed by these interactions
 - Sometimes explicitly e.g., the St. Louis Corridor
 - Sometimes implicitly e.g., New England cot-caught

End

Code Available here:

github.com/jkodner05/NetworksAndLangChange

Extra slides: Diffusion

$\mathbf{P}_{t+1} = \mathbf{B}^{\top} \boldsymbol{\alpha} \left(\mathbf{I} - (1 - \boldsymbol{\alpha}) \mathbf{A} \right)^{-1} \mathbf{H} (\mathbf{H}^{\top} \mathbf{H})^{-1}$

• A *n* x *n* adjacency matrix

- α jump parameter
- H *n* x c community-membership
- B c x g distr. of grammars in comms
- P c x g distr. of grammars in inputs

- Indicates directed weighted edges between speakers in network
- Column stochastic
- Easy to make undirected or unweighted

- A *n* x *n* adjacency matrix
- α jump parameter
- H *n* x c community-membership
- B c x g distr. of grammars in comms
- P c x g distr. of grammars in inputs

- Decides "fluidity" of interactions
- Jump distances follow a geometric distribution
 - Speakers are most likely to intera adjacent speakers
 - But occasionally talk to others far away
- Also implemented with Poisson distribution

- A *n* x *n* adjacency matrix
- α jump parameter
- H *n* x c community-membership
- B c x g distr. of grammars in comms
- P c x g distr. of grammars in inputs

- Indicator matrix
- Defines "community" membership
- More on this later...

- A *n* x *n* adjacency matrix
- α jump parameter
- H *n* x c community-membership
- B c x g distr. of grammars in comms
- P c x g distr. of grammars in inputs

- Distribution of grammars
- According to which community members produce utterances

- A *n* x *n* adjacency matrix
- α jump parameter
- H *n* x c community-membership
- B c x g distr. of grammars in comms
- P c x g distr. of grammars in inputs

- Distribution of grammars
- Heard by learners of each community

Tracking Individuals

- The model can the average behavior of "communities" rather than individuals
- If c = n, then H is $n \ge n$, and the full descriptive detail of the model is available
 - H becomes the identity matrix, and the formula for P can be rewritten

$$\mathbf{P}_{t+1} = \mathbf{B}^{\top} \boldsymbol{\alpha} \left(\mathbf{I} - (1 - \boldsymbol{\alpha}) \mathbf{A} \right)^{-1}$$

Tracking Communities

- If fine-grain detail is unnecessary, tracking community averages provides substantial computational speedup when *c* << *n*
- If each community is internally uniform, n x n A admits a c x c equitable-partition A^π
- Yielding a more efficient but equivalent update formula for P

$$\mathbf{A}^{\boldsymbol{\pi}} = (\mathbf{H}^{\top}\mathbf{H})^{-1}\mathbf{H}^{\top}\mathbf{A}\mathbf{H}$$
$$\mathbf{P}_{t+1} = \boldsymbol{\alpha}\mathbf{B}^{\top}\mathbf{H}(\mathbf{I} - (1 - \boldsymbol{\alpha})\mathbf{A}^{\boldsymbol{\pi}})^{-1}(\mathbf{H}^{\top}\mathbf{H})^{-1}$$

Anecdotally, I can run n = 20,000 nets on my laptop with A^{TT} about as fast as n = 2,000 net with A

Extra Slides: Transmission

- Let there be two languages L₁ and L₂, the extensions of g₁ and g₂, produced with probabilities P₁ and P₂.
- $\mathbf{a} = \mathbf{P}_1[\mathbf{L}_1 \text{ union } \mathbf{L}_2]$ $\mathbf{1} \mathbf{a} = \mathbf{P}_1[\mathbf{L}_1 \setminus \mathbf{L}_2]$
- $\mathbf{b} = \mathbf{P}_2[\mathbf{L}_1 \text{ union } \mathbf{L}_2]$ $\mathbf{1} \mathbf{b} = \mathbf{P}_2[\mathbf{L}_2 \setminus \mathbf{L}_1]$

- Let there be two languages L₁ and L₂, the extensions of g₁ and g₂, produced with probabilities P₁ and P₂.
- $a = P_1[L_1 \text{ union } L_2]$ $1 a = P_1[L_1 \setminus L_2]$
- $\mathbf{b} = \mathbf{P}_2[\mathbf{L}_1 \text{ union } \mathbf{L}_2]$ $\mathbf{1} \mathbf{b} = \mathbf{P}_2[\mathbf{L}_2 \setminus \mathbf{L}_1]$
- Let T₁ and T₂ be transition matrices assuming g₁ and g₂ are the target grammars respectively
- $T_1 = [1 \ 0 ; 1-a \ a] \quad T_2 = [b \ 1-b ; 0 \ 1]$

T1 = $\begin{bmatrix} 1 & 0 \\ & 1 - a & a \end{bmatrix}$ **T2** = $\begin{bmatrix} b & 1 - b \\ & 0 & 1 \end{bmatrix}$ • If the target grammar is g1, then in the limit...

T1 = 1 0 1-a a T2 = b 1-b 0 1

- If the target grammar is g1, then in the limit...
 - Learners who initially hypothesize g1 will always remain in g1

T1 = 1 0 1-a a T2 = b 1-b 0 1

- If the target grammar is g1, then in the limit...
 - Learners who initially hypothesize g1 will always remain in g1
 - Learners who initially hypothesize
 g2 will remain at g2 with
 probability a

T1 = 1 0 1-a a T2 = b 1-b 0 1

- If the target grammar is g1, then in the limit...
 - Learners who initially hypothesize
 g1 will always remain in g1
 - Learners who initially hypothesize g2 will remain at g2 with probability a
 - Or switch to g1 with probability
 1-a