Vowel Harmony as a Distributional Learning Problem

Spencer Caplan and Jordan Kodner
University of Pennsylvania
spcaplan@sas.upenn.edu, jkodner@sas.upenn.edu

Vowel Harmony in Phonological Theory

- Language-wide vowel alternation pattern
- Present in a large portion of the world's
languages
- Patterns systemic across roots and affixes
- Languages may have more than one
harmony process
- Vowels partitioned into sets
- Words contain vowels from one set only
- "Neutral" vowels do not change

Finnish
Caused by speading of phonologica featues

- Frontness (Turkish, Finnish) - ATR (Mongolian, Javanese, Fula) - Roundness (Turkish, Walpiri)

Spreading may be either:

- Left-to-Right (Turkish - Left-to-Right (Turkish, Finnish)
- Right-to-Left (Fula, Pulu) -oble-Let (Fula, Pulu)

Turkish (Left-to-Right, realized on suffixes) (Left-to-Right, realized
Bas-lar vs. Besev-ler

Fula (Right-to-Left, realized on roots)
 peec-i \rightarrow p $\varepsilon \varepsilon$--nn (proper noun)

Early Acquisition

input (Mintz et al. 2006)
Effect present for children whose normal language environment has no harmond

From Raw Input to Productive Grammar

- Phonological theory describes speaker's behavior involving vowel harmony

But the child learner has no direct access to the latent parts involved in such a grammar A learning model must exist to translate from raw input to the abstract input/output

Requirements of a Harmony Acquisition Model

Requires only limited input data to learn

Input is unsegmented speech
Stream of phonemes rather than neatly cut words
No frequency counts (need to handle high frequency exceptions)
iers are differentiable (Newport and Aslin 2004)
Processing happens online rather than in batch
Posited calculations shuld be implementable by the learner

Distributional Hypothesis

[^0]
- We present a computational model of vowel harmony acquisition.

- To date no model had been able to explain children's experimental and empirical performance with respect to vowel harmony (cf. Goldsmith and Riggle 2012)
- Following previous experimental work the model learns only from limited unsegmented linguistic input
- The model accounts for a wide range of typological facts over varied cross-linguistic input

English Vowel Pair PMI

Heatmaps showing PMI for each pair within the vowe spaces of various test languages (English, Finnish, and Turkish)

- Red color indicates pairs which are distributionally less likely to co-occur
Green pairs co-occur either at or above change
The distribution for English (as a non-harmony) language is close to uniform
Finnish and Turkish show clear division of vowel distribution into latent harmonizing sets Note the two neutral vowels in Finnish " i " and " e " in the two top-most rows show no significant deviation from the uniform distribution.

Empirical Predictions and Questions for Future Research

- Is primary harmony within a language in fact acquired first as predicted by the model?

Does harmony need to be a function over a single phonological feature (i.e. a natural class)?
How would performance look given asymmetry within the distribution of only a single vowel? ductive disharmony (e.g. Estonian) from a

Model Implementation

	Utterence: "kababesisata"
	A E\|
1) Tabulate Vowel-Vowel Cooccurrence Matrix	Coocurrence matrix: A 2001
	E 10
- Counting adjacencies over vowel-tier - However signal and algorithm are robust to perform well under other counting schemes	0
	Vowel frequencies: $C(a)=4, C(e)=1, C(i)=1$
	$\mathrm{P}(\mathrm{a})=4 / 6$
	Vowel probabilities: $\quad P(\mathrm{e})=1 / 6$
	$\mathrm{P}(\mathrm{i})=1 / 6$
2) Convert to normalized conditional probabilities	$n o r m P(a \mid e)=\frac{C(a \mid e)}{C(a) P(e)}$
	$\text { Threshold }=\frac{0.5}{}$
3) Identify Neutral vs. Harmonizing Vowels	Threshold $=\overline{\# \text { Vowels }}$
	For each pair of vowels v1, v2 If normP(v1\|v2) < Threshold: v1 is not neutral
- Threshold proportional to cardinality of vowel set - If all vowels appear neutral this is a non-harmony language (e.g. English)	
	Cluster harmonizing vowels into two sets K-means ($k=2$)
4) Find featural partition	Division must be a natural class over a single phonological feature
	Remove harmonizing feature from vowel space and repeat algorithm until all remaining vowels appear neutral.
5) Collapse over feature and repeat	This identifies any secondary harmony processes

Thank you
... to Charles Yang, Mitch Marcus, Ryan Budnick, and the audience at NECPhon10 for helpful feedback and advice

Code Available Open Source
https://github.com/scaplan/VowelHarmonyAcquisition

References

[1] Aslin, Richard N., Jenny R. Saffran, and Elissa L. Newport. "Computation of conditional probability statistics by 8 -month-old infants." Psychological science 9.4 (1998): :321-324. [2] Clements, George N. "Vowel harmony in nonlinear generative phonology." Bloomingto ndiana University Linguistics Club (1976).
13] Goldsmith, John, and Jason Rigele. "Information theoretic approaches to phonological structure: the case of Finnish vowel harmony." Natural Language \& Linguistic Theory 30.3 structure: the cas
2012): 859-896.
4] Mintz, Toby, and Rachel Walker. "Infants' Sensitivity to Vowel Harmony and its Role in Word Segmentation." (2006).
[5] Yang, Charles. "On productivity." Linguistic variation yearbook 5.1 (2005): 265-302.

[^0]: or less likely to follow another
 a vowel-harmony languaser
 a distributional signal of vowel harmony is a divergence from thive to the other distribution of vowel co-occurrences
 Simply tracking conditional probabilities fails to capture this patter

 - Frequency differences between vowels disrupt the signal
 - Instead we normalize conditional probabilitiy by the frequency of the preceding vowel context

