The Acquisition of Vowel Harmony from Simple Local Statistics

Spencer Caplan Jordan Kodner

Vowel Harmony

- System-wide vowel alternation patterns in languages across the world
- Affects roots and affixes, and languages may have multiple processes
- Vowels are either neutral or harmonizing. Harmonizing vowels are partitioned into sets
- Generally, words contain vowels from only one harmonizing set

Distributional Hypothesis

1. In non-harmonizing languages (eg English), no particular vowels should be more or less likely to follow one another (near-uniform co-occurrence distribution)
2. In harmonizing languages (eg Turkish, Finnish), we expect strongly non-uniform co-occurrence distributions, since vowel co-occurrence is partitioned by the phonology

Model Implementation

1. Over word list OR unsegmented input,
2. Tabulate vowel co-occurrence matrix counting adjacent vowels ignoring consonants
3. Convert to normalized conditional probabilities
4. Remove neutral vowels with normP consistently below threshold proportional to vowel set cardinality
5. Find featural partition (eg online k means clustering, $k=2$)
6. Collapse over features and repeat.

Example Input

Co-occurence Matrix:
Vowel Freqs:
$\mathrm{C}(a)=4, \mathrm{C}(e)=1, \mathrm{C}(i)=1$
Probs: $\quad \mathrm{P}(\mathrm{a})=4 / 6, \mathrm{P}(e), \mathrm{P}(i)=1 / 6$

$$
\operatorname{norm} P(a \mid e)=\frac{C(a \mid e)}{C(a) P(e)}
$$

$$
\text { Threshold }=\frac{0.5}{\# \text { Vowels }}
$$

Early Acquisition

- Infants as young as seven months are sensitive to vowel harmony alternations in acoustic input in preferential listening over continuous unsegmented speech [4]
A computational model should:
- Connect raw input to phonological theory
- Require little data and function over unsegmented speech (rather than individual words from a wordlist)
- Leverage plausible cognitive tools (online processing, simple calculations, innate ability to differentiate consonants and vowels) [1]

Distributional Cues

[^0]
Results

Language	Primary	Secondary	Neutral Vowels	Harmony Found
Hungarian	yes	yes	2	Primary only
Turkish	yes	yes	(2ary only)	yes
Finnish	yes	-	2	yes
Warlpiri	yes	-	1	yes
Uyghur	yes	-	-	yes
Estonian	remnant	-	-	finds remnant
German	-	-	-	no
English	-	-	-	no

- Primary harmony correctly partitioned for all harmonizing languages.
- Secondary harmony was discovered for Turkish
- No harmony identified for English and German
- Partial historical system discovered for Estonian
- Hungarian results depend on removing vowel length from orthography.

Empirical Questions

- Is primary harmony in fact acquired first?
- Are children sensitive to more complex harmony processes early on?
- Must harmony function over a single phonological feature?

How do learners differentiate productive harmony (eg Finnish, Turkish) from non-productive (eg Estonian, Uzbek)? (cf [5])
How helpful is harmony in word segmentation tasks?

- What minimum signal-to-noise ratio is necessary? Harmony exceptions (eg common in Turkish) and average word length in infant-directedspeech affect this.

Acknowledgements

We thank Charles Yang, Mitch Marcus, Ryan Budnick, the University of Pennsylvania's 2016 LORELEI research team, and the Penn Language Developmen and Language Processing Lab. This research was funded by the DARPA LORELEI program under Agreement No. HROO11-15-2-0023.

Selected References

[1] Aslin, Richard N., Jenny R. Saffran, and Elissa L. Newport. Psychological science 9.4 (1998): 321-324. [2] Clements, George N. Bloomington: Indiana University Linguistics Club (1976). [3] Goldsmith, John, and Jason Riggle. Natural Language \& Linguistic Theory 30.3 (2012): 859-896. [4] Mintz, Toby et al.Cognition 171 (2018): 95-107. [5] Yang, Charles. Linguistic variation yearbook 5.1 (2005).

Code and Contact

https://github.com/scaplan/VowelHarmonyAcquisition \{spcaplan, jkodner\}@sas.upenn.edu

[^0]: Heatmaps showing normP for each vowel pair in Finnish, Turkish, and English - Red indicates low normP (unlikely to co-ocur) and Green is high normP

 Self-norm P is omitted

 - The distribution for English (non-harmonizing) is near-uniform - Turkish is clearly partitioned into its two harmonizing sets
 - Finnish neutral i and e are distinct from harmonizing vowels

