Adjusting to the New Normal(ization): Adapting *Atlas of North American English* Benchmarks to Lobanov-Normalized Data

Aaron J. Dinkin, San Diego State University adinkin@sdsu.edu

In this paper I offer a method for translating formant benchmarks from the *Atlas of North American English* (Labov et al. 2006) into Lobanov-normalized formant values, so that Lobanov-normalized data can be compared to and contextualized against benchmarks set by *ANAE* in a replicable and standardizable way. I propose using the means and standard deviations of the entire *ANAE* data set in order to translate the original benchmarks into z-scores relative to the *ANAE* corpus, and then using those z-scores as the corresponding benchmarks for Lobanovnormalized data. The relevant values are as follows:

	ANAE corpus
F1 mean	650.7 Hz
F1 s.d.	150.0 Hz
F2 mean	1595.5 Hz
F2 s.d.	435.2 Hz

E.g., the benchmark F1 < 700 Hz becomes the Lobanov-transformed benchmark F1 < 0.329, since 700 Hz is 0.329 standard deviations greater than the mean F1 in the *ANAE* corpus.

The FAVE software package (Rosenfelder et al. 2014) uses Lobanov normalization to produce its normalized formant measurements, but translates them back into hertz-like values as its output. The mean and standard deviation used for this translation in F1 are very close to the *ANAE* corpus mean and standard deviation, but this is not the case for F2: the FAVE F2 mean is 1700 Hz, with s.d. 420 hz. This implies that *ANAE* benchmarks in F1 can be used at face value for FAVE-normalized data, but F2 benchmarks cannot; they must be translated back through *z*scores in order to be meaningfully compared against FAVE data.

I compare my Lobanov transformations of benchmarks to the original *ANAE* benchmarks in order to evaluate how well they characterize *ANAE* regions, using the isogloss parameters of homogeneity, consistency, and leakage. An ideal isogloss has maximal homogeneity and consistency and minimal leakage.

The data used is Fruehwald (2010)'s packaging of the *ANAE* data, which codes each speaker as belonging to one of 22 dialect groups. These dialect groups, rather than the exact isoglosses from the corresponding *ANAE* maps, are used in most cases as the regions against which isogloss parameters are evaluated in this paper.

The tables on the following pages compare the homogeneity, consistency, and leakage of each region under the original *ANAE* benchmarks to the same values calculated using Lobanov-transformed benchmarks; the dialect groups and/or cities included in each region for the purposes of evaluating its dialect parameters are listed below each table.

Southeastern cf. ANAE	Southeastern super-region cf. ANAE map 11.11		<i>n</i> outside region	homogeneity	consistency	leakage
	total speakers	166	269			
ANAE benchmark	F2(GOAT) > 1200 Hz	152	107	.916	.587	.398
Lobanov- transformed	F2(GOAT) > -0.909	155	105	024	50(200
FAVE- rescaled	F2(GOAT) > 1318 Hz	155	105	.934	.596	.390

Regions included: South, Inland South, Texas South, Midland, Mid-Atlantic, Florida, Charleston

No cf. ANAE	orth map 11.8	<i>n</i> inside region	<i>n</i> outside region	homogeneity	consistency	leakage
	total speakers	117	318		-	
ANAE benchmark	F2(GOAT) < 1200 Hz	98	78	.838	.557	.245
Lobanov- transformed	F2(GOAT) < -0.909	08	77	929	560	242
FAVE- rescaled	F2(GOAT) < 1319 Hz	98	//	.038	.500	.242

Regions included: North, Inland North, Western New England, Providence

Inland cf. ANAE	l North map 14.4	<i>n</i> inside region	<i>n</i> outside region	homogeneity	consistency	leakage
	total speakers	71	364		-	•
ANAE benchmark	F1(trap) < 700 Hz	53	54	.746	.495	.148
Lobanov- transformed	F1(TRAP) < 0.329	60	37	.845	.619	.102
FAVE- rescaled	F1(trap) < 700 Hz	00	51	.043	.017	.102

Regions included: Inland North, St. Louis corridor

Inland cf. ANAE	l North ' map 14.5	<i>n</i> inside region	<i>n</i> outside region	homogeneity	consistency	leakage
	total speakers	62	373			
ANAE benchmark	F2(LOT) > 1450 Hz	48	38	.774	.558	.102
Lobanov- transformed	F2(LOT) > -0.334	50	27	907	575	000
FAVE- rescaled	F2(LOT) > 1559 Hz	50	37	.806	.575	.099

Regions included: Inland North

Eastern Corridor cf. ANAE map 9.2		<i>n</i> inside region	<i>n</i> outside region	homogeneity	consistency	leakage
	total speakers	24	411		-	
ANAE benchmark	F1(THOUGHT) < 700 Hz	19	37	.792	.339	.090
Lobanov- transformed	F1(THOUGHT) < 0.329	10	20	702	200	073
FAVE- rescaled	F1(THOUGHT) < 700 Hz	19	50	.192	.388	.073

Regions included: New York City, Mid-Atlantic, Providence

Car cf. ANAE	nada 7 map 15.4	<i>n</i> inside region	<i>n</i> outside region	homogeneity	consistency	leakage
	total speakers	24	411		-	
ANAE benchmark	F1(DRESS)> 660 Hz	23	203	.958	.102	.494
Lobanov- transformed	F1(DRESS) > 0.062	22	192	059	112	443
FAVE- rescaled	F1(DRESS) > 659 Hz	23	102	.730	.112	.445

Regions included: Canada

Canada cf. <i>ANAE</i> map 15.4		<i>n</i> inside region	<i>n</i> outside region	homogeneity	consistency	leakage
	total speakers	24	411			•
ANAE benchmark	F2(TRAP) < 1825 Hz	24	169	1.00	.124	.411
Lobanov- transformed	F2(TRAP) < 0.527	24	145	1.00	143	353
FAVE- rescaled	F2(TRAP) < 1922 Hz	24	143	1.00	.142	.353

Regions included: Canada

Canada cf. <i>ANAE</i> map 15.4		<i>n</i> inside region	<i>n</i> outside region	homogeneity	consistency	leakage
	total speakers	24	411			-
ANAE benchmark	F2(LOT) < 1275 Hz	21	88	.875	.193	.214
Lobanov- transformed	F2(LOT) < -0.736	22	00	017	106	210
FAVE- rescaled	F2(LOT) < 1391 Hz	22	90	.917	.190	.219

Regions included: Canada

Inland Canada cf. <i>ANAE</i> map 15.7		<i>n</i> inside region	<i>n</i> outside region	homogeneity	consistency	leakage
	total speakers	9	23			
ANAE benchmark	F2(FACE) > 2200 Hz	7	11	.778	.389	.478
Lobanov- transformed	F2(FACE) > 1.39	7	0	779	139	201
FAVE- rescaled	F2(FACE) > 2283 Hz	7	У	.//8	.438	.391

Cities included: Edmonton, Calgary, Saskatoon, Regina, Winnipeg, Thunder Bay, vs. other Canadian locations.

Inland Canada cf. <i>ANAE</i> map 15.7		<i>n</i> inside region	<i>n</i> outside region	homogeneity	consistency	leakage
	total speakers	9	23			-
ANAE benchmark	F2(GOAT) < 1100 Hz	7	5	.778	.583	.217
Lobanov- transformed FAVE-	F2(GOAT) < -1.14 F2(GOAT) <	8	8	.889	.500	.348

Cities included: Edmonton, Calgary, Saskatoon, Regina, Winnipeg, Thunder Bay, vs. other Canadian locations.

Atlantic cf. ANAE	Provinces 7 map 15.6	<i>n</i> inside region	<i>n</i> outside region	homogeneity	eity consistency leakage	leakage
	total speakers	8	24			_
ANAE benchmark	F2(start) > 1450 Hz	6	3	.750	.667	.125
Lobanov- transformed	F2(start) > -0.334	5	1	625	933	042
FAVE- rescaled	F2(start) > 1559 Hz	5	1	.025	.035	.042

Regions included: Atlantic Provinces., vs. other Canadian locations.

North Central cf. ANAE map 11.13		<i>n</i> inside region	<i>n</i> outside region	homogeneity	consistency	leakage
total speakers		9	424			
ANAE benchmark	F2(GOOSE) < 1700 Hz	6	89	.667	.063	.210
Lobanov- transformed	F2(GOOSE) < 0.240	6	95	((7	066	200
FAVE- rescaled	F2(GOOSE) < 1800 Hz	0	83	.007	.000	.200

Cities included: Brockway, Lemmon, Minot, Bismarck, Fargo, Bemidji, Chisholm, Superior, Marquette. GOOSE after coronal consonants.

North Central cf. ANAE map 11.13		<i>n</i> inside region	<i>n</i> outside region	homogeneity	consistency	leakage
total speakers		9	407		_	_
ANAE benchmark	F2(GOOSE) < 1300 Hz	9	138	1.00	.061	.339
Lobanov- transformed FAVE- rescaled	F2(GOOSE) < -0.679 F2(GOOSE) < 1415 Hz	8	145	.889	.052	.356

Cities included: Brockway, Lemmon, Minot, Bismarck, Fargo, Bemidji, Chisholm, Superior, Marquette. GOOSE after non-coronal consonants.

For the majority of benchmarks and parameters, the Lobanov-transformed benchmark is at least as effective at distinguishing the dialect region as the original *ANAE* benchmark is. Most of the exceptions are regions defined by a very small number of data points, or worse than the *ANAE* benchmarks by a very small margin. This suggests that the transformation defined in this paper is an appropriate tool for adapting *ANAE* benchmarks to be compared against Lobanov-normalized data.

	better with Lobanov	same results	better with original	
	benchmarks		benchmarks	
homogeneity	5	6	3	
consistency	11	0	3	
leakage	10	0	4	

Overview of results.

References

Adank, Patti, Roel Smits, & Roeland van Hout (2004). A comparison of vowel normalization procedures for language variation research. *Journal of the Acoustical Society of America* 116:3099–3107.

Becker, Kara (2014). The social motivations of reversal: Raised BOUGHT in New York City English. *Language in Society* 43:395–420.

Brumbaugh, Susan & Christian Koops (2017). Vowel variation in Albuquerque, New Mexico. In Fridland, Valerie, Alicia Beckford Wassink, Tyler Kendall, & Betsy E. Evans (eds.), *Speech in the Western States, Volume 2: The Mountain West*. Publication of the American Dialect Society 102:31–57.

Fruehwald, Josef (2010). Compilation, coding, cleaning, and plotting of the ANAE data. Unpublished manuscript and R workspace.

Labov, William, Sharon Ash, & Charles Boberg (2006). *Atlas of North American English*. Mouton/de Gruyter.

Roeder, Rebecca (2009). The effects of phonetic environment on English /æ/ among speakers of Mexican heritage in Michigan. *Toronto Working Papers in Linguistics* 31.

Rosenfelder, Ingrid, Josef Fruehwald, Keelan Evanini, Scott Seyfarth, Kyle Gorman, Hilary Prichard, & Jiahong Yuan (2014). FAVE (Forced Alignment and Vowel Extraction) Program Suite.

Thomas, Erik & Tyler Kendall (2007). NORM: The vowel normalization and plotting suite. http://lingtools.uoregon.edu/norm/norm1_methods.php